Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 578
Filter
Add more filters

Publication year range
1.
Emerg Infect Dis ; 30(10): 1987-1997, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39320134

ABSTRACT

Pasteurella spp. can cause fatal zoonotic infections in humans. We performed a multicenter study to investigate the prevalence and clinical features of Pasteurella infections in South Korea during 2018‒2022. We also conducted a collaborative systematic review and meta-analysis of the global burden of Pasteurella bacteremia. The study included 283 cases found an increasing trend in Pasteurella infections. Blood cultures were positive in 8/35 (22.9%) cases sampled, for overall bacteremia-associated rate of 2.8% (8/283). Aging was a significant risk factor for bacteremia (odds ratio 1.05 [95% CI 1.01-1.10]), according to multivariate analyses. For the meta-analysis, we included a total of 2,012 cases from 10 studies. The pooled prevalence of bacteremia was 12.4% (95% CI 7.3%-18.6%) and of mortality 8.4% (95% CI 2.7%-16.5%). Our findings reflect the need for greater understanding of the increase in Pasteurella infections and the global burden of Pasteurella bacteremia to determine appropriate case management.


Subject(s)
Bacteremia , Pasteurella Infections , Pasteurella , Bacteremia/epidemiology , Bacteremia/microbiology , Republic of Korea/epidemiology , Humans , Pasteurella Infections/epidemiology , Pasteurella Infections/microbiology , Prevalence , Male , Middle Aged , Female , Aged , Adult , Risk Factors , Animals , Young Adult
2.
Int J Med Microbiol ; 314: 151597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38217947

ABSTRACT

Pasteurella multocida is a zoonotic pathogen causing serious diseases in humans and animals. Here, we report P. multocida from wildlife on China's Qinghai-Tibet plateau with a novel capsular serotype, forming a single branch on the core-genome phylogenetic tree: four strains isolated from dead Himalayan marmot (Marmota himalayana) and one genome assembled from metagenomic sequencing of a dead Woolly hare (Lepus oiostolus). Four of the strains were identified as subspecies multocida and one was septica. The mouse model showed that the challenge strain killed mice within 24 h at an infectious dose of less than 300 bacteria. The short disease course is comparable to septicemic plague: the host has died before more severe pathological changes could take place. Though pathological changes were relatively mild, cytokine storm was obvious with a significant rise of IL-12p70, IL-6, TNF-αand IL-10 (P < 0.05). Our findings suggested P. multocida is a lethal pathogen for wildlife on Qinghai-Tibet plateau, in addition to Yersinia pestis. Individuals residing within the M. himalayana plague focus are at risk for P. multocida infection, and public health warnings are necessitated.


Subject(s)
Pasteurella multocida , Plague , Animals , Humans , Mice , Tibet , Marmota/microbiology , Pasteurella multocida/genetics , Phylogeny , Serogroup , China , Plague/microbiology , Animals, Wild
3.
Appl Environ Microbiol ; 90(4): e0204323, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38547470

ABSTRACT

Pasteurella multocida is a zoonotic conditional pathogen that infects multiple livestock species, causing substantial economic losses in the animal husbandry industry. An efficient markerless method for gene manipulation may facilitate the investigations of P. multocida gene function and pathogenesis of P. multocida. Herein, a temperature-sensitive shuttle vector was constructed using lacZ as a selection marker, and markerless glgB, opa, and hyaE mutants of P. multocida were subsequently constructed through blue-white colony screening. The screening efficiency of markerless deletion strains was improved by the lacZ system, and the method could be used for multiple gene deletions. However, the fur mutant was unavailable via this method. Therefore, we constructed a pheSm screening system based on mutated phenylalanine tRNA synthetase as a counterselection marker to achieve fur deletion mutant. The transformed strain was sensitive to 20 mM p-chloro-phenylalanine, demonstrating the feasibility of pheSm as a counter-selective marker. The pheSm system was used for markerless deletions of glgB, opa, and hyaE as well as fur that could not be screened by the lacZ system. A comparison of screening efficiencies of the system showed that the pheSm counterselection system was more efficient than the lacZ system and broadly applicable for mutant screening. The methods developed herein may provide valuable tools for genetic manipulation of P. multocida.IMPORTANCEPasteurella multocida is a highly contagious zoonotic pathogen. An understanding of its underlying pathogenic mechanisms is of considerable importance and requires efficient species-specific genetic tools. Herein, we propose a screening system for P. multocida mutants using lacZ or pheSm screening markers. We evaluated the efficiencies of both systems, which were used to achieve markerless deletion of multiple genes. The results of this study support the use of lacZ or pheSm as counterselection markers to improve counterselection efficiency in P. multocida. This study provides an effective genetic tool for investigations of the virulence gene functions and pathogenic mechanisms of P. multocida.


Subject(s)
Pasteurella multocida , Animals , Pasteurella multocida/genetics , Lac Operon , Genetic Vectors , Phenylalanine
4.
Microb Pathog ; 193: 106768, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960217

ABSTRACT

Fowl cholera is an infectious disease that affects both poultry and wild birds, characterized by hemorrhagic and septicemic symptoms, caused by Pasteurella multocida (P. multocida), and leading to substantial economic losses in the poultry sector. The development of genetic engineering vaccines against avian P. multocida encountered early-stage challenges due to the limited availability of effective gene editing tools. Presently, NgAgoDM-enhanced homologous recombination stands as a potent technique for achieving efficient gene knockout in avian P. multocida. Hence, this study employed NgAgoDM-enhanced homologous recombination to target and knockout hyaE (239-359aa), hyaD, hexABC, and hexD, denoted as ΔhyaE (239-359aa), ΔhyaD, ΔhexABC, and ΔhexD, respectively. Additionally, we generated a hyaD recovery strain with two point mutations, designated as mhyaD. Thus, this study systematically examined the impact of capsular synthetic gene clusters on the pathogenicity of P. multocida. Moreover, the study demonstrated the critical role of hyaD activity in the virulence of avian P. multocida. This study offers novel insights for enhancing attenuated vaccines further.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Poultry Diseases , Pasteurella multocida/genetics , Pasteurella multocida/pathogenicity , Animals , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Virulence/genetics , Poultry Diseases/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Homologous Recombination , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Gene Knockout Techniques , Chickens/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Birds/microbiology , Multigene Family , Virulence Factors/genetics , Poultry/microbiology
5.
Genome ; 67(1): 13-23, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37639729

ABSTRACT

Pasteurella multocida causes acute/chronic pasteurellosis in porcine, resulting in considerable economic losses globally. The draft genomes of two Indian strains NIVEDIPm17 (serogroup D) and NIVEDIPm36 (serogroup A) were sequenced. A total of 2182-2284 coding sequences (CDSs) were predicted along with 5-6 rRNA and 45-46 tRNA genes in the genomes. Multilocus sequence analysis and LPS genotyping showed the presence of ST50: genotype 07 and ST74: genotype 06 in NIVEDIPm17 and NIVEDIPm36, respectively. Pangenome analysis of 61 strains showed the presence of 1653 core genes, 167 soft core genes, 750 shell genes, and 1820 cloud genes. Analysis of virulence-associated genes in 61 genomes indicated the presence of nanB, exbB, exbD, ptfA, ompA, ompH, fur, plpB, fimA, sodA, sodC, tonB, and omp87 in all strains. The 61 genomes contained genes encoding tetracycline (54%), streptomycin (48%), sulphonamide (28%), tigecycline (25%), chloramphenicol (21%), amikacin (7%), cephalosporin (5%), and trimethoprim (5%) resistance. Multilocus sequence type revealed that ST50 was the most common (34%), followed by ST74 (26%), ST13 (24%), ST287 (5%), ST09 (5%), ST122 (3%), and ST07 (2%). Single-nucleotide polymorphism and core genome-based phylogenetic analysis clustered the strains into three major clusters. In conclusion, we described the various virulence factors, mobile genetic elements, and antimicrobial resistance genes in the pangenome of P. multocida of porcine origin, besides the rare presence of LPS genotype 7 in serogroup D.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Animals , Swine , Pasteurella multocida/genetics , Phylogeny , Lipopolysaccharides , Pasteurella Infections/veterinary , Virulence Factors/genetics
6.
Vet Res ; 55(1): 104, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210406

ABSTRACT

Meningitis induced by Pasteurella multocida has been substantially described in clinical practice in both human and veterinary medicine, but the underlying mechanisms have not been previously reported. In this study, we investigated the influence of P. multocida infection on the permeability of the blood-brain barrier (BBB) using different models. Our in vivo tests in a mouse model and in vitro tests using human brain microvascular endothelial cell (hBMEC) model showed that P. multocida infection increased murine BBB permeability in mice and hBMEC monolayer permeability. Furthermore, we observed that P. multocida infection resulted in decreased expression of tight junctions (ZO1, claudin-5, occludin) and adherens junctions (E-cadherin) between neighboring hBMECs. Subsequent experiments revealed that P. multocida infection promoted the activation of hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor A (VEGFA) signaling and NF-κB signaling, and suppressed the HIF-1α/VEGFA significantly remitted the decrease in ZO1/E-cadherin induced by P. multocida infection (P < 0.001). NF-κB signaling was found to contribute to the production of chemokines such as TNF-1α, IL-ß, and IL-6. Additionally, transmission electron microscopy revealed that paracellular migration might be the strategy employed by P. multocida to cross the BBB. This study provides the first evidence of the migration strategy used by P. multocida to traverse the mammalian BBB. The data presented herein will contribute to a better understanding of the pathogenesis of the zoonotic pathogen P. multocida.


Subject(s)
Adherens Junctions , Blood-Brain Barrier , Endothelial Cells , Pasteurella Infections , Pasteurella multocida , Tight Junctions , Animals , Pasteurella multocida/physiology , Blood-Brain Barrier/microbiology , Mice , Adherens Junctions/metabolism , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Endothelial Cells/microbiology , Endothelial Cells/physiology , Tight Junctions/metabolism , Humans , Brain/microbiology , Brain/blood supply
7.
Vet Res ; 55(1): 46, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589976

ABSTRACT

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Subject(s)
Bacteremia , Pasteurella Infections , Pasteurella multocida , Rodent Diseases , Humans , Animals , Rabbits , Mice , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Proto-Oncogene Proteins c-akt , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/veterinary , Lung/pathology , Bacteremia/veterinary , Bacteremia/pathology , Apoptosis , Mammals , Forkhead Box Protein O1
8.
Vet Res ; 55(1): 31, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493147

ABSTRACT

Pasteurella multocida is an opportunistic zoonotic pathogen that primarily causes fatal respiratory diseases, such as pneumonia and respiratory syndromes. However, the precise mechanistic understanding of how P. multocida disrupts the epithelial barrier in mammalian lung remains largely unknown. In this study, using unbiased RNA-seq analysis, we found that the evolutionarily conserved Hippo-Yap pathway was dysregulated after P. multocida infection. Given the complexity of P. multocida infection associated with lung injury and systemic inflammatory processes, we employed a combination of cell culture models, mouse models, and rabbit models to investigate the dynamics of the Hippo-Yap pathway during P. multocida infection. Our findings reveal that P. multocida infection activates the Hippo-Yap pathway both in vitro and in vivo, by upregulating the upstream factors p-Mst1/2, p-Lats1, and p-Yap, and downregulating the downstream effectors Birc5, Cyr61, and Slug. Conversely, pharmacological inhibition of the Hippo pathway by XMU-MP-1 significantly rescued pulmonary epithelial cell apoptosis in vitro and reduced lung injury, systemic inflammation, and mouse mortality in vivo. Mechanistic studies revealed that P. multocida induced up-regulation of Rassf1 expression, and Rassf1 enhanced Hippo-Yap pathway through phosphorylation. Accordingly, in vitro knockdown of Rassf1 significantly enhanced Yap activity and expression of Yap downstream factors and reduced apoptosis during P. multocida infection. P. multocida-infected rabbit samples also showed overexpression of Rassf1, p-Lats1, and p-Yap, suggesting that P. multocida activates the Rassf1-Hippo-Yap pathway. These results elucidate the pathogenic role of the Rassf1-Hippo-Yap pathway in P. multocida infection and suggest that this pathway has the potential to be a drug target for the treatment of pasteurellosis.


Subject(s)
Lung Injury , Pasteurella multocida , Rodent Diseases , Mice , Animals , Rabbits , Hippo Signaling Pathway , Signal Transduction , Lung Injury/veterinary , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/metabolism , Lung/metabolism , Apoptosis , Cell Proliferation , Mammals
9.
BMC Infect Dis ; 24(1): 323, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491456

ABSTRACT

BACKGROUND: Pasteurella multocida is a zoonotic pathogen that mainly causes local skin and soft tissue infections in the human body through cat and dog bites. It rarely causes bacteraemia (or sepsis) and meningitis. We reported a case of septic shock and meningitis caused by P. multocida in a patient without a history of cat and dog bites. CASE PRESENTATION: An 84-year-old male patient was urgently sent to the emergency department after he was found with unclear consciousness for 8 h, accompanied by limb tremors and urinary incontinence. In the subsequent examination, P. multocida was detected in the blood culture and wound secretion samples of the patient. However, it was not detected in the cerebrospinal fluid culture, but its DNA sequence was detected. Therefore, the patient was clearly diagnosed with septic shock and meningitis caused by P. multocida. The patient had no history of cat or dog contact or bite. The patient was subsequently treated with a combination of penicillin G, doxycycline, and ceftriaxone, and he was discharged after 35 days of hospitalisation. CONCLUSION: This report presented a rare case of septic shock and meningitis caused by P. multocida, which was not related to a cat or dog bite. Clinical doctors should consider P. multocida as a possible cause of sepsis or meningitis and should be aware of its potential seriousness even in the absence of animal bites.


Subject(s)
Bites and Stings , Meningitis , Pasteurella Infections , Pasteurella multocida , Shock, Septic , Male , Humans , Animals , Dogs , Cats , Aged, 80 and over , Pasteurella Infections/diagnosis , Pasteurella Infections/drug therapy , Shock, Septic/etiology , Shock, Septic/complications , Meningitis/complications , Bites and Stings/complications
10.
Avian Pathol ; : 1-12, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39069790

ABSTRACT

The avian influenza virus is an infectious agent that may cause global health problems in poultry and is potentially zoonotic. In the recent decades, bacterial-derived sialidases have been extensively studied for their ability to inhibit avian influenza virus infections. In this study, the antiviral activity of NanB sialidase from Pasteurella multocida was investigated through in vitro analysis using Madin-Darby canine kidney (MDCK) cells. NanB sialidase was purified from P. multocida to test its toxicity and its ability to hydrolyse its sialic acid receptors on MDCK cells. The H9N2 challenge virus was propagated in MDCK cells until cytopathic effects appeared. Antiviral activity of NanB sialidase was tested using MDCK cells, and then observed based on cell morphology, viral copy number, and expression of apoptosis-mediating genes. NanB sialidase effectively hydrolysed Neu5Acα(2,6)-Gal sialic acid at a dose of 129 mU/ml, while at 258 mU/ml, it caused toxicity to MDCK cells. Antiviral activity of sialidase was evident based on the significant decrease in viral copy number at all doses administered. The increase of p53 and caspase-3 expression was observed in infected cells without sialidase. Our study demonstrates the ability of NanB sialidase to inhibit H9N2 virus replication based on observations of sialic acid hydrolysis, reduction in viral copy number, and expression of apoptosis-related genes. The future application of sialidase may be considered as an antiviral strategy against avian influenza H9N2 virus infections. RESEARCH HIGHLIGHTSNanB sialidase effectively hydrolyses Neu5Acα(2,6)-Gal at a dose of 129 mU/ml.NanB sialidase from Pasteurella multocida can inhibit the entry of H9N2 virus into cells.NanB sialidase of Pasteurella multocida prevents infection-induced cell apoptosis.NanB sialidase reduces the H9N2 viral copy number in MDCK cells.

11.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38925653

ABSTRACT

AIMS: This study aimed to assess the pharmacokinetic/pharmacodynamic (PK/PD) targets of danofloxacin to minimize the risk of selecting resistant Pasteurella multocida mutants and to identify the mechanisms underlying their resistance in an in vitro dynamic model, attaining the optimum dosing regimen of danofloxacin to improve its clinical efficacy based on the mutant selection window (MSW) hypothesis. METHODS AND RESULTS: Danofloxacin at seven dosing regimens and 5 days of treatment were simulated to quantify the bactericidal kinetics and enrichment of resistant mutants upon continuous antibiotic exposure. The magnitudes of PK/PD targets associated with different efficacies were determined in the model. The 24 h area under the concentration-time curve (AUC) to minimum inhibitory concentration (MIC) ratios (AUC24h/MIC) of danofloxacin associated with bacteriostatic, bactericidal and eradication effects against P. multocida were 34, 52, and 64 h. This translates to average danofloxacin concentrations (Cav) over 24 h being 1.42, 2.17, and 2.67 times the MIC, respectively. An AUC/MIC-dependent antibacterial efficacy and AUC/mutant prevention concentration (MPC)-dependent enrichment of P. multocida mutants in which maximum losses in danofloxacin susceptibility occurred at a simulated AUC24h/MIC ratio of 72 h (i.e. Cav of three times the MIC). The overexpression of efflux pumps (acrAB-tolC) and their regulatory genes (marA, soxS, and ramA) was associated with reduced susceptibility in danofloxacin-exposed P. multocida. The AUC24h/MPC ratio of 19 h (i.e. Cav of 0.8 times the MPC) was determined to be the minimum mutant prevention target value for the selection of resistant P. multocida mutants. CONCLUSIONS: The emergence of P. multocida resistance to danofloxacin exhibited a concentration-dependent pattern and was consistent with the MSW hypothesis. The current clinical dosing regimen of danofloxacin (2.5 mg kg-1) may have a risk of treatment failure due to inducible fluoroquinolone resistance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Fluoroquinolones , Microbial Sensitivity Tests , Pasteurella multocida , Pasteurella multocida/drug effects , Pasteurella multocida/genetics , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Mutation
12.
Appl Microbiol Biotechnol ; 108(1): 238, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407600

ABSTRACT

Pasteurella multocida is an important bacterial pathogen that can cause diseases in both animals and humans. Its elevated morbidity and mortality rates in animals result in substantial economic repercussions within the livestock industry. The prevention of diseases caused by P. multocida through immunization is impeded by the absence of a safe and effective vaccine. Outer membrane vesicles (OMVs) secreted from the outer membrane of Gram-negative bacteria are spherical vesicular structures that encompass an array of periplasmic components in conjunction with a diverse assortment of lipids and proteins. These vesicles can induce antibacterial immune responses within the host. P. multocida has been shown to produce OMVs. Nonetheless, the precise characteristics and immunomodulatory functions of P. multocida OMVs have not been fully elucidated. In this study, OMVs were isolated from P. multocida using an ultrafiltration concentration technique, and their morphology, protein constitution, and immunomodulatory properties in RAW264.7 cells were studied. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed that the OMVs exhibited typical spherical and bilayered lipid vesicular architecture, exhibiting an average diameter of approximately 147.5 nm. The yield of OMVs was 2.6 × 1011 particles/mL. Proteomic analysis revealed a high abundance of membrane-associated proteins within P. multocida OMVs, with the capability to instigate the host's immune response. Furthermore, OMVs stimulated the proliferation and cellular uptake of macrophages and triggered the secretion of cytokines, such as TNF-ɑ, IL-1ß, IL-6, IL-10, and TGF-ß1. Consequently, our results indicated that OMVs from P. multocida could directly interact with macrophages and regulate their immune function in vitro. These results supported the prospective applicability of P. multocida OMVs as a platform in the context of vaccine development. KEY POINTS: • Preparation and characterization of P. multocida OMVs. • P. multocida OMVs possess a range of antigens and lipoproteins associated with the activation of the immune system. • P. multocida OMVs can activate the proliferation, internalization, and cytokine secretion of macrophages in vitro.


Subject(s)
Pasteurella multocida , Animals , Humans , Prospective Studies , Proteomics , Macrophages , Periplasm
13.
BMC Vet Res ; 20(1): 94, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461234

ABSTRACT

Pasteurella multocida type A (PmA) mainly causes respiratory diseases such as pneumonia in bovines, leading to great economic losses to the breeding industry. At present, there is still no effective commercial vaccine against PmA infection. In this study, a mutant strain (PmCQ2Δ4555-4580) with brand-new phenotypes was obtained after serially passaging at 42 °C. Whole genome resequencing and PCR analysis showed that PmCQ2Δ4555-4580 missed six genes, including PmCQ2_004555, PmCQ2_004560, PmCQ2_004565, PmCQ2_004570, PmCQ2_004575, and PmCQ2_004580. Importantly, the virulence of PmCQ2Δ4555-4580 was reduced by approximately 2.8 × 109 times in mice. Notably, live PmCQ2Δ4555-4580 could provide 100%, 100% and 40% protection against PmA, PmB and PmF, respectively; and inactivated PmCQ2Δ4555-4580 could provide 100% and 87.5% protection against PmA and PmB. Interestingly, immune protection-related proteins were significantly upregulated in PmCQ2Δ4555-4580 based on RNA-seq and bioinformatics analysis. Meaningfully, by in vitro expression, purification and in vivo immunization, 12 proteins had different degrees of immune protective effects. Among them, PmCQ2_008205, PmCQ2_010435, PmCQ2_008190, and PmCQ2_004170 had the best protective effect, the protection rates against PmA were 50%, 40%, 30%, and 30%, respectively, and the protective rates against PmB were 62.5%, 42.9%, 37.5%, and 28.6%, respectively. Collectively, PmCQ2Δ4555-4580 is a potential vaccine candidate for the prevention of Pasteurellosis involving in high expression of immune protective related proteins.


Subject(s)
Cattle Diseases , Pasteurella Infections , Pasteurella multocida , Rodent Diseases , Animals , Mice , Cattle , Pasteurella multocida/genetics , Vaccines, Attenuated , Pasteurella Infections/prevention & control , Pasteurella Infections/veterinary , Immunization/veterinary , Vaccination/veterinary , Bacterial Vaccines
14.
J Infect Chemother ; 30(8): 820-823, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38373634

ABSTRACT

Pasteurellosis is a common zoonotic infection that occurs after an animal bite or scratch (B/S). We compared the clinical features of six patients with non-B/S pasteurellosis with those of 14 patients with B/S infections. Pasteurella multocida was identified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in all six non-B/S infections, whereas 13 of the 14 B/S infections were identified with diagnostic kits. The non-B/S infections were pneumonia (n = 3), skin and soft tissue infections (n = 2), and bacteremia (n = 1). Pneumonia occurred in two patients with underlying pulmonary disease, whereas ventilator-associated pneumonia developed in one patient with cerebral infarction. Pasteurella multocida was isolated from a blood specimen and nasal swab from a patient with liver cirrhosis (Child-Pugh class C) and diabetes. Cellulitis developed in one patient with diabetes and normal-pressure hydrocephalus, who had an open wound following a fall, and in one patient with diabetes and a foot ulcer. Three patients with non-B/S infections had no pet and no episode of recent animal contact. The rate of moderate-to-severe comorbidities was significantly higher in patients with non-B/S infections than in those with B/S infections (100% and 14.3%, respectively, p < 0.001). In conclusion, non-B/S infections can develop in patients with chronic pulmonary disease, invasive mechanical ventilation, or open wounds, or who are immunocompromised, irrespective of obvious animal exposure. In contrast to B/S infections, non-B/S pasteurellosis should be considered opportunistic.


Subject(s)
Bites and Stings , Pasteurella Infections , Pasteurella multocida , Humans , Pasteurella Infections/microbiology , Pasteurella Infections/diagnosis , Animals , Male , Female , Pasteurella multocida/isolation & purification , Middle Aged , Aged , Bites and Stings/complications , Bites and Stings/microbiology , Aged, 80 and over , Adult , Bacteremia/microbiology , Bacteremia/diagnosis
15.
J Dairy Sci ; 107(8): 5988-5999, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38522828

ABSTRACT

This study investigated the potential associations between 3 acute phase proteins (APP)-haptoglobin, serum amyloid A-and fibrinogen, clinical signs of respiratory disease, and the presence of bacterial pathogens in the lower respiratory tract (LRT) of preweaning dairy calves. This cross-sectional study included 150 preweaning calves (2-86 d old) from 15 large dairy herds in Estonia. Tracheobronchial lavage, blood, and fecal samples were collected from 5 calves showing clinical signs indicative of LRT disease, and samples from 5 calves without clinical signs of LRT disease per herd. All samples collected from these calves were analyzed for concentrations of systemic APP, LRT bacteria, and intestinal pathogens. Heifer blood and bulk tank milk samples were collected for the detection of disease-specific antibodies against bovine herpesvirus 1, bovine viral diarrhea virus, bovine respiratory syncytial virus, and Mycoplasma bovis. Mixed-effects linear regression models were used to analyze the associations of clinical respiratory disease signs and LRT bacteria with APP. Increased plasma fibrinogen concentrations in calves were associated with higher rectal temperature (>39.5°C), increased respiratory rate (>50 breaths/min), and coughing. Increased serum amyloid A concentrations were associated with higher rectal temperature (>39.5°C) and respiratory rate between 40 and 50 breaths/min. Calves with the presence of fecal Cryptosporidium spp. and rectal temperature of 39°C and above had increased serum haptoglobin concentrations. Increased fibrinogen concentrations were associated with the presence of Pasteurella multocida in the calf LRT, whereas increased concentrations of fibrinogen and serum amyloid A were associated with the presence of Trueperella pyogenes. In conclusion, APP showed variable associations with clinical signs of respiratory disease and LRT bacteria. Plasma fibrinogen concentration could be used as a complementary calf-side test to assess systemic inflammation caused by LRT bacteria such as Pasteurella multocida and Trueperella pyogenes in preweaning dairy calves.


Subject(s)
Cattle Diseases , Animals , Cattle , Cross-Sectional Studies , Cattle Diseases/microbiology , Respiratory Tract Diseases/veterinary , Respiratory Tract Diseases/microbiology , Inflammation/veterinary , Estonia , Female , Fibrinogen/analysis
16.
Reprod Domest Anim ; 59(3): e14550, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465367

ABSTRACT

Two male Japanese Black calves developed an enlarged scrotum and testis. Orchiectomy was performed and pus was collected during surgery. After removal of the testis, bacteriological and histopathological examinations were conducted to investigate the cause and confirm the diagnosis. Based on the results obtained, both cases were diagnosed with epididymitis caused by an infection with Pasteurella multocida. This is the first study to show that P. multocida causes epididymitis in male calves. Further studies are required to clarify the details underlying the infection of calves with P. multocida.


Subject(s)
Cattle Diseases , Epididymitis , Pasteurella multocida , Cattle , Animals , Male , Epididymitis/veterinary , Testis
17.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791369

ABSTRACT

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Subject(s)
Bacterial Toxins , Interleukin-8 , Pasteurella Infections , Pasteurella multocida , Animals , Apoptosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Bacterial Toxins/metabolism , Caspase 8/metabolism , Caspase 8/genetics , Cell Line , CRISPR-Cas Systems , Gene Knockout Techniques , Interleukin-8/metabolism , Interleukin-8/genetics , Pasteurella multocida/genetics , Swine , Pasteurella Infections/metabolism , Pasteurella Infections/veterinary
18.
Acta Vet Hung ; 72(2): 71-79, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38842941

ABSTRACT

The spread of antibiotic resistance is one of the biggest challenges of our time, making it difficult to treat bacterial diseases. Pasteurella multocida is a widespread facultative pathogenic bacterium, which causes a wide range of diseases in both mammals and birds. In the present study, antibiotic susceptibility of 155 P. multocida strains were tested using the broth microdilution method to obtain the minimum inhibitory concentration (MIC) values for 15 antibiotics. The most effective antibiotics against pasteurellosis were ceftiofur, tetracycline, doxycycline, florfenicol and tilmicosin. Of the strains, 12 proved to be multi-drug resistant (MDR). To combat antibiotic resistance, it is important to establish a pre-treatment antibiotic susceptibility profile. A well-chosen antibiotic would not only make the treatment more successful but may also slow down the spread of resistance and the evolution of MDR strains.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Pasteurella multocida , Pasteurella multocida/drug effects , Pasteurella multocida/isolation & purification , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Pasteurella Infections/microbiology , Drug Resistance, Multiple, Bacterial , Birds/microbiology , Mammals/microbiology , Animals , Cattle
19.
Infect Immun ; 91(3): e0027222, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36815793

ABSTRACT

Pasteurella multocida is the causative agent of a wide range of diseases (pasteurellosis) and a zoonotic pathogen in humans. Recombinant subunit vaccines are hot spots in recent pasteurellosis vaccine development. A chimeric vaccine is also constructed for rabbit hemorrhagic disease virus (RHDV) protective antigen VP60 chimeric with fragments of Pasteurella multocida protective antigen PlpE. The protective efficacy of the chimeric vaccine against P. multocida is not as high as that of PlpE, and the reason is not well known. In this study, we analyzed the linear B-cell epitopes of PlpE and then assessed the protective efficacy of these epitopes and their combinations. It was found that the immunodominant region of PlpE was mainly located in the region between the 21st to the 185th amino acids from the N terminus. Overlapping peptide scanning results demonstrated that this region contained six nonoverlapping epitopes, and epitope E was the predominant epitope. Chimeric protein antigens were constructed of single nonoverlapping PlpE epitopes or their combinations chimeric with the RHDV VP60 P domain. Immunization with recombinant antigen chimeric with a single PlpE epitope exhibited poor immunoprotection, whereas immunization with recombinant antigen chimeric with PlpE epitope combinations (epitopes A and E; epitopes C and E; epitopes A, C, and E; and epitopes B, D, and F) exhibited significant immunoprotection. In a word, P. multocida protective antigen PlpE contained six nonoverlapping linear B-cell epitopes, and combinations but not a single epitope induced host protective immunity. Our work will give help for future chimeric vaccine design.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Humans , Pasteurella multocida/genetics , Epitopes, B-Lymphocyte/genetics , Pasteurella Infections/prevention & control , Recombinant Proteins , Vaccines, Synthetic
20.
Infect Immun ; 91(1): e0019322, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36541752

ABSTRACT

Pasteurella multocida primarily causes hemorrhagic septicemia and pneumonia in poultry and livestock. Identification of the relevant virulence factors is therefore essential for understanding its pathogenicity. Pmorf0222, encoding the PM0222 protein, is located on a specific prophage island of the pathogenic strain C48-1 of P. multocida. Its role in the pathogenesis of P. multocida infection is still unknown. The proinflammatory cytokine plays an important role in P. multocida infection; therefore, murine peritoneal exudate macrophages were treated with the purified recombinant PM0222, which induced the secretion of tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß) via the Toll-like receptor 1/2 (TLR1/2)-nuclear factor kappa B (NF-κB)/mitogen-activated protein kinase (MAPK) signaling and inflammasome activation. Additionally, the mutant strain and complemented strain were evaluated in the mouse model with P. multocida infection, and PM0222 was identified as a virulence factor, which was secreted by outer membrane vesicles of P. multocida. Further results revealed that Pmorf0222 affected the synthesis of the capsule, adhesion, serum sensitivity, and biofilm formation. Thus, we identified Pmorf0222 as a novel virulence factor in the C48-1 strain of P. multocida, explaining the high pathogenicity of this pathogenic strain.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Mice , Animals , Pasteurella multocida/genetics , NF-kappa B/metabolism , Toll-Like Receptor 1 , Virulence Factors/genetics , Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL