Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
Add more filters

Publication year range
1.
Cell ; 177(2): 370-383.e15, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905475

ABSTRACT

Contractile injection systems (CISs) are cell-puncturing nanodevices that share ancestry with contractile tail bacteriophages. Photorhabdus virulence cassette (PVC) represents one group of extracellular CISs that are present in both bacteria and archaea. Here, we report the cryo-EM structure of an intact PVC from P. asymbiotica. This over 10-MDa device resembles a simplified T4 phage tail, containing a hexagonal baseplate complex with six fibers and a capped 117-nanometer sheath-tube trunk. One distinct feature of the PVC is the presence of three variants for both tube and sheath proteins, indicating a functional specialization of them during evolution. The terminal hexameric cap docks onto the topmost layer of the inner tube and locks the outer sheath in pre-contraction state with six stretching arms. Our results on the PVC provide a framework for understanding the general mechanism of widespread CISs and pave the way for using them as delivery tools in biological or therapeutic applications.


Subject(s)
Photorhabdus/chemistry , Photorhabdus/ultrastructure , Bacteriophage T4/chemistry , Cell Membrane/chemistry , Cryoelectron Microscopy/methods , Models, Molecular , Photorhabdus/metabolism , Protein Conformation , Type VI Secretion Systems/metabolism
2.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703997

ABSTRACT

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Subject(s)
Bacterial Proteins , Tyrosine , Yersinia , Glycosylation , Humans , Yersinia/metabolism , Yersinia/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , rhoA GTP-Binding Protein/metabolism , Yersinia enterocolitica/metabolism , Yersinia enterocolitica/genetics , Animals , HeLa Cells , Mice , Crystallography, X-Ray , Yersinia Infections/metabolism , Yersinia Infections/microbiology
3.
Arch Biochem Biophys ; 755: 109939, 2024 May.
Article in English | MEDLINE | ID: mdl-38387829

ABSTRACT

Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.

4.
Microb Cell Fact ; 23(1): 98, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561780

ABSTRACT

BACKGROUND: Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS: In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS: The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.


Subject(s)
Biological Products , Photorhabdus , Xenorhabdus , Xenorhabdus/genetics , Xenorhabdus/metabolism , Photorhabdus/genetics , Gene Editing , Biological Products/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats
5.
Mol Biol Rep ; 51(1): 713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824247

ABSTRACT

BACKGROUND: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts. METHODS AND RESULTS: Recombinant PrtS was produced in Escherichia coli. Efficient inhibition of PrtS activity by photorin, a recently discovered emfourin-like protein inhibitor from P. laumondii, was demonstrated. The Galleria mellonella was utilized to examine the insect toxicity of PrtS and the impact of PrtS on hemolymph proteins in vitro. The insect toxicity of PrtS is reduced compared to protease homologues from non-pathogenic bacteria and is likely not essential for the infection process. However, using proteomic analysis, potential PrtS targets have been identified in the hemolymph. CONCLUSIONS: The spectrum of identified proteins indicates that the function of PrtS is to modulate the insect immune response. Further studies of PLPs' biological role in the PrtS and P. laumondii model must clarify the details of PrtS interaction with the insect immune system during bacterial infection.


Subject(s)
Moths , Peptide Hydrolases , Photorhabdus , Animals , Moths/microbiology , Peptide Hydrolases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolymph/metabolism , Proteomics/methods , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
6.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906846

ABSTRACT

AIM: This study aimed to overproduce industrially relevant and safe bio-compound trans-cinnamic acid (tCA) from Photorhabdus luminescens with deletion strategies and homologous expression strategies that had not been applied before for tCA production. METHODS AND RESULTS: The overproduction of the industrially relevant compound tCA was successfully performed in P. luminescens by deleting stlB (TTO1ΔstlB) encoding a cinnamic acid CoA ligase in the isopropylstilbene pathway and the hcaE insertion (knockout) mutation (hcaE::cat) in the phenylpropionate catabolic pathway, responsible for tCA degradation. A double mutant of both stlB deletion and hcaE insertion mutation (TTO1DM ΔstlB-hcaE::cat) was also generated. These deletion strategies and the phenylalanine ammonium lyase-producing (PI-PAL from Photorhabdus luminescens) plasmid, pBAD30C, carrying stlA (homologous expression mutants) are utilized together in the same strain using different media, a variety of cultivation conditions, and efficient anion exchange resin (Amberlite IRA402) for enhanced tCA synthesis. At the end of the 120-h shake flask cultivation, the maximum tCA production was recorded as 1281 mg l-1 in the TTO1pBAD30C mutant cultivated in TB medium, with the IRA402 resin keeping 793 mg l-1 and the remaining 488 mg l-1 found in the supernatant. CONCLUSION: TCA production was successfully achieved with homologous expression, coupled with deletion and insertion strategies. 1281 mg l-1is the highest tCA concentration that achieved by bacterial tCA production in flask cultivation, according to our knowledge.


Subject(s)
Cinnamates , Photorhabdus , Photorhabdus/genetics , Photorhabdus/metabolism , Cinnamates/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Deletion , Plasmids/genetics
7.
Arch Insect Biochem Physiol ; 115(3): e22103, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517449

ABSTRACT

In Korea, there are two maggot species in the Delia genus that commonly infest the roots and stems of the Welsh onion, thus causing serious economic damage on the crop at the seedling stage. In this study, the seedcorn maggot (Delia platura) was detected in onion fields in two different localities in Korea. After overwintering, maggot infestations occurred throughout the entire growing seasons from transplantation to harvest, but their specific patterns of occurrence varied in the two localities examined. Entomopathogenic fungi induced significant virulence against the maggot larvae, in which a strain of Beauveria bassiana was effective, though it exhibited limited mortality in its insecticidal activity. To enhance this insecticidal activity, a culture broth from an entomopathogenic bacterium, Photorhabdus temperata temperata (Ptt), was added to B. bassiana treatment. The addition of Ptt broth significantly increased the insecticidal activity of B. bassiana in a dose-dependent manner. To elucidate this enhancement in insecticidal activity, the immunosuppressive activity of Ptt broth was assessed by identifying the immune responses of the seedcorn maggots. The seedcorn maggots possessed at least three different hemocytes with plasmatocytes, crystal cells, and lamellocytes. These hemocytes exhibited nodule formation in response to the fungal infection. In addition to the cellular immunity, the maggots exhibited inducible expressions of antimicrobial peptide (AMP) genes such as cecropin and defensin. The addition of Ptt broth suppressed the nodule formation and the AMP expressions in response to the fungal infection. Altogether, this study demonstrated the innate immune responses in a non-model insect, D. platura, along with the application of immunosuppression to develop a highly efficient biological control by enhancing the virulence of B. bassiana.


Subject(s)
Beauveria , Insecticides , Mycoses , Photorhabdus , Animals , Larva/microbiology , Virulence , Beauveria/physiology , Immunity
8.
Arch Insect Biochem Physiol ; 115(1): e22081, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38288493

ABSTRACT

Phospholipase A2 (PLA2 ) catalyzes phospholipids at the sn-2 position to release free fatty acids, including arachidonic acid (AA) or its precursor. The free AA is then oxygenated into different eicosanoids, which mediate the diverse physiological processes in insects. Any inhibition of the PLA2 catalysis would give rise to serious malfunctioning in insect growth and development. An onion moth, Acrolepiopsis sapporensis, encodes four different PLA2 genes (As-PLA2 A-As-PLA2 D), in which As-PLA2 A is dominantly expressed at all developmental stages and in different larval tissues. RNA interference of the As-PLA2 A expression significantly reduced the PLA2 activity of A. sapporensis, which suffered from immunosuppression. A recombinant As-PLA2 A protein was purified from a bacterial expression system, which exhibited a typical Michaelis-Menten kinetics and hence susceptible to a specific inhibitor to sPLA2 and dithiothreitol. A total of 19 bacterial metabolites derived from Xenorhabdus and Photorhabdus were screened against the recombinant As-PLA2 A. Five potent metabolites were highly inhibitory and followed a competitive enzyme inhibition. These five inhibitors suppressed the immune responses of A. sapporensis by inhibiting hemocyte-spreading behavior and phenoloxidase activity. However, an addition of AA could significantly rescue the immunosuppression induced by the selected inhibitors. These studies suggest that the recombinant As-PLA2 A protein can be applied for high-throughput screening of insect immunosuppressive compounds.


Subject(s)
Phospholipases A2, Secretory , Animals , Spodoptera , Phospholipases A2, Secretory/genetics , Phospholipases A2, Secretory/metabolism , Eicosanoids/metabolism , Larva/metabolism , Insecta , Arachidonic Acid/metabolism
9.
World J Microbiol Biotechnol ; 40(4): 128, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451353

ABSTRACT

The entomopathogenic nematode Heterorhabditis bacteriophora, symbiotically associated with enterobacteria of the genus Photorhabdus, is a biological control agent against many insect pests. Dauer Juveniles (DJ) of this nematode are produced in industrial-scale bioreactors up to 100 m3 in liquid culture processes lasting approximately 11 days. A high DJ yield (> 200,000 DJ·mL-1) determines the success of the process. To start the mass production, a DJ inoculum proceeding from a previous monoxenic culture is added to pre-cultured (24 h) Photorhabdus bacteria. Within minutes after contact with the bacteria, DJ are expected to perceive signals that trigger their further development (DJ recovery) to reproductive hermaphrodites. A rapid, synchronized, and high DJ recovery is a key factor for an efficient culture process. In case of low percentage of DJ recovery, the final DJ yield is drastically reduced, and the amount of non-desired stages (males and non-fertilized females) hinders the DJ harvest. In a preliminary work, a huge DJ recovery phenotypic variability in H. bacteriophora ethyl methanesulphonate (EMS) mutants was determined. In the present study, two EMS-mutant lines (M31 and M88) with high and low recovery phenotypes were analyzed concerning their differences in gene expression during the first hours of contact with Photorhabdus supernatant containing food signals triggering recovery. A snapshot (RNA-seq analysis) of their transcriptome was captured at 0.5, 1, 3 and 6 h after exposure. Transcripts (3060) with significant regulation changes were identified in the two lines. To analyze the RNA-seq data over time, we (1) divided the expression profiles into clusters of similar regulation, (2) identified over and under-represented gene ontology categories for each cluster, (3) identified Caenorhabditis elegans homologous genes with recovery-related function, and (4) combined the information with available single nucleotide polymorphism (SNP) data. We observed that the expression dynamics of the contrasting mutants (M31 and M88) differ the most within the first 3 h after Photorhabdus supernatant exposure, and during this time, genes related to changes in the DJ cuticle and molting are more active in the high-recovery line (M31). Comparing the gene expression of DJ exposed to the insect food signal in the haemolymph, genes related to host immunosuppressive factors were not found in DJ upon bacterial supernatant exposure. No link between the position of SNPs associated with high recovery and changes in gene expression was determined for genes with high differential expression. Concerning specific transcripts, nine H. bacteriophora gene models with differential expression are provided as candidate genes for further studies.


Subject(s)
Caenorhabditis elegans , Transcriptome , Female , Male , Animals , Ethyl Methanesulfonate , Biological Control Agents , Bioreactors
10.
Appl Microbiol Biotechnol ; 107(23): 7181-7196, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37733051

ABSTRACT

The entomopathogenic nematode (EPN) Heterorhabditis bacteriophora is an effective biological-control agent of insect pests. The dauer juveniles (DJs) seek for, infect insects, and release cells of the carried symbiotic bacterium of the genus Photorhabdus. Inside the host, the DJs perceive signals from the insect's haemolymph that trigger the exit from the arrested stage and the further development to mature adults. This developmental step is called DJ recovery. In commercial production, a high and synchronous DJ recovery determines the success of liquid-culture mass production. To enhance the understanding about genetic components regulating DJ recovery, more than 160 mutant- and 25 wild type inbred lines (WT ILs) were characterized for DJ recovery induced by cell-free bacterial supernatant. The mutant lines exhibited a broader DJ recovery range than WT ILs (4.6-67.2% vs 1.6-35.7%). A subset of mutant lines presented high variability of virulence against mealworm (Tenebrio molitor) (from 22 to 78% mortality) and mean time survival under oxidative stress (70 mM H2O2; from 10 to 151 h). Genotyping by sequencing of 96 mutant lines resulted in more than 150 single nucleotide polymorphisms (SNPs), of which four results are strongly associated with the DJ recovery trait. The present results are the basis for future approaches in improving DJ recovery by breeding under in vitro liquid-culture mass production in H. bacteriophora. This generated platform of EMS-mutants is as well a versatile tool for the investigation of many further traits of interest in EPNs. KEYPOINTS: • Exposure to bacterial supernatants of Photorhabdus laumondii induces the recovery of Heterorhabditis bacteriophora dauer juveniles (DJs). Both, the bacteria and the nematode partner, influence this response. However, the complete identity of its regulators is not known. • We dissected the genetic component of DJ recovery regulation in H. bacteriophora nematodes by generating a large array of EMS mutant lines and characterizing their recovery pheno- and genotypes. • We determined sets of mutants with contrasting DJ recovery and genotyped a subset of the EMS-mutant lines via genotyping by sequencing (GBS) and identified SNPs with significant correlation to the recovery trait.


Subject(s)
Nematoda , Photorhabdus , Animals , Genotype , Hydrogen Peroxide , Nematoda/genetics , Insecta , Photorhabdus/genetics , Symbiosis
11.
Biochemistry (Mosc) ; 88(9): 1356-1367, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37770402

ABSTRACT

Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp. laumondii TT01 was cloned and expressed in Escherichia coli cells. The recombinant protein, named photorin (Phin), was purified by metal-chelate affinity and gel permeation chromatography and characterized. It has been established that Phin is a monomer and inhibits activity of protealysin and thermolysin, which, similar to PrtS, belong to the M4 peptidase family. Inhibition constants were 1.0 ± 0.3 and 10 ± 2 µM, respectively. It was also demonstrated that Phin is able to suppress proteolytic activity of P. laumondii culture fluid (half-maximal inhibition concentration 3.9 ± 0.3 nM). Polyclonal antibodies to Phin were obtained, and it was shown by immunoblotting that P. laumondii cells produce Phin. Thus, the prtS genes in entomopathogenic bacteria of the genus Photorhabdus are colocalized with the genes of emfourin-like inhibitors, which probably regulate activity of the enzyme during infection. Strict regulation of the activity of proteolytic enzymes is essential for functioning of all living systems. At the same time, the principles of regulation of protease activity by protein inhibitors remain poorly understood. Bacterial protease-inhibitor pairs, such as the PrtS and Phin pair, are promising models for in vivo studies of these principles. Bacteria of the genus Photorhabdus have a complex life cycle with multiple hosts, being both nematode symbionts and powerful insect pathogens. This provides a unique opportunity to use the PrtS and Phin pair as a model for studying the principles of protease activity regulation by proteinaceous inhibitors in the context of bacterial interactions with different types of hosts.


Subject(s)
Anti-Infective Agents , Photorhabdus , Animals , Photorhabdus/genetics , Photorhabdus/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Insecta , Antiviral Agents/metabolism
12.
J Invertebr Pathol ; 196: 107871, 2023 02.
Article in English | MEDLINE | ID: mdl-36493844

ABSTRACT

Photorhabdus spp. and Xenorhabdus spp. bacteria produce a variety of molecules that inhibit bacterial and fungal contamination as well as deter scavenging invertebrates and some vertebrates in soil. Certain Heterorhabditis/Photorhabdus-infected insect cadavers can be bioluminescent in the dark and/or turn red from the production of anthraquinone pigments. The role of these traits remains unresolved. The aim of the present study was to evaluate the role of red color (anthraquinone) and bioluminescence on the deterrence of insect scavengers. Our data shows that scavenger deterrent factor (SDF) is not related to red cadaver coloration or bioluminescence activity as crickets and ants did not consume Galleria mellonella cadavers infected by P. laumondii strain 48-02 and X. bovienii. Both bacteria exhibit SDF activity but do not produce anthraquinone. Also, the insects were not affected by anthraquinone in agar plugs prepared with supernatant from induced P. laumondii Δpptase Pcep-KM-antA (SVS-275) mutant strain, which overproduces anthraquinone. Since bioluminescence and anthraquinone are not responsible for SDF activity against insect scavengers, more studies are needed to elucidate the SDF compound from Xenorhabdus and Photorhabdus bacteria.


Subject(s)
Moths , Nematoda , Photorhabdus , Xenorhabdus , Animals , Cadaver , Insecta , Nematoda/microbiology , Symbiosis
13.
J Invertebr Pathol ; 198: 107922, 2023 06.
Article in English | MEDLINE | ID: mdl-37068730

ABSTRACT

Locusts occasionally represent a danger in Africa despite intensive management measures, leading to severe yield loss and a commensurate loss of food and money. The laboratory assessment of the toxicity of the Photorhabdus luminescens bacteria and its cell-free filtrate used Schistocerca gregaria nymphs in the second and fifth nymphs as test insects. Greater mortality was seen in locust nymphs of the second and fifth instars due to the high levels of toxicity produced by the bacterial suspension and its cell-free filtrate. The amounts of protein, fat, and carbohydrates in the treated locusts were drastically reduced. For the treated second and fifth instar nymphs of the desert locust, adverse effects on the muscular layers of the midgut and the muscles in the jumping legs were investigated.


Subject(s)
Grasshoppers , Photorhabdus , Animals , Insecta
14.
J Invertebr Pathol ; 198: 107911, 2023 06.
Article in English | MEDLINE | ID: mdl-36921888

ABSTRACT

The grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), is a critical pest for vineyards and causes significant economic losses in wine-growing areas worldwide. Identifying and developing novel semiochemical cues (e.g. volatile bacterial compounds) which modify the ovipositional and trophic behaviour of L. botrana in vineyard fields could be a novel control alternative in viticulture. Xenorhabdus spp. and Photorhabdus spp. are becoming one of the best-studied bacterial species due to their potential interest in producing toxins and deterrent factors. In this study, we investigated the effect of the deterrent compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii on the ovipositional moth behaviour and the larval feeding preference of L. botrana. Along with the in-vitro bioassays performed, we screened the potential use of 3 d cell-free bacterial supernatants and 3 and 5 d unfiltered bacterial ferments. In addition, we tested two application systems: (i) contact application of the bacterial compounds and (ii) volatile bacterial compounds application. Our findings indicate that the deterrent effectiveness varied with bacterial species, the use of bacterial cell-free supernatants or unfiltered fermentation product, and the culture times. Grapes soaked in the 3 d X. nematophila and P. laumondii ferments had âˆ¼ 55% and âˆ¼ 95% fewer eggs laid than the control, respectively. Likewise, the volatile compounds emitted by the 5 d P. laumondii fermentations resulted in âˆ¼ 100% avoidance of L. botrana ovipositional activity for three days. Furthermore, both bacterial fermentation products have larval feeding deterrent effects (∼65% of the larva chose the control grapes), and they significantly reduced the severity of damage caused by third instar larva in treated grapes. This study provides insightful information about a novel bacteria-based tool which can be used as an eco-friendly and economical alternative in both organic and integrated control of L. botrana in vineyard.


Subject(s)
Moths , Photorhabdus , Vitis , Xenorhabdus , Animals , Larva
15.
Plant Dis ; 107(11): 3383-3388, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37330631

ABSTRACT

Root-knot nematodes (RKNs) cause significant economic damage to crop plants, spurring demand for safe, affordable, and sustainable nematicides. A previous study by our research team showed that the combination of two nematicidal secondary metabolites (SMs) derived from Photorhabdus bacteria, trans-cinnamic acid (t-CA), and (4E)-5-phenylpent-4-enoic acid (PPA) have a synergistic effect against RKNs in vitro. In this study, we considered in planta assays to assess the effects of this SM mixture on the virulence and reproductive fitness of the RKN Meloidogyne incognita in a cowpea. Factorial combinations of five t-CA + PPA concentrations (0, 9.0, 22.9, 57.8, and 91.0 µg/ml) and two nematode inoculation conditions (presence or absence) were evaluated in 6-week growth chamber experiments. Results from this study showed that a single root application of the t-CA + PPA mixture significantly reduced the penetration of M. incognita infective juveniles (J2s) into the cowpea roots. The potential toxicity of t-CA + PPA on RKN-susceptible cowpea seedlings was also investigated. The effect of t-CA + PPA × nematode inoculation interactions and the t-CA + PPA mixture did not show significant phytotoxic effects, nor did it adversely affect plant growth parameters or alter leaf chlorophyll content. Total leaf chlorophyll and chlorophyll b content were significantly reduced (by 15 and 22%, respectively) only by the nematode inoculum and not by any of the SM treatments. Our results suggest that a single root application of a mixture of t-CA and PPA reduces M. incognita J2's ability to infect the roots without impairing plant growth or chlorophyll content.


Subject(s)
Photorhabdus , Tylenchoidea , Vigna , Animals , Antinematodal Agents/pharmacology , Chlorophyll
16.
World J Microbiol Biotechnol ; 40(1): 13, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953398

ABSTRACT

The entomopathogenic nematode Heterorhabditis bacteriophora (Nematoda: Rhabditidae) is used in biological insect control. Their dauer juveniles (DJs) are free-living and developmentally arrested, invading host insects. They carry cells of their bacterial symbiont Photorhabdus spp. in the intestine. Once inside the insect´s hemolymph the DJs perceive a food signal, triggering them to exit the DJ stage and regurgitate the Photorhabdus cells into the insect's haemocoel, which kill the host and later provide essential nutrients for nematode reproduction. The exit from the DJ stage is called "recovery". For commercial pest control, nematodes are industrially produced in monoxenic liquid cultures. Artificial media are incubated with Photorhabdus before DJs are added. In absence of the insect's food signal, DJs depend on unknown bacterial food signals to trigger exit of the DJ stage. A synchronized and high DJ recovery determines the success of the industrial in vitro production and can significantly vary between nematode strains, inbred lines and mutants. In this study, fourteen bacterial strains from H. bacteriophora were isolated and identified as P. laumondii, P. kayaii and P. thracensis. Although the influence of bacterial supernatants on the DJ recovery of three inbred lines and two mutants differed significantly, the bacterial impact on recovery has a subordinate role whereas nematode factors have a superior influence. Recovery of inbred lines decreased with age of the DJs. One mutant (M31) had very high recovery in bacterial supernatant and spontaneous recovery in Ringer solution. Another mutant (M88) was recovery defective.


Subject(s)
Nematoda , Photorhabdus , Rhabditoidea , Animals , Photorhabdus/genetics , Rhabditoidea/microbiology , Insecta , Culture Media , Symbiosis
17.
BMC Genomics ; 23(1): 741, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36344922

ABSTRACT

BACKGROUND: Nematodes are a major group of soil inhabiting organisms. Heterorhabditis nematodes are insect-pathogenic nematodes and live in a close symbiotic association with Photorhabdus bacteria. Heterorhabditis-Photorhabdus pair offers a powerful and genetically tractable model to study animal-microbe symbiosis. It is possible to generate symbiont bacteria free (axenic) stages in Heterorhabditis. Here, we compared the transcriptome of symbiotic early-adult stage Heterorhabditis nematodes with axenic early-adult nematodes to determine the nematode genes and pathways involved in symbiosis with Photorhabdus bacteria. RESULTS: A de-novo reference transcriptome assembly of 95.7 Mb was created for H. bacteriophora by using all the reads. The assembly contained 46,599 transcripts with N50 value of 2,681 bp and the average transcript length was 2,054 bp. The differentially expressed transcripts were identified by mapping reads from symbiotic and axenic nematodes to the reference assembly. A total of 754 differentially expressed transcripts were identified in symbiotic nematodes as compared to the axenic nematodes. The ribosomal pathway was identified as the most affected among the differentially expressed transcripts. Additionally, 12,151 transcripts were unique to symbiotic nematodes. Endocytosis, cAMP signalling and focal adhesion were the top three enriched pathways in symbiotic nematodes, while a large number of transcripts coding for various responses against bacteria, such as bacterial recognition, canonical immune signalling pathways, and antimicrobial effectors could also be identified. CONCLUSIONS: The symbiotic Heterorhabditis nematodes respond to the presence of symbiotic bacteria by expressing various transcripts involved in a multi-layered immune response which might represent non-systemic and evolved localized responses to maintain mutualistic bacteria at non-threatening levels. Subject to further functional validation of the identified transcripts, our findings suggest that Heterorhabditis nematode immune system plays a critical role in maintenance of symbiosis with Photorhabdus bacteria.


Subject(s)
Photorhabdus , Rhabditoidea , Animals , Photorhabdus/genetics , Rhabditoidea/genetics , Symbiosis/genetics , Sequence Analysis, RNA , RNA
18.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36223180

ABSTRACT

One motile, Gram-negative, non-spore-forming and rod-shaped symbiotic bacterium, strain UCH-936T, was isolated from Heterorhabditis atacamensis nematodes. Results of biochemical, physiological, molecular and genomic analyses suggest that it represents a new species, which we propose to name Photorhabdus antumapuensis sp. nov. Digital DNA-DNA hybridization shows that strain UCH-936T is more closely related to Photorhabdus kleinii DSM 23513T, but shares solely 50.5 % similarity, which is below the 70% cut-off value that delimits species boundaries in bacteria. Phylogenetic reconstructions using whole-genome sequences show that strain UCH-936T forms a unique clade, suggesting its novel and distinct taxonomic status again. Similarly, comparative genomic analyses shows that the virulence factor flagella-related gene fleR, the type IV pili-related gene pilL and the vibriobactin-related gene vibE are present in the genome of strain UCH-936T but absent in the genomes of its closest relatives. Biochemically and physiologically, UCH-936T differs also from all closely related Photorhabdus species. Therefore, Photorhabdus antumapuensis sp. nov. is proposed as a new species with the type strain UCH-936T (CCCT 21.06T=CCM 9188T=CCOS 1991T).


Subject(s)
Nematoda , Photorhabdus , Rhabditoidea , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Photorhabdus/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhabditoidea/microbiology , Sequence Analysis, DNA , Virulence Factors
19.
Appl Microbiol Biotechnol ; 106(12): 4387-4399, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35723692

ABSTRACT

Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.


Subject(s)
Biological Products , Nematoda , Photorhabdus , Rhabditida , Xenorhabdus , Animals , Biological Products/metabolism , Insecta/microbiology , Nematoda/microbiology , Symbiosis
20.
Appl Microbiol Biotechnol ; 106(8): 2917-2926, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35384447

ABSTRACT

In this study, we evaluated a new biopesticide containing different combinations of Photorhabdus luminescens (ATCC 29,999; Pl) and Bacillus thuringiensis subsp. aizawai (Bt) to leverage their insecticidal activity against Plutella xylostella. Mixtures containing proteins of various sizes were assayed to determine which combination of the two bacteria would yield the maximum insecticidal activity. A histopathologic slide revealed vacuole formations and rifts near the apical membrane (a symptom of Bt) and severe thinning of the intestinal wall (a symptom of Pl). When the two bacteria were cultured separately and then mixed, the insecticidal activity of the treatment reached 83.33% ± 8.82%. The insecticidal activity was elevated and significantly accelerated when Bt was mixed with both the Pl supernatant and the isolated protein with a molecular mass [Formula: see text] 100 kDa of Pl. These results highlight the potential of Pl as a potent bioinsecticide to economically and sustainably control Pl. xylostella and other lepidopteran pests. KEY POINTS: • Growth inhibition by Bacillus thuringiensis exerted a significant effect on insecticidal activity. • Large Photorhabdus luminescens proteins can accelerate the synergistic insecticidal effect on Plutella xylostella.


Subject(s)
Bacillus thuringiensis , Insecticides , Lepidoptera , Moths , Photorhabdus , Animals , Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecticides/metabolism , Insecticides/pharmacology , Moths/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL