Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
Add more filters

Publication year range
1.
Glob Chang Biol ; 30(7): e17394, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988095

ABSTRACT

Water-logged peatlands store tremendous amounts of soil carbon (C) globally, accumulating C over millennia. As peatlands become disturbed by human activity, these long-term C stores are getting destabilized and ultimately released as greenhouse gases that may exacerbate climate change. Oxidation of the dissolved organic carbon (DOC) mobilized from disturbed soils to streams and canals may be one avenue for the transfer of previously stored, millennia-aged C to the atmosphere. However, it remains unknown whether aged peat-derived DOC undergoes oxidation to carbon dioxide (CO2) following disturbance. Here, we use a new approach to measure the radiocarbon content of CO2 produced from the oxidation of DOC in canals overlying peatland soils that have undergone widespread disturbance in Indonesia. This work shows for the first time that aged DOC mobilized from drained and burned peatland soils is susceptible to oxidation by both microbial respiration and photomineralization over aquatic travel times for DOC. The bulk radiocarbon age of CO2 produced during canal oxidation ranged from modern to ~1300 years before present. These ages for CO2 were most strongly influenced by canal water depth, which was proportional to the water table level where DOC is mobilized from disturbed soils to canals. Canal microbes preferentially respired older or younger organic C pools to CO2, and this may have been facilitated by the use of a small particulate organic C pool over the dissolved pool. Given that high densities of canals are generally associated with lower water tables and higher fire risk, our findings suggest that peatland areas with high canal density may be a hotspot for the loss of aged C on the landscape. Taken together, the results of this study show how and why aquatic processing of organic C on the landscape can enhance the transfer of long-term peat C stores to the atmosphere following disturbance.


Subject(s)
Carbon Dioxide , Carbon , Soil , Soil/chemistry , Carbon Dioxide/analysis , Carbon/analysis , Indonesia , Oxidation-Reduction
2.
Glob Chang Biol ; 30(7): e17388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967139

ABSTRACT

Permafrost thaw in northern peatlands causes collapse of permafrost peat plateaus and thermokarst bog development, with potential impacts on atmospheric greenhouse gas exchange. Here, we measured methane and carbon dioxide fluxes over 3 years (including winters) using static chambers along two permafrost thaw transects in northwestern Canada, spanning young (~30 years since thaw), intermediate and mature thermokarst bogs (~200 years since thaw). Young bogs were wetter, warmer and had more hydrophilic vegetation than mature bogs. Methane emissions increased with wetness and soil temperature (40 cm depth) and modelled annual estimates were greatest in the young bog during the warmest year and lowest in the mature bog during the coolest year (21 and 7 g C-CH4 m-2 year-1, respectively). The dominant control on net ecosystem exchange (NEE) in the mature bog (between +20 and -54 g C-CO2 m-2 year-1) was soil temperature (5 cm), causing net CO2 loss due to higher ecosystem respiration (ER) in warmer years. In contrast, wetness controlled NEE in the young and intermediate bogs (between +55 and -95 g C-CO2 m-2 year-1), where years with periodic inundation at the beginning of the growing season caused greater reduction in gross primary productivity than in ER leading to CO2 loss. Winter fluxes (November-April) represented 16% of annual ER and 38% of annual CH4 emissions. Our study found NEE of thermokarst bogs to be close to neutral and rules out large CO2 losses under current conditions. However, high CH4 emissions after thaw caused a positive net radiative forcing effect. While wet conditions favouring high CH4 emissions only persist for the initial young bog period, we showed that continued climate warming with increased ER, and thus, CO2 losses from the mature bog can cause net positive radiative forcing which would last for centuries after permafrost thaw.


Subject(s)
Carbon Dioxide , Climate Change , Greenhouse Gases , Methane , Permafrost , Wetlands , Methane/analysis , Methane/metabolism , Carbon Dioxide/analysis , Greenhouse Gases/analysis , Temperature , Soil/chemistry , Canada , Seasons
3.
Glob Chang Biol ; 30(6): e17368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847421

ABSTRACT

Nitrogen oxides (NOx) play an important role for atmospheric chemistry and radiative forcing. However, NOx emissions from the vast northern circumpolar permafrost regions have not been studied in situ due to limitations of measurement techniques. Our goals were to validate the offline analytical technique, and based on this, to widely quantify in situ NOx emissions from peatlands in the southern Eurasian permafrost region. To this end, we conducted a comparison of online and offline flux measurements in 2018 and 2019 using the synthetic air flushing, steady-state opaque chamber method. With differences in annual average and cumulative fluxes less than 0.1 µg N m-2 h-1 and 0.01 kg N ha-1 year-1, the online and offline fluxes were in good agreement, demonstrating the feasibility of conducting offline measurements in remote regions without power supply. The flux measurements over 2 years showed obvious NOx emissions of 0.05-0.14 and 0.13-0.30 kg N ha-1 year-1 in the hollow and hummock microtopography of permafrost peatlands, respectively. The rapid expansion of alder (Alnus sibirica) in the peatlands induced by permafrost degradation significantly increased soil mineral N contents and NOx emissions depending on the age of alder (0.64-1.74 and 1.44-2.20 kg N ha-1 year-1 from the alder forests with tree ages of 1-10 years and 11-20 years, respectively). Alder expansion also intensively altered the thermal state of permafrost including the sharp increases of soil temperatures during the non-growing season from October to April and active layer thickness. This study provides the first in situ evidences of NOx emissions from the northern circumpolar permafrost regions and uncovers the well-documented expansion of alders can substantially stimulate NOx emissions and thus, significantly affect air quality, radiative forcing, and ecosystem productivity in the pristine regions.


Subject(s)
Nitrogen Oxides , Permafrost , Soil , Soil/chemistry , Nitrogen Oxides/analysis , Air Pollutants/analysis , Environmental Monitoring
4.
Glob Chang Biol ; 30(3): e17246, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38501699

ABSTRACT

Northern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region. In this study, we estimated the net ecosystem carbon balance (NECB) from a nutrient-poor drained peatland forest and an adjacent natural mire in northern Sweden by integrating terrestrial carbon dioxide (CO2 ) and methane (CH4 ) fluxes with aquatic losses of dissolved organic C (DOC) and inorganic C based on eddy covariance and stream discharge measurements, respectively, over two hydrological years. Since the forest included a dense spruce-birch area and a sparse pine area, we were able to further evaluate the effect of contrasting forest structure on the NECB and component fluxes. We found that the drained peatland forest was a net C sink with a 2-year mean NECB of -115 ± 5 g C m-2 year-1 while the adjacent mire was close to C neutral with 14.6 ± 1.7 g C m-2 year-1 . The NECB of the drained peatland forest was dominated by the net CO2 exchange (net ecosystem exchange [NEE]), whereas NEE and DOC export fluxes contributed equally to the mire NECB. We further found that the C sink strength in the sparse pine forest area (-153 ± 8 g C m-2 year-1 ) was about 1.5 times as high as in the dense spruce-birch forest area (-95 ± 8 g C m-2 year-1 ) due to enhanced C uptake by ground vegetation and lower DOC export. Our study suggests that historically drained peatland forests in nutrient-poor boreal regions may provide a significant net ecosystem C sink and associated climate benefits.


Subject(s)
Carbon Sequestration , Ecosystem , Carbon Dioxide/analysis , Sweden , Soil/chemistry , Forests , Methane/analysis
5.
Glob Chang Biol ; 30(1): e17144, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273517

ABSTRACT

The draining and fertilization of peatlands for agriculture is globally an important source of the greenhouse gas nitrous oxide (N2 O). Hitherto, the contribution of major sources to the N2 O emission-that is, fertilization and nitrogen (N) release from peat decomposition-has not yet been deciphered. This hampers the development of smart mitigation strategies, considering that rewetting to halt peat decomposition and reducing N fertilization are promising N2 O emission-reduction strategies. Here, we used machine learning techniques and global N2 O observational data to generalize the distribution of N2 O emissions from agriculturally managed peatlands, to distinguish the sources of N2 O emissions, and to compare mitigation options. N2 O emissions from agriculturally managed croplands were 401.0 (344.5-470.9) kt N year-1 , with 121.6 (88.6-163.3) kt N year-1 contributed by fertilizer N. On grasslands, 64.0 (54.6-74.7) kt N2 O-N year-1 were emitted, with 4.6 (3.7-5.7) kt N2 O-N year-1 stemming from fertilizer N. The fertilizer-induced N2 O emission factor ranged from 1.5% to 3.2%. Reducing the current fertilizer input by 20% could achieve a 10% N2 O emission reduction for croplands but only 3% for grasslands. Rewetting 1.9 Mha cropland and 0.26 Mha grassland would achieve the same N2 O emission reductions. Our results suggest that N2 O mitigation strategies for managed peatlands should be considered separately across land-use types and climatic zones. For croplands, particularly in the tropics, relevant N2 O mitigation potentials are achievable through both fertilizer N reduction and peatland rewetting. For grasslands, management schemes to halt peat degradation (e.g. rewetting) should be considered preferentially for mitigating N2 O and contributing to meeting climate goals.


Subject(s)
Greenhouse Gases , Nitrous Oxide , Nitrous Oxide/analysis , Fertilizers , Greenhouse Gases/analysis , Soil , Agriculture
6.
Ecol Appl ; 34(2): e2929, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37942503

ABSTRACT

The Sandhill Wetland (SW) and Nikanotee Fen (NF) are two wetland research projects designed to test the viability of peatland reclamation in the Alberta oil sands post-mining landscape. To identify effective approaches for establishing peat-forming vegetation in reclaimed wetlands, we evaluated how plant introduction approaches and water level gradients influence species distribution, plant community development, and the establishment of bryophyte and peatland species richness and cover. Plant introduction approaches included seeding with a Carex aquatilis-dominated seed mix, planting C. aquatilis and Juncus balticus seedlings, and spreading a harvested moss layer transfer. Establishment was assessed 6 years after the introduction at SW and 5 years after the introduction at NF. In total, 51 species were introduced to the reclaimed wetlands, and 122 species were observed after 5 and 6 years. The most abundant species in both reclaimed wetlands was C. aquatilis, which produced dense canopies and occupied the largest water level range of observed plants. Introducing C. aquatilis also helped to exclude marsh plants such as Typha latifolia that has little to no peat accumulation potential. Juncus balticus persisted where the water table was lower and encouraged the formation of a diverse peatland community and facilitated bryophyte establishment. Various bryophytes colonized suitable areas, but the moss layer transfer increased the cover of desirable peat-forming mosses. Communities with the highest bryophyte and peatland species richness and cover (averaging 9 and 14 species, and 50%-160% cover respectively) occurred where the summer water level was between -10 and -40 cm. Outside this water level range, a marsh community of Typha latifolia dominated in standing water and a wet meadow upland community of Calamagrostis canadensis and woody species established where the water table was deeper. Overall, the two wetland reclamation projects demonstrated that establishing peat-forming vascular plants and bryophytes is possible, and community formation is dependent upon water level and plant introduction approaches. Future projects should aim to create microtopography with water tables within 40 cm of the surface and introduce vascular plants such as J. balticus that facilitate bryophyte establishment and support the development of a diverse peatland plant community.


Subject(s)
Bryophyta , Tracheophyta , Wetlands , Oil and Gas Fields , Alberta , Soil , Water
7.
Microb Ecol ; 87(1): 47, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407642

ABSTRACT

Sphagnum mosses are keystone plant species in the peatland ecosystems that play a crucial role in the formation of peat, which shelters a broad diversity of endophytic bacteria with important ecological functions. In particular, methanotrophic and nitrogen-fixing endophytic bacteria benefit Sphagnum moss hosts by providing both carbon and nitrogen. However, the composition and abundance of endophytic bacteria from different species of Sphagnum moss in peatlands of different nutrient statuses and their drivers remain unclear. This study used 16S rRNA gene amplicon sequencing to examine endophytic bacterial communities in Sphagnum mosses and measured the activity of methanotrophic microbial by the 13C-CH4 oxidation rate. According to the results, the endophytic bacterial community structure varied among Sphagnum moss species and Sphagnum capillifolium had the highest endophytic bacterial alpha diversity. Moreover, chlorophyll, phenol oxidase, carbon contents, and water retention capacity strongly shaped the communities of endophytic bacteria. Finally, Sphagnum palustre in Hani (SP) had a higher methane oxidation rate than S. palustre in Taishanmiao. This result is associated with the higher average relative abundance of Methyloferula an obligate methanotroph in SP. In summary, this work highlights the effects of Sphagnum moss characteristics on the endophytic bacteriome. The endophytic bacteriome is important for Sphagnum moss productivity, as well as for carbon and nitrogen cycles in Sphagnum moss peatlands.


Subject(s)
Ecosystem , Sphagnopsida , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Carbon , Nitrogen , Nutrients
8.
Environ Sci Technol ; 58(25): 10991-11002, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38829627

ABSTRACT

Peatland wildfires contribute significantly to the atmospheric release of light-absorbing organic carbon, often referred to as brown carbon. In this study, we examine the presence of nitrogen-containing organic compounds (NOCs) within marine aerosols across the Western Pacific Ocean, which are influenced by peatland fires from Southeast Asia. Employing ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in electrospray ionization (ESI) positive mode, we discovered that NOCs are predominantly composed of reduced nitrogenous bases, including CHN+ and CHON+ groups. Notably, the count of NOC formulas experiences a marked increase within plumes from peatland wildfires compared to those found in typical marine air masses. These NOCs, often identified as N-heterocyclic alkaloids, serve as potential light-absorbing chromophores. Furthermore, many NOCs demonstrate pyrolytic stability, engage in a variety of substitution reactions, and display enhanced hydrophilic properties, attributed to chemical processes such as methoxylation, hydroxylation, methylation, and hydrogenation that occur during emission and subsequent atmospheric aging. During the daytime atmospheric transport, aging of aromatic N-heterocyclic compounds, particularly in aliphatic amines prone to oxidation and reactions with amine, was observed. The findings underscore the critical role of peatland wildfires in augmenting nitrogen-containing organics in marine aerosols, underscoring the need for in-depth research into their effects on marine ecosystems and regional climatic conditions.


Subject(s)
Aerosols , Nitrogen/analysis , Organic Chemicals/analysis , Wildfires , Pacific Ocean
9.
Bull Entomol Res ; : 1-8, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679948

ABSTRACT

Peatlands, shaped by centuries of human activities, now face a primary threat from mining activities. Vulnerable to drainage and hydrological instability, peatland areas encounter challenges that compromise their ecological integrity. This study hypothesised that permanent water reservoirs within mines could serve as refugia for water beetles from adjacent areas prone to drying in the summer. Employing standard methods, including entomological scraping and water traps, samples were collected. Results revealed that, in most cases, water beetles exhibited a preference for the Nature 2000 area untouched by mining. Despite unfavourable conditions, the Nature 2000 area showcased a more diverse water beetle fauna. Remarkably, the selected Nature 2000 area, despite its identified degradation based on flora, remained a biodiversity hotspot for peatland water beetle fauna. The study underscores the significance of assessing insects, particularly beetles, as rapid responders to environmental changes. This evaluation holds crucial implications for peatland restoration planning and decision-making regarding mining investments in proximity to peatland areas.

10.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34161254

ABSTRACT

In this study, a suite of complementary environmental geochemical analyses, including NMR and gas chromatography-mass spectrometry (GC-MS) analyses of central metabolites, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) of secondary metabolites, and lipidomics, was used to investigate the influence of organic matter (OM) quality on the heterotrophic microbial mechanisms controlling peatland CO2, CH4, and CO2:CH4 porewater production ratios in response to climate warming. Our investigations leverage the Spruce and Peatland Responses under Changing Environments (SPRUCE) experiment, where air and peat warming were combined in a whole-ecosystem warming treatment. We hypothesized that warming would enhance the production of plant-derived metabolites, resulting in increased labile OM inputs to the surface peat, thereby enhancing microbial activity and greenhouse gas production. Because shallow peat is most susceptible to enhanced warming, increases in labile OM inputs to the surface, in particular, are likely to result in significant changes to CO2 and CH4 dynamics and methanogenic pathways. In support of this hypothesis, significant correlations were observed between metabolites and temperature consistent with increased availability of labile substrates, which may stimulate more rapid turnover of microbial proteins. An increase in the abundance of methanogenic genes in response to the increase in the abundance of labile substrates was accompanied by a shift toward acetoclastic and methylotrophic methanogenesis. Our results suggest that as peatland vegetation trends toward increasing vascular plant cover with warming, we can expect a concomitant shift toward increasingly methanogenic conditions and amplified climate-peatland feedbacks.


Subject(s)
Ecosystem , Metabolome , Picea/metabolism , Soil/chemistry , Carbon Dioxide/analysis , Cyclotrons , Gas Chromatography-Mass Spectrometry , Ions , Isotopes/analysis , Lipids/analysis , Magnetic Resonance Spectroscopy , Metagenomics , Methane/analysis , Multivariate Analysis , Nucleic Acids/genetics , Oxidation-Reduction , Principal Component Analysis , Proteomics , RNA, Ribosomal, 16S/genetics , Water
11.
Ecotoxicol Environ Saf ; 280: 116573, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38870737

ABSTRACT

Boreal peatlands are "hotspots" of net methylmercury (MeHg) production and may become drier in the future due to climate change. This study investigates a critical gap by analyzing the nuanced relationship between soil moisture content and the release of MeHg, inorganic mercury (IHg), sulfate (SO42-), and dissolved organic matter (DOM) in a laboratory incubation of boreal peat soils. Dried peat soils exhibited heightened releases of IHg, MeHg, and SO42- during re-wetting events. Both dried and saturated peat soils released more DOM than moist peat soils during re-wetting events, and DOM released from dried soils had higher bioaccessibility than that from the saturated soils (p<0.05). There was an equilibrium of IHg concentrations between peat soils and pore waters, but long-term severe drought may disrupt this equilibrium and then release more IHg to pore waters during re-wetting events. Contrary to expectations, positive relationships between IHg concentrations and SUVA254 did not exist in all treatments. MeHg and SO42- were depleted quickly because there was no external input of Hg and SO42- to this static system. More bioaccessible DOM than aromatic DOM was released from peat soils with different soil moisture contents after 32 weeks during the re-wetting event (p<0.05). These results imply that re-wetting of peat soils after droughts can increase the release of MeHg from peat soils and may also increase net MeHg production due to the release of SO42- and bioaccessible DOM from peat soils, reshaping our understanding of soil moisture's role in mercury dynamics. This novel insight into soil moisture and MeHg dynamics carries significant implications for mitigating mercury contamination in aquatic ecosystems.


Subject(s)
Environmental Monitoring , Mercury , Methylmercury Compounds , Soil Pollutants , Soil , Methylmercury Compounds/analysis , Soil/chemistry , Mercury/analysis , Soil Pollutants/analysis , Water/chemistry , Climate Change , Water Pollutants, Chemical/analysis
12.
Environ Manage ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563987

ABSTRACT

Peatlands play a key role in the circulation of the main greenhouse gases (GHG) - methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). Therefore, detecting the spatial pattern of GHG sinks and sources in peatlands is pivotal for guiding effective climate change mitigation in the land use sector. While geospatial environmental data, which provide detailed spatial information on ecosystems and land use, offer valuable insights into GHG sinks and sources, the potential of directly using remote sensing data from satellites remains largely unexplored. We predicted the spatial distribution of three major GHGs (CH4, CO2, and N2O) sinks and sources across Finland. Utilizing 143 field measurements, we compared the predictive capacity of three different data sets with MaxEnt machine-learning modeling: (1) geospatial environmental data including climate, topography and habitat variables, (2) remote sensing data (Sentinel-1 and Sentinel-2), and (3) a combination of both. The combined dataset yielded the highest accuracy with an average test area under the receiver operating characteristic curve (AUC) of 0.845 and AUC stability of 0.928. A slightly lower accuracy was achieved using only geospatial environmental data (test AUC 0.810, stability AUC 0.924). In contrast, using only remote sensing data resulted in reduced predictive accuracy (test AUC 0.763, stability AUC 0.927). Our results suggest that (1) reliable estimates of GHG sinks and sources cannot be produced with remote sensing data only and (2) integrating multiple data sources is recommended to achieve accurate and realistic predictions of GHG spatial patterns.

13.
New Phytol ; 238(1): 80-95, 2023 04.
Article in English | MEDLINE | ID: mdl-36300568

ABSTRACT

Ericaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes. The new model was applied to simulate the biogeochemical cycles in the Mer Bleue (MB) bog in Ontario, Canada, and their responses to fertilization. MWMmic_NP reproduced the carbon(C)-N-P cycles and vegetation dynamics observed in the MB bog, and their responses to fertilization. Our simulations showed that fertilization increased shrub biomass by reducing the C allocation to ERM fungi, subsequently suppressing the growth of underlying Sphagnum mosses, and decreasing the peatland C sequestration. Our species removal simulation further demonstrated that ERM fungi were key to maintaining the shrub-moss coexistence and C sink function of bogs. Our results suggest that ERM fungi play a significant role in the biogeochemical cycles in ombrotrophic peatlands and should be considered in future modeling efforts.


Subject(s)
Mycorrhizae , Wetlands , Fungi , Plants/metabolism , Biomass , Fertilization , Soil
14.
New Phytol ; 240(1): 412-425, 2023 10.
Article in English | MEDLINE | ID: mdl-37148190

ABSTRACT

Drainage-induced encroachment by trees may have major effects on the carbon balance of northern peatlands, and responses of microbial communities are likely to play a central mechanistic role. We profiled the soil fungal community and estimated its genetic potential for the decay of lignin and phenolics (class II peroxidase potential) along peatland drainage gradients stretching from interior locations (undrained, open) to ditched locations (drained, forested). Mycorrhizal fungi dominated the community across the gradients. When moving towards ditches, the dominant type of mycorrhizal association abruptly shifted from ericoid mycorrhiza to ectomycorrhiza at c. 120 m from the ditches. This distance corresponded with increased peat loss, from which more than half may be attributed to oxidation. The ectomycorrhizal genus Cortinarius dominated at the drained end of the gradients and its relatively higher genetic potential to produce class II peroxidases (together with Mycena) was positively associated with peat humification and negatively with carbon-to-nitrogen ratio. Our study is consistent with a plant-soil feedback mechanism, driven by a shift in the mycorrhizal type of vegetation, that potentially mediates changes in aerobic decomposition during postdrainage succession. Such feedback may have long-term legacy effects upon postdrainage restoration efforts and implication for tree encroachment onto carbon-rich soils globally.


Subject(s)
Mycorrhizae , Mycorrhizae/physiology , Trees , Soil , Plants , Carbon , Soil Microbiology
15.
Glob Chang Biol ; 29(13): 3678-3691, 2023 07.
Article in English | MEDLINE | ID: mdl-37029755

ABSTRACT

Drainage and agricultural use transform natural peatlands from a net carbon (C) sink to a net C source. Rewetting of peatlands, despite of high methane (CH4 ) emissions, holds the potential to mitigate climate change by greatly reducing CO2 emissions. However, the time span for this transition is unknown because most studies are limited to a few years. Especially, nonpermanent open water areas often created after rewetting, are highly productive. Here, we present 14 consecutive years of CH4 flux measurements following rewetting of a formerly long-term drained peatland in the Peene valley. Measurements were made at two rewetted sites (non-inundated vs. inundated) using manual chambers. During the study period, significant differences in measured CH4 emissions occurred. In general, these differences overlapped with stages of ecosystem transition from a cultivated grassland to a polytrophic lake dominated by emergent helophytes, but could also be additionally explained by other variables. This transition started with a rapid vegetation shift from dying cultivated grasses to open water floating and submerged hydrophytes and significantly increased CH4 emissions. Since 2008, helophytes have gradually spread from the shoreline into the open water area, especially in drier years. This process was periodically delayed by exceptional inundation and eventually resulted in the inundated site being covered by emergent helophytes. While the period between 2009 and 2015 showed exceptionally high CH4 emissions, these decreased significantly after cattail and other emergent helophytes became dominant at the inundated site. Therefore, CH4 emissions declined only after 10 years of transition following rewetting, potentially reaching a new steady state. Overall, this study highlights the importance of an integrative approach to understand the shallow lakes CH4 biogeochemistry, encompassing the entire area with its mosaic of different vegetation forms. This should be ideally done through a study design including proper measurement site allocation as well as long-term measurements.


Subject(s)
Ecosystem , Methane , Typhaceae , Carbon Dioxide/analysis , Grassland , Soil , Water , Wetlands
16.
Glob Chang Biol ; 29(24): 7173-7191, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37855045

ABSTRACT

Peatlands are the most dense terrestrial carbon stock and since the last glacial epoch northern peatlands have accumulated between 400 and 1000 Gt of carbon. Although the horizontal development history of the peatlands during the Holocene has been previously researched, these studies have overlooked the current peatland margins. This has led to a long-standing view that the lateral expansion of the peatlands has halted or significantly slowed down. However, no concentrated effort focusing on the recent development of the peatland margins has been conducted. To fulfil this knowledge gap, we studied the development of peatland margins in five Finnish peatlands. In addition, we studied the effect of peatland subsoil characteristics and past forest fires on the peatland expansion. We sampled 15 transects with a total of 47 peat cores utilizing 14 C radiocarbon dating on the basal layers of these peat cores. Our results show that the Northern peatlands are still expanding with four of our study sites having recent, post-1950's basal ages in the peatland margins. In addition, the rate of peatland lateral expansion has increased during the last 1500 years in our study sites, challenging the current knowledge of the recent peatland expansion dynamics. We recorded lateral expansion rates of 0.1-6.4 cm/year from the sites studied. The rate of lateral expansion was restricted by local characteristics, especially the steepness of subsoil (p = .0108). Forest fires likely played an important role as the trigger for lateral expansion in southern study sites with large number of charcoal found at the basal layer of the peat cores. Depending on the scope of this recent lateral expansion across the vast northern peatlands, the effect on the carbon balance could be significant and should be taken into account when estimating the development of carbon pools in these crucial ecosystems.


Subject(s)
Ecosystem , Soil , Finland , Carbon Cycle , Carbon/analysis
17.
Glob Chang Biol ; 29(19): 5691-5705, 2023 10.
Article in English | MEDLINE | ID: mdl-37577794

ABSTRACT

Climate warming and projected increase in summer droughts puts northern peatlands under pressure by subjecting them to a combination of gradual drying and extreme weather events. The combined effect of those on peatland functions is poorly known. Here, we studied the impact of long-term water level drawdown (WLD) and contrasting weather conditions on leaf phenology and biomass production of ground level vegetation in boreal peatlands. Data were collected during two contrasting growing seasons from a WLD experiment including a rich and a poor fen and an ombrotrophic bog. Results showed that WLD had a strong effect on both leaf area development and biomass production, and these responses differed between peatland types. In the poor fen and the bog, WLD increased plant growth, while in the rich fen, WLD reduced the growth of ground level vegetation. Plant groups differed in their response, as WLD reduced the growth of graminoids, while shrubs and tree seedlings benefited from it. In addition, the vegetation adjusted to the lower WTs, was more responsive to short-term climatic variations. The warmer summer resulted in a greater maximum and earlier peaking of leaf area index, and greater biomass production by vascular plants and Sphagnum mosses at WLD sites. In particular, graminoids benefitted from the warmer conditions. The change towards greater production in the WLD sites in general and during the warmer weather in particular, was related to the observed transition in plant functional type composition towards arboreal vegetation.


Subject(s)
Climate Change , Soil , Biomass , Weather , Trees , Plants
18.
Glob Chang Biol ; 29(11): 3159-3176, 2023 06.
Article in English | MEDLINE | ID: mdl-36999440

ABSTRACT

Peat mosses (Sphagnum spp.) are keystone species in boreal peatlands, where they dominate net primary productivity and facilitate the accumulation of carbon in thick peat deposits. Sphagnum mosses harbor a diverse assemblage of microbial partners, including N2 -fixing (diazotrophic) and CH4 -oxidizing (methanotrophic) taxa that support ecosystem function by regulating transformations of carbon and nitrogen. Here, we investigate the response of the Sphagnum phytobiome (plant + constituent microbiome + environment) to a gradient of experimental warming (+0°C to +9°C) and elevated CO2 (+500 ppm) in an ombrotrophic peatland in northern Minnesota (USA). By tracking changes in carbon (CH4 , CO2 ) and nitrogen (NH4 -N) cycling from the belowground environment up to Sphagnum and its associated microbiome, we identified a series of cascading impacts to the Sphagnum phytobiome triggered by warming and elevated CO2 . Under ambient CO2 , warming increased plant-available NH4 -N in surface peat, excess N accumulated in Sphagnum tissue, and N2 fixation activity decreased. Elevated CO2 offset the effects of warming, disrupting the accumulation of N in peat and Sphagnum tissue. Methane concentrations in porewater increased with warming irrespective of CO2 treatment, resulting in a ~10× rise in methanotrophic activity within Sphagnum from the +9°C enclosures. Warming's divergent impacts on diazotrophy and methanotrophy caused these processes to become decoupled at warmer temperatures, as evidenced by declining rates of methane-induced N2 fixation and significant losses of keystone microbial taxa. In addition to changes in the Sphagnum microbiome, we observed ~94% mortality of Sphagnum between the +0°C and +9°C treatments, possibly due to the interactive effects of warming on N-availability and competition from vascular plant species. Collectively, these results highlight the vulnerability of the Sphagnum phytobiome to rising temperatures and atmospheric CO2 concentrations, with significant implications for carbon and nitrogen cycling in boreal peatlands.


Subject(s)
Microbiota , Sphagnopsida , Nitrogen/analysis , Nitrogen Fixation , Soil , Carbon Dioxide , Oxidation-Reduction , Carbon , Microbiota/physiology , Methane
19.
Microb Ecol ; 85(3): 875-891, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35867139

ABSTRACT

Peatland ecosystems cover only 3% of the world's land area; however, they store one-third of the global soil carbon (C). Microbial communities are the main drivers of C decomposition in peatlands, yet we have limited knowledge of their structure and function. While the microbial communities in the Northern Hemisphere peatlands are well documented, we have limited understanding of microbial community composition and function in the Southern Hemisphere peatlands, especially in Australia. We investigated the vertical stratification of prokaryote and fungal communities from Wellington Plains peatland in the Australian Alps. Within the peatland complex, bog peat was sampled from the intact peatland and dried peat from the degraded peatland along a vertical soil depth gradient (i.e., acrotelm, mesotelm, and catotelm). We analyzed the prokaryote and fungal community structure, predicted functional profiles of prokaryotes using PICRUSt, and assigned soil fungal guilds using FUNGuild. We found that the structure and function of prokaryotes were vertically stratified in the intact bog. Soil carbon, manganese, nitrogen, lead, and sodium content best explained the prokaryote composition. Prokaryote richness was significantly higher in the intact bog acrotelm compared to degraded bog acrotelm. Fungal composition remained similar across the soil depth gradient; however, there was a considerable increase in saprotroph abundance and decrease in endophyte abundance along the vertical soil depth gradient. The abundance of saprotrophs and plant pathogens was two-fold higher in the degraded bog acrotelm. Soil manganese and nitrogen content, electrical conductivity, and water table level (cm) best explained the fungal composition. Our results demonstrate that both fungal and prokaryote communities are shaped by soil abiotic factors and that peatland degradation reduces microbial richness and alters microbial functions. Thus, current and future changes to the environmental conditions in these peatlands may lead to altered microbial community structures and associated functions which may have implications for broader ecosystem function changes in peatlands.


Subject(s)
Ecosystem , Microbiota , Australia , Carbon/metabolism , Manganese , Nitrogen/analysis , Soil/chemistry , Soil Microbiology
20.
Conserv Biol ; 37(1): e13995, 2023 02.
Article in English | MEDLINE | ID: mdl-36047682

ABSTRACT

Insights into declines in ecosystem resilience and their causes and effects can inform preemptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services, and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, nonlinear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands known as upland swamps in southeastern Australia. We hypothesized that underground mining (stressor) reduces resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining. After landscape fire, we compared responses of multiple state variables representing ecosystem structure, composition, and function in swamps within the mining footprint with unmined reference swamps. Soil moisture declined without recovery in swamps with mine subsidence (i.e., undermined), but was maintained in reference swamps over 8 years (effect size 1.8). Relative to burned reference swamps, burned undermined swamps showed greater loss of peat via substrate combustion; reduced cover, height, and biomass of regenerating vegetation; reduced postfire plant species richness and abundance; altered plant species composition; increased mortality rates of woody plants; reduced postfire seedling recruitment; and extirpation of a hydrophilic animal. Undermined swamps therefore showed strong symptoms of postfire ecosystem collapse, whereas reference swamps regenerated vigorously. We found that an anthropogenic stressor diminished the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver. Efectos de las interacciones entre los estresantes antropogénicos y las perturbaciones recurrentes sobre la resiliencia y el colapso de los ecosistemas.


La comprensión de la declinación en la resiliencia de los ecosistemas y sus causas y efectos puede orientar las acciones preventivas para evitar el colapso ecosistémico y la pérdida de biodiversidad, servicios ambientales y bienestar humano. Los estudios empíricos del colapso ecosistémico son escasos y se enfrentan a obstáculos como la complejidad del ecosistema, respuestas rezagadas y no lineales e interacciones entre las escalas. Investigamos cómo un estresante antropogénico podría reducir la resiliencia del ecosistema a una perturbación recurrente mediante la alteración de un causante importante. Estudiamos los humedales dependientes de aguas subterráneas que acumulan turbas y son propicios a incendios conocidos como pantanos de tierras altas en el sureste de Australia. Nuestra hipótesis fue que la minería subterránea (estresante) reduce la resiliencia de estos humedales a incendios (perturbación) al disminuir el agua subterránea, un causante clave para el ecosistema. Monitoreamos la humedad del suelo como un indicador de la resiliencia del ecosistema durante y después de la minería subterránea. Después de los incendios, comparamos la respuesta de múltiples variables de estado que representaban la estructura, composición y función del ecosistema en los pantanos dentro de la huella minera con los pantanos referenciales sin minería. La humedad del suelo declinó sin recuperación en los pantanos con hundimientos mineros (es decir, socavones) pero se mantuvo en los pantanos referenciales durante ocho años (tamaño del efecto: 1.8). En relación a los pantanos referenciales incendiados, los pantanos con socavones e incendios mostraron una mayor pérdida de turba mediante la combustión del sustrato; reducción en la cobertura, altura y regeneración de biomasa de la vegetación; reducción en la riqueza y abundancia de especies vegetales post incendio; alteraciones en la composición de especies vegetales; incremento en la mortalidad de las plantas leñosas; reducción en el reclutamiento post incendio de plántulas; y la extirpación de un animal hidrofílico. Por lo tanto, los pantanos con socavones mostraron síntomas fuertes de un colapso ecosistémico post incendio, mientras que los pantanos referenciales se regeneraron vigorosamente. Descubrimos que los estresantes antropogénicos redujeron la resiliencia de un ecosistema a perturbaciones recurrentes, lo que lo predispone al colapso. La eliminación de este colapso depende de un diagnóstico temprano de mecanismos y reducción del riesgo preventivo. Puede ser posible retardar o mitigar los síntomas del colapso o restaurar la resiliencia, aunque lo último parece ser improbable en nuestro sistema de estudio debido a la alteración fundamental de un causante importante del ecosistema.


Subject(s)
Ecosystem , Fires , Animals , Humans , Anthropogenic Effects , Conservation of Natural Resources , Wetlands , Plants , Soil
SELECTION OF CITATIONS
SEARCH DETAIL