Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
Proteins ; 2024 Oct 27.
Article in English | MEDLINE | ID: mdl-39462863

ABSTRACT

SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches. Our biochemical data showed that the SR/SH-rich domain of PIM-1L was able to associate with SRPK1, yet it could not act as a substrate but, instead, inactivated the kinase. In line with our biochemical data, molecular modeling followed by a microsecond-scale all-atom molecular dynamics (MD) simulation suggests that the SR/SH-rich domain acts as a pseudo-docking peptide that binds to the same acidic docking-groove used in other SRPK1 interactions and induces inactive SRPK1 conformations. Comparative community network analysis of the MD trajectories, unraveled the dynamic architecture of apo SRPK1 and notable alterations of allosteric communications upon PIM-1L peptide binding. This analysis also allowed us to identify key SRPK1 residues, including unique ones, with a pivotal role in mediating allosteric signal propagation within the kinase core. Interestingly, most of the identified amino acids correspond to cancer-associated amino acid changes, validating our results. In total, this work provides insights not only on the details of SRPK1 inhibition by the PIM-1L SR/SH-domain, but also contributes to an in-depth understanding of SRPK1 regulation.

2.
Cell Commun Signal ; 22(1): 529, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39487435

ABSTRACT

The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-pim-1 , Humans , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics , Neoplasms/enzymology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology
3.
Inflamm Res ; 73(10): 1671-1685, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079978

ABSTRACT

OBJECTIVE AND DESIGN: This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways. MATERIALS: THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used. TREATMENT: None. METHODS: Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation. RESULTS: PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/ß and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-ß-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity. CONCLUSIONS: Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.


Subject(s)
Inflammation , Lipopolysaccharides , Proto-Oncogene Proteins c-pim-1 , Signal Transduction , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Humans , Lipopolysaccharides/pharmacology , Animals , Mice , Inflammation/metabolism , Cytokines/metabolism , Jurkat Cells , RAW 264.7 Cells , NF-kappa B/metabolism , THP-1 Cells , Cell Line , Macrophages/metabolism , Macrophages/immunology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics
4.
Bioorg Chem ; 153: 107804, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39276491

ABSTRACT

In the current medical era, developing new PIM-1 inhibitors stands as a significant approach to cancer management due to the pivotal role of PIM-1 kinase in promoting cell survival, proliferation, and drug resistance in various cancers. This study involved designing and synthesizing new derivatives of pyrazolo[1,5-a]pyrimidines (6a-i) and pyrazolo[3,4-b]pyridines (10a-i) as potential anti-cancer agents targeting PIM-1 kinase. The cytotoxicity was screened on three cancer cell lines: A-549 (lung), PANC-1 (pancreatic), and A-431 (skin), alongside MRC5 normal lung cells to assess selectivity. Several pyrazolo[1,5-a]pyrimidines (6b, 6c, 6g, 6h, and 6i) and pyrazolo[3,4-b]pyridine (10f) demonstrated notable anticancer properties, particularly against A-549 lung cancer cells (IC50 range: 1.28-3.52 µM), also they exhibited significantly lower toxicity towards MRC5 normal cells. Thereafter, the compounds were evaluated for their inhibitory activity against PIM-1 kinase. Notably, 10f, bearing a 4-methoxyphenyl moiety, demonstrated good inhibition of PIM-1 with an IC50 of 0.18 µM. Additionally, 10f induced apoptosis and arrested cell cycle progression in A-549 cells. Molecular docking and dynamics simulations provided insights into the binding interactions and compounds' stability with PIM-1 kinase. The results highlight these compounds, especially 10f, as promising selective anticancer agents targeting PIM-1 kinase.

5.
J Enzyme Inhib Med Chem ; 39(1): 2304044, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38230430

ABSTRACT

New aromatic O-alkyl pyridine derivatives were designed and synthesised as Proviral Integration Moloney (PIM)-1 kinase inhibitors. 4c and 4f showed potent in vitro anticancer activity against NFS-60, HepG-2, PC-3, and Caco-2 cell lines and low toxicity against normal human lung fibroblast Wi-38 cell line. Moreover, 4c and 4f induced apoptosis in the four tested cancer cell lines with high percentage. In addition, 4c and 4f significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 4c and 4f showed potent PIM-1 kinase inhibitory activity with IC50 = 0.110, 0.095 µM, respectively. Kinetic studies indicated that 4c and 4f were both competitive and non-competitive inhibitors for PIM-1 kinase enzyme. In addition, in silico prediction of physiochemical properties, pharmacokinetic profile, ligand efficiency, ligand lipophilic efficiency, and induced fit docking studies were consistent with the biological and kinetic studies, and predicted that 4c and 4f could act as PIM-1 kinase competitive non-adenosine triphosphate (ATP) mimetics with drug like properties.


Subject(s)
Antineoplastic Agents , Pyridones , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Proto-Oncogene Proteins c-pim-1/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Caspases/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/chemistry , Caco-2 Cells , Kinetics , Ligands , Apoptosis , Cell Proliferation , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Structure-Activity Relationship
6.
Arch Pharm (Weinheim) ; 357(6): e2400094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631036

ABSTRACT

Recently, we have developed novel Pim-1 kinase inhibitors starting from a dihydrobenzofuran core structure using a computational approach. Here, we report the design and synthesis of stilbene-based Pim-1 kinase inhibitors obtained by formal elimination of the dihydrofuran ring. These inhibitors of the first design cycle, which were obtained as inseparable cis/trans mixtures, showed affinities in the low single-digit micromolar range. To be able to further optimize these compounds in a structure-based fashion, we determined the X-ray structures of the protein-ligand-complexes. Surprisingly, only the cis-isomer binds upon crystallization of the cis/trans-mixture of the ligands with Pim-1 kinase and the substrate PIMTIDE, the binding mode being largely consistent with that predicted by docking. After crystallization of the exclusively trans-configured derivatives, a markedly different binding mode for the inhibitor and a concomitant rearrangement of the glycine-rich loop is observed, resulting in the ligand being deeply buried in the binding pocket.


Subject(s)
Protein Kinase Inhibitors , Proto-Oncogene Proteins c-pim-1 , Stilbenes , Humans , Binding Sites , Crystallography, X-Ray , Drug Design , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolism , Stilbenes/chemistry , Stilbenes/pharmacology , Stilbenes/chemical synthesis , Structure-Activity Relationship
7.
J Enzyme Inhib Med Chem ; 38(1): 2152810, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36629075

ABSTRACT

New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.


Subject(s)
Antineoplastic Agents , Quinolines , Male , Humans , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-pim-1/metabolism , Proto-Oncogene Proteins c-pim-1/pharmacology , Caspase 3/metabolism , Molecular Docking Simulation , Cell Line, Tumor , Kinetics , Caco-2 Cells , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Pyridines/pharmacology , Apoptosis , Quinolines/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor
8.
Bioorg Med Chem Lett ; 72: 128874, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35779826

ABSTRACT

Pim-1 kinase is a serine/threonine kinase which is vital in many tumors. The Pim-1 inhibitor 10-DEBC and its derivatives discovered in our previous work were modified through macrocyclization strategy. A series of benzo[b]pyridine[4,3-e][1,4]oxazine macrocyclic compounds were designed, synthesized, and evaluated as novel Pim-1 kinase inhibitors. Among these compounds, compound H5 exhibited the highest activity with an IC50 value of 35 nM. In addition, the crystal complex structure of Pim-1 kinase bound with compound H3 was determined, and the structure-activity relationship of these macrocyclic compounds was analyzed, which provides the structural basis of further optimization of novel macrocyclic Pim-1 kinase inhibitors..


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins c-pim-1 , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Molecular Structure , Oxazines , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
9.
Bioorg Chem ; 129: 106122, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36084418

ABSTRACT

Recently, inhibition of PIM-1 enzyme is found as an effective route in the fight against proliferation of cancer. Herein, new cyano pyridines that target PIM-1 kinase were designed, synthesized, and biologically evaluated. Two prostate cell lines were used to examine each of the new compounds in vitro for anticancer activity, namely, PC-3 and DU-145. The cyanopyridine derivatives 2b, 3b, 4b, and 5b with an N,N-dimethyl phenyl group at the pyridine ring's 4-position showed considerable antitumor effect on the tested cell lines. Additionally, the high selectivity index revealed that these compounds were less cytotoxic to normal WI-38 cells. Furthermore, they exhibited strong inhibitory effect on PIM-1 having IC50 = 0.248, 0.13, 0.326 and 0.245 µM, respectively. The most powerful derivatives2b, 3b, 4b, and 5b, were chosen for further examination of their inhibitory potential on both kinases (PIM-2 and PIM-3). Interestingly, upon loading compound 3b in a cubosomes formulation with nanometric size, improvements in cytotoxicity and inhibitory effect on PIM-1 kinase were observed. In silico ADME parameters study revealed that compound 3b is orally bioavailable without penetration to the blood-brain barrier. Further, the docking simulations revealed the ability of our potent compounds to well accommodate the PIM-1 kinase active site forming stable complexes. In a 150 ns MD simulation, the most powerful PIM-1 inhibitor 3b produced stable complex with the PIM-1 enzyme (RMSD = 1.76). Furthermore, the 3b-PIM-1 complex has the low binding free energy (-242.2 kJ/mol) according to the MM-PBSA calculations.


Subject(s)
Antineoplastic Agents , Nanoparticles , Prostatic Neoplasms , Humans , Male , Proto-Oncogene Proteins c-pim-1 , Molecular Dynamics Simulation , Protein Kinase Inhibitors , Cell Line, Tumor , Antineoplastic Agents/chemistry , Prostatic Neoplasms/drug therapy , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship
10.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681783

ABSTRACT

Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells/drug effects , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chromones/pharmacology , Chromones/therapeutic use , Drug Screening Assays, Antitumor , Flavones/pharmacology , Flavones/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Morpholines/pharmacology , Morpholines/therapeutic use , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-pim-1/genetics , Tumor Cells, Cultured
11.
J Comput Aided Mol Des ; 34(6): 647-658, 2020 06.
Article in English | MEDLINE | ID: mdl-32107701

ABSTRACT

In this study, a new method is proposed for calculating the relative binding free energy between a ligand and a protein, derived from a free energy variational principle (FEVP). To address the shortcomings of the method used in our previous study, we incorporate the dynamical fluctuation of a ligand in the FEVP calculation. The present modified method is applied to the Pim-1-kinase-ligand system and also to the FKBP-ligand system as a comparison with our previous work. Any inhibitor of Pim-1 kinase is expected to function as an anti-cancer drug. Some improvements are observed in the results compared to the previous study. The present work also shows comparable or better results than approaches using a standard technique of binding free energy calculations, such as the LIE and the MM-PB/SA methods. The possibility of applying the present method in the drug discovery process is also discussed.


Subject(s)
Energy Metabolism , Proto-Oncogene Proteins c-pim-1/chemistry , Tacrolimus Binding Proteins/chemistry , Thermodynamics , Entropy , Humans , Ligands , Molecular Dynamics Simulation , Protein Binding/genetics , Protein Conformation
12.
Bioorg Med Chem ; 28(24): 115828, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33166925

ABSTRACT

Pim-1 kinase targeted recently has proved an essential goal of breast cancer therapy. We report the design, synthesis with full characterization analysis of pyrazolo[3,4-b]pyridine scaffold-based derivatives targeting Pim-1 kinase as anti-breast cancer agents. All the newly synthesized compounds were screened for their in vitro cytotoxic activity against two breast cancer cell lines MCF-7 and MDA-MB-231, and non-cancerous MCF-10A cells. Four derivatives notably, 17 and 19 exhibited a remarkable cytotoxic activity with IC50 values 5.98 and 5.61 µM against MCF-7 (ERα-dependent) cells in a selective way, as they weren't active against MDA-MB-231 (non-ERα-dependent) and safe against MCF-10A. The most active compounds through in vitro screening were subjected to PIM-1 kinase to elucidate the Pim-1 kinase inhibitory activity as the mechanistic mode of action. Among the tested derivatives, Compounds 17 and 19 showed the highest inhibitory activity with IC50 values 43 and 26 nM, respectively, compared to the 5-FU with IC50 value 17 nM. Moreover, apoptotic investigation through flow cytometry and gene expression analysis of the apoptosis-related genes for the most active compound 19 against MCF-7. It was found that compound 19 induced apoptotic MCF-7 cell death by cell cycle arrest at G2/M phase and by elevation the expression of pro-apoptotic genes and inhibition of anti-apoptotic genes expression. Finally, the PIM-1 inhibition activities for compounds 17 and 19 were in accordance with the molecular docking study that revealed good interaction with the Pim-1 kinase active site.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazoles/chemistry , Pyridines/chemistry , Binding Sites , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Half-Life , Humans , MCF-7 Cells , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyridines/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
Bioorg Chem ; 94: 103481, 2020 01.
Article in English | MEDLINE | ID: mdl-31837830

ABSTRACT

One of the many methods of treating cancer is to terminate the uncontrolled growth of cancer cells. So, aiming the apoptotic pathway is an exciting approach to finding new anticancer agents. A novel series of cyanopyridines was designed and synthesized for antiproliferative evaluation. 2-Amino-6-(4-(benzyloxy)phenyl)-4-(4-(dimethylamino)phenyl) nicotinonitrile 10f was the most potent inhibitor against the growth of PC-3, and HepG-2 cancer cell lines with IC50 values of 2.04 uM (selectivity index, SI = 78.63, 43, respectively). Also, 10f was safe against the growth of normal human diploid lung fibroblasts cell line (WI-38) with an IC50 value of 160.04 uM. Its analogs, 10b, 10d, 10g, and 11b, were also active against the growth of PC-3, and HepG-2 while against MCF-7 cell line, they displayed good cytotoxic activity compared to the reference standard 5-FU. Remarkably, mechanistic studies indicated that compounds 10b, 10d, 10f, 10g, and 11b stimulated the level of active caspase 3 and boosted the BAX/BCL2 ratio 20-95 folds in comparison to the control. Our results have also indicated that 10b, 10d, 10f, 10g, and 11b exhibited a very potent inhibitory activity against PIM-1 kinase enzyme, where the IC50 values unraveled very potent molecules in the micromolar range (0.47-1.27 µM). Further investigations have shown that 10f, the most potent PIM-1 kinase inhibitor, induced a cell cycle arrest at the G2/M phase. Moreover, in silico evaluation of ADME properties indicated that all the cyanopyridine compounds are orally bioavailable with no permeation to the blood brain barrier.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Nitriles/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
14.
Bioorg Chem ; 105: 104378, 2020 12.
Article in English | MEDLINE | ID: mdl-33099167

ABSTRACT

Two novel series of 6-(4-benzamido-/4-phthalimido)-3-cyanopyridine derivatives were designed and synthesized as inhibitors of PIM-1 kinase. Based on cytotoxicity results via MTT assay against prostate carcinoma PC3, human hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cell lines, the most potent cytotoxic cyanopyridine hits, 6, 7, 8, 12 and 13 were 1.5-3.3 times more inhibitor of cell proliferation than the reference standard, 5-FU. Selectivity profile of the latter compounds on normal human cells (WI-38), was executed, indicating that they are highly selective (IC50 > 145 µM) in their cytotoxic effect. The promising compounds were further evaluated as PIM-1 kinase inhibitors. These compounds elicited remarkable inhibition of PIM-1 kinase (76.43-53.33%). Extensive studies on apoptosis were conducted for these compounds; they enhanced caspase-3 and boosted the Bax/Bcl-2 ratio 27-folds in comparison to the control. Molecular docking study of the most potent compound, 13 in PIM-1 kinase active site was consistent with the in vitro activity. Finally, prediction of chemo-informatic properties released compound 13 as the most promising ligand.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Bioorg Chem ; 83: 402-413, 2019 03.
Article in English | MEDLINE | ID: mdl-30415021

ABSTRACT

Heterocyclization of steroids were reported to give biologically active products where ring D modification occured. Estrone (1) was used as a template to develop new heterocyclic compounds. Ring D modification of 1 through its reaction with cyanoacetylhydrazine and elemental sulfur gave the thiophene derivative 3. The latter compound reacted with acetophenone derivatives 4a-c to give the hydrazide-hydrazone derivatives 5a-c, respectively. In addition, compound 3 formed thiazole derivatives through its first reaction with phenylisothiocyanate to give the thiourea derivative 9 followed by the reaction of the later with α-halocarbonyl compounds. In the present work a series of novel estrone derivatives were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase, and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). The most promising compounds 5b, 5c, 11a, 13c, 15b, 15c, 15d, 17a and 17b were further investigated against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR. Compounds 5b, 15d, 17a and 17b were selected to examine their Pim-1 kinase inhibition activity where compounds 15d and 17b showed high activities. Molecular docking of some of the most potent compounds was demonstrated.


Subject(s)
Estrone/analogs & derivatives , Estrone/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Thiophenes/pharmacology , Anilides/chemistry , Anilides/pharmacology , Animals , Artemia/drug effects , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Estrone/chemical synthesis , Estrone/toxicity , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-pim-1/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/toxicity
16.
Bioorg Chem ; 92: 103189, 2019 11.
Article in English | MEDLINE | ID: mdl-31473473

ABSTRACT

Angiogenesis is a hallmark in cancer. Most antiangiogenic agents block the action of vascular endothelial growth factor (VEGF). In clinic, patients develop hypoxia-mediated resistance consistent with vascular responses to these agents. Recent studies underlying such resistance revealed hypoxia-inducible PIM-1 kinase upregulation which promotes cancer progression. PIM-1 kinase expression is thus viewed as a new resistance mechanism to antiangiogenic agents. Hence, combining PIM kinase inhibitors with anti-VEGF therapies provides synergistic antitumor response. Inspired by these facts, the current study aims at designing novel dual VEGFR-2/PIM-1 kinase inhibitors via molecular hybridization and repositioning of their pharmacophoric features. Moreover, enhancing the cytotoxic potential of the designed compounds was considered via incorporating moieties mimicking caspase 3/7 activators. Accordingly, series of novel pyridine and thieno[2,3-b]pyridine derivatives were synthesized and screened via MTT assay for cytotoxic activities against normal fibroblasts and four cancer cell lines (HepG-2, Caco-2, MCF-7 and PC-3). Compounds 3a, 9e, 10b and 10c exhibited anticancer activities at nanomolar IC50 with promising safety, activated caspase 3/7 and induced apoptosis as well as DNA fragmentation more than doxorubicin in the four cancer cell lines. Furthermore, they exerted promising dual VEGFR-2/PIM-1 kinase inhibition and significantly exhibited higher therapeutic potential to alter the expression levels of VEGF, p53 and cyclin D than doxorubicin. Interestingly, the most active anticancer compound 10b conferred the highest dual VEGFR-2/PIM-1 kinase inhibition. Finally, their in silico ligand efficiency metrics were acceptable.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyridines/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspases, Effector/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
17.
Acta Haematol ; 139(2): 132-139, 2018.
Article in English | MEDLINE | ID: mdl-29444501

ABSTRACT

We reported that PIM1 kinase is expressed in the lymphocytes of patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Quercetin, a naturally occurring flavonoid, is a dietary supplement and inhibits many kinases, including PIM1, in vitro. Under an Institutional Review Board-approved protocol, we performed an open-label, single-arm pilot study to evaluate the antitumor activity of quercetin in patients with CLL/SLL. Q-ForceTM chews were administered orally, 500 mg twice daily, for 3 months. Eligible patients had failed prior therapies, had had no other standard treatment, or refused other therapies. Response was assessed based on objective change in disease parameters. Patients were included if their lymphocyte counts were rising and ≥10,000/µL but not > 100,000/µL. Three patients received quercetin treatment. There was no toxicity. Two responded with stabilization of rising lymphocyte counts (p < 0.001 for each), which remained stable during their follow-up (5 and 11 months after cessation of treatment, respectively). The CLL cells in the nonresponder harbored a TP53 mutation. Although our data from this pilot translational study are based on a small sample, further studies of quercetin as a potential therapeutic agent in selected patients with CLL/SLL appear warranted.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Quercetin/therapeutic use , Aged , Biomarkers , Dietary Supplements , Female , Humans , Immunohistochemistry , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Middle Aged , Patient Selection , Pilot Projects , Quercetin/administration & dosage , Quercetin/adverse effects , Treatment Outcome
18.
Bioorg Chem ; 80: 674-692, 2018 10.
Article in English | MEDLINE | ID: mdl-30064079

ABSTRACT

A series of pyridine and thieno[2,3-b]pyridine derivatives have been designed and synthesized as anticancer PIM-1 kinase inhibitors. Thirty-seven compounds were selected by NCI to be tested initially at a single dose (10 µM) in the full NCI 60 cell line panel. Compound 5b showed potent anticancer activity and was tested twice in the five-dose assay which confirmed its potent antitumor activity (GI50 values 0.302-3.57 µM) against all tested tumor cell lines except six cell lines where they showed moderate sensitivity. This compound was sent to NCI biological evaluation committee and still under consideration for further testing. In addition, the most active anticancer compounds in each series, 5b, 8d, 10c, 13h, and 15e, were evaluated for their PIM-1 kinase inhibitory activity. Compound 8d was the most potent one with IC50 = 0.019 µM followed by 5b, 15e, 10c and 13h with IC50 values 0.044, 0.083, 0.128 and 0.479 µM respectively. Moreover, docking study of the most active compounds in PIM-1 kinase active site was consistent with the in vitro activity.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Thienopyridines/chemistry , Thienopyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/metabolism , Thienopyridines/chemical synthesis
19.
Arterioscler Thromb Vasc Biol ; 36(12): 2304-2314, 2016 12.
Article in English | MEDLINE | ID: mdl-27765770

ABSTRACT

OBJECTIVE: ATP-binding cassette transporter A1 (ABCA1) exerts an atheroprotective action through the biogenesis of high-density lipoprotein in hepatocytes and prevents the formation of foam cells from macrophages. Controlling ABCA1 is a rational approach to improving atherosclerotic cardiovascular disease. Although much is known about the regulatory mechanism of ABCA1 synthesis, the molecular mechanism underpinning its degradation remains to be clearly described. APPROACH AND RESULTS: ABCA1 possesses potential sites of phosphorylation by serine/threonine-protein kinase Pim-1 (Pim-1). Pim-1 depletion decreased the expression of cell surface-resident ABCA1 (csABCA1) and apolipoprotein A-I-mediated [3H]cholesterol efflux in the human hepatoma cell line HepG2, but not in peritoneal macrophages from mice. In vitro kinase assay, immunoprecipitation, and immunocytochemistry suggested phosphorylation of csABCA1 by the long form of Pim-1 (Pim-1L). Cell surface biotinylation indicated that Pim-1L inhibited lysosomal degradation of csABCA1 involving the liver X receptor ß, which interacts with csABCA1 and thereby protects it from ubiquitination and subsequent lysosomal degradation. Cell surface coimmunoprecipitation with COS-1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that Pim-1L-mediated phosphorylation of csABCA1 facilitated the interaction between csABCA1 and liver X receptor ß and thereby stabilized the csABCA1-Pim-1L complex. Mice deficient in Pim-1 kinase activity showed lower expression of ABCA1 in liver plasma membranes and lower plasma high-density lipoprotein levels than control mice. CONCLUSIONS: Pim-1L protects hepatic csABCA1 from lysosomal degradation by facilitating the physical interaction between csABCA1 and liver X receptor ß and subsequent stabilization of the csABCA1-Pim-1L complex and thereby regulates the circulating level of high-density lipoprotein. Our findings may aid the development of high-density lipoprotein-targeted therapy.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Cell Membrane/metabolism , Hepatocytes/enzymology , Lipoproteins, HDL/blood , Lysosomes/enzymology , Proto-Oncogene Proteins c-pim-1/metabolism , ATP Binding Cassette Transporter 1/genetics , Animals , Apolipoprotein A-I/metabolism , COS Cells , Chlorocebus aethiops , HEK293 Cells , Hep G2 Cells , Humans , Liver X Receptors/metabolism , Macrophages, Peritoneal/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Binding , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-pim-1/deficiency , Proto-Oncogene Proteins c-pim-1/genetics , RNA Interference , Transfection
20.
Bioorg Med Chem ; 25(17): 4855-4875, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28760531

ABSTRACT

Over expression of Human phosphatidyl inositol mannoside kinases isoform 1 (Pim-1 kinase) has been reported in several leukemia and solid tumors. Our continuous interest to reveal the secrecies of the mysterious Pim-1 kinase binding pocket has led us to employ a structure based drug design procedure based on receptor-ligand pharmacophore generation protocol implemented in Discovery Studio 4.5 (DS 4.5). Subsequently, we collected 104 crystal structures of Pim-1 kinase from the Protein Data Bank (PDB) and used them to generate pharmacophores based on the anticipated co-crystallized ligand-Pim 1 kinase receptor interactions. All selected pharmacophoric features were enumerated and only those that had corresponding valuable receptor-ligand interactions were retained. This was followed by modeling all pharmacophore combinations and scoring them according to their Receiver Operating Characteristic (ROC) curve analysis parameters as well as a DS.4.5 built-in Genetic Function Algorithm (GFA) validating model. Accordingly, 111 pharmacophores resulted with acceptable ROC performances; 1XWS_2_04, 2BIK_2_06, and 1XWS_2_06 (ROC AUC value of: 0.770, 0.743 and 0.741 respectively) were the best pharmacophores. These pharmacophores were employed to guide the synthesis of new series of 7-[(2-Carboxyethyl)amino]-1-substituted-6-fluoro-8-nitro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid and their reduced 8-amino derivatives. The synthesized compounds were later evaluated for their Pim-1 kinase inhibitory potencies. Of which the most potent illustrated an IC50 value of 0.29µM against Pim-1 kinase.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Quinolones/chemistry , Area Under Curve , Binding Sites , Databases, Chemical , Humans , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/metabolism , Quinolones/chemical synthesis , Quinolones/metabolism , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL