Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Phys ; 20(7): 1091-1096, 2024.
Article in English | MEDLINE | ID: mdl-39036649

ABSTRACT

The nature of particle and entropy flow between two superfluids is often understood in terms of reversible flow carried by an entropy-free, macroscopic wavefunction. While this wavefunction is responsible for many intriguing properties of superfluids and superconductors, its interplay with excitations in non-equilibrium situations is less understood. Here we observe large concurrent flows of both particles and entropy through a ballistic channel connecting two strongly interacting fermionic superfluids. Both currents respond nonlinearly to chemical potential and temperature biases. We find that the entropy transported per particle is much larger than the prediction of superfluid hydrodynamics in the linear regime and largely independent of changes in the channel's geometry. By contrast, the timescales of advective and diffusive entropy transport vary significantly with the channel geometry. In our setting, superfluidity counterintuitively increases the speed of entropy transport. Moreover, we develop a phenomenological model describing the nonlinear dynamics within the framework of generalized gradient dynamics. Our approach for measuring entropy currents may help elucidate mechanisms of heat transfer in superfluids and superconducting devices.

2.
NPJ Quantum Mater ; 9(1): 76, 2024.
Article in English | MEDLINE | ID: mdl-39376244

ABSTRACT

The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is a weak TI in ambient conditions.

3.
Nat Phys ; 19(8): 1128-1134, 2023.
Article in English | MEDLINE | ID: mdl-37575364

ABSTRACT

All-to-all interacting, disordered quantum many-body models have a wide range of applications across disciplines, from spin glasses in condensed-matter physics over holographic duality in high-energy physics to annealing algorithms in quantum computing. Typically, these models are abstractions that do not find unambiguous physical realizations in nature. Here we realize an all-to-all interacting, disordered spin system by subjecting an atomic cloud in a cavity to a controllable light shift. Adjusting the detuning between atom resonance and cavity mode, we can tune between disordered versions of a central-mode model and a Lipkin-Meshkov-Glick model. By spectroscopically probing the low-energy excitations of the system, we explore the competition of interactions with disorder across a broad parameter range. We show how disorder in the central-mode model breaks the strong collective coupling, making the dark-state manifold cross over to a random distribution of weakly mixed light-matter, 'grey', states. In the Lipkin-Meshkov-Glick model, the ferromagnetic finite-sized ground state evolves towards a paramagnet as disorder is increased. In that regime, semi-localized eigenstates emerge, as we observe by extracting bounds on the participation ratio. These results present substantial steps towards freely programmable cavity-mediated interactions for the design of arbitrary spin Hamiltonians.

4.
Nat Phys ; 19(11): 1605-1610, 2023.
Article in English | MEDLINE | ID: mdl-37970535

ABSTRACT

When a system close to a continuous phase transition is subjected to perturbations, it takes an exceptionally long time to return to equilibrium. This critical slowing down is observed universally in the dynamics of bosonic excitations, such as order-parameter collective modes, but it is not generally expected to occur for fermionic excitations. Here using terahertz time-domain spectroscopy, we find evidence for fermionic critical slowing down in YbRh2Si2 close to a quantum phase transition between an antiferromagnetic phase and a heavy Fermi liquid. In the latter phase, the relevant quasiparticles are a quantum superposition of itinerant and localized electronic states with a strongly enhanced effective mass. As the temperature is lowered on the heavy-Fermi-liquid side of the transition, the heavy-fermion spectral weight builds up until the Kondo temperature TK ≈ 25 K, then decays towards the quantum phase transition and is, thereafter, followed by a logarithmic rise of the quasiparticle excitation rate below 10 K. A two-band heavy-Fermi-liquid theory shows that this is indicative of the fermionic critical slowing down associated with heavy-fermion breakdown near the quantum phase transition. The critical exponent of this breakdown could be used to classify this system among a wider family of fermionic quantum phase transitions that is yet to be fully explored.

5.
NPJ Quantum Mater ; 8(1): 66, 2023.
Article in English | MEDLINE | ID: mdl-38666237

ABSTRACT

The Wiedemann-Franz (WF) law, stating that the Lorenz ratio L = κ/(Tσ) between the thermal and electrical conductivities in a metal approaches a universal constant L0=π2kB2/(3e2) at low temperatures, is often interpreted as a signature of fermionic Landau quasi-particles. In contrast, we show that various models of weakly disordered non-Fermi liquids also obey the WF law at T → 0. Instead, we propose using the leading low-temperature correction to the WF law, L(T) - L0 (proportional to the inelastic scattering rate), to distinguish different types of strange metals. As an example, we demonstrate that in a solvable model of a marginal Fermi-liquid, L(T) - L0 ∝ - T. Using the quantum Boltzmann equation (QBE) approach, we find analogous behavior in a class of marginal- and non-Fermi liquids with a weakly momentum-dependent inelastic scattering. In contrast, in a Fermi-liquid, L(T) - L0 is proportional to - T2. This holds even when the resistivity grows linearly with T, due to T - linear quasi-elastic scattering (as in the case of electron-phonon scattering at temperatures above the Debye frequency). Finally, by exploiting the QBE approach, we demonstrate that the transverse Lorenz ratio, Lxy = κxy/(Tσxy), exhibits the same behavior.

6.
NPJ Quantum Mater ; 8(1): 7, 2023.
Article in English | MEDLINE | ID: mdl-38666240

ABSTRACT

In high-temperature cuprate superconductors, stripe order refers broadly to a coupled spin and charge modulation with a commensuration of eight and four lattice units, respectively. How this stripe order evolves across optimal doping remains a controversial question. Here we present a systematic resonant inelastic x-ray scattering study of weak charge correlations in La2-xSrxCuO4 and La1.8-xEu0.2SrxCuO4. Ultra high energy resolution experiments demonstrate the importance of the separation of inelastic and elastic scattering processes. Long-range temperature-dependent stripe order is only found below optimal doping. At higher doping, short-range temperature-independent correlations are present up to the highest doping measured. This transformation is distinct from and preempts the pseudogap critical doping. We argue that the doping and temperature-independent short-range correlations originate from unresolved electron-phonon coupling that broadly peaks at the stripe ordering vector. In La2-xSrxCuO4, long-range static stripe order vanishes around optimal doping and we discuss both quantum critical and crossover scenarios.

7.
Commun Phys ; 6(1): 223, 2023.
Article in English | MEDLINE | ID: mdl-38665398

ABSTRACT

The microscopic mechanism of heavy band formation, relevant for unconventional superconductivity in CeCoIn5 and other Ce-based heavy fermion materials, depends strongly on the efficiency with which f electrons are delocalized from the rare earth sites and participate in a Kondo lattice. Replacing Ce3+ (4f1, J = 5/2) with Sm3+ (4f5, J = 5/2), we show that a combination of the crystal electric field and on-site Coulomb repulsion causes SmCoIn5 to exhibit a Γ7 ground state similar to CeCoIn5 with multiple f electrons. We show that with this single-ion ground state, SmCoIn5 exhibits a temperature-induced valence crossover consistent with a Kondo scenario, leading to increased delocalization of f holes below a temperature scale set by the crystal field, Tv ≈ 60 K. Our result provides evidence that in the case of many f electrons, the crystal field remains the dominant tuning knob in controlling the efficiency of delocalization near a heavy fermion quantum critical point, and additionally clarifies that charge fluctuations play a general role in the ground state of "115" materials.

8.
Nanoscale Res Lett ; 10: 117, 2015.
Article in English | MEDLINE | ID: mdl-25852411

ABSTRACT

Сrystal structure and mechanism of crystallization of Fe-Ni alloys were studied by methods of X-ray diffraction and metallography. It has been found that macro- and microstructure of austenitic alloy was essentially heterogeneous at the contact and free surfaces and in the volume of a ribbon. The indentified peculiarities of the austenitic phase in different areas of the ribbon are attributed to different cooling rates and the melt crystallization conditions.

SELECTION OF CITATIONS
SEARCH DETAIL