Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Mol Plant Microbe Interact ; 36(1): 4-13, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36279112

ABSTRACT

Plant xylem colonization is the hallmark of vascular wilt diseases caused by phytopathogens within the Fusarium oxysporum species complex. Recently, xylem colonization has also been reported among endophytic F. oxysporum strains, resulting in some uncertainty. This study compares xylem colonization processes by pathogenic versus endophytic strains in Arabidopsis thaliana and Solanum lycopersicum, using Arabidopsis pathogen Fo5176, tomato pathogen Fol4287, and the endophyte Fo47, which can colonize both plant hosts. We observed that all strains were able to advance from epidermis to endodermis within 3 days postinoculation (dpi) and reached the root xylem at 4 dpi. However, this shared progression was restricted to lateral roots and the elongation zone of the primary root. Only pathogens reached the xylem above the primary-root maturation zone (PMZ). Related to the distinct colonization patterns, we also observed stronger induction of callose at the PMZ and lignin deposition at primary-lateral root junctions by the endophyte in both plants. This observation was further supported by stronger induction of Arabidopsis genes involved in callose and lignin biosynthesis during the endophytic colonization (Fo47) compared with the pathogenic interaction (Fo5176). Moreover, both pathogens encode more plant cell wall-degrading enzymes than the endophyte Fo47. Therefore, observed differences in callose and lignin deposition could be the combination of host production and the subsequent fungal degradation. In summary, this study demonstrates spatial differences between endophytic and pathogenic colonization, strongly suggesting that further investigations of molecular arm-races are needed to understand how plants differentiate friend from foe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis , Fusarium , Solanum lycopersicum , Lignin , Plant Diseases/microbiology , Fusarium/genetics , Plant Roots/microbiology
2.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36982921

ABSTRACT

Bacterial surface motility is a complex microbial trait that contributes to host colonization. However, the knowledge about regulatory mechanisms that control surface translocation in rhizobia and their role in the establishment of symbiosis with legumes is still limited. Recently, 2-tridecanone (2-TDC) was identified as an infochemical in bacteria that hampers microbial colonization of plants. In the alfalfa symbiont Sinorhizobium meliloti, 2-TDC promotes a mode of surface motility that is mostly independent of flagella. To understand the mechanism of action of 2-TDC in S. meliloti and unveil genes putatively involved in plant colonization, Tn5 transposants derived from a flagellaless strain that were impaired in 2-TDC-induced surface spreading were isolated and genetically characterized. In one of the mutants, the gene coding for the chaperone DnaJ was inactivated. Characterization of this transposant and newly obtained flagella-minus and flagella-plus dnaJ deletion mutants revealed that DnaJ is essential for surface translocation, while it plays a minor role in swimming motility. DnaJ loss-of-function reduces salt and oxidative stress tolerance in S. meliloti and hinders the establishment of efficient symbiosis by affecting nodule formation efficiency, cellular infection, and nitrogen fixation. Intriguingly, the lack of DnaJ causes more severe defects in a flagellaless background. This work highlights the role of DnaJ in the free-living and symbiotic lifestyles of S. meliloti.


Subject(s)
Nitrogen Fixation , Sinorhizobium meliloti , Nitrogen Fixation/genetics , Sinorhizobium meliloti/genetics , Symbiosis/genetics , Medicago sativa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Arch Microbiol ; 203(6): 3373-3388, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33880605

ABSTRACT

Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.


Subject(s)
Biological Control Agents , Burkholderiales/genetics , Genome, Bacterial , Plant Diseases/prevention & control , Solanum lycopersicum/microbiology , Bacterial Proteins/genetics , Base Composition , Biological Control Agents/metabolism , Burkholderiales/metabolism , DNA, Bacterial/chemistry , Genomics , Indoleacetic Acids/metabolism , Plant Diseases/microbiology , Secondary Metabolism/genetics , Stress, Physiological
4.
Mol Biol Rep ; 48(12): 7921-7932, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34655406

ABSTRACT

BACKGROUND: Sporisorium scitamineum is the causative agent of smut disease in sugarcane. The tricky life cycle of S. scitamineum consists of three distinct growth stages: diploid teliospores, haploid sporidia and dikaryotic mycelia. Compatible haploid sporidia representing opposite mating types (MAT-1 and MAT-2) of the fungus fuse to form infective dikaryotic mycelia in the host tissues, leading to the development of a characteristic whip shaped sorus. In this study, the transition of distinct stages of in vitro life cycle and in planta developmental stages of S. scitamineum are presented by generating stable GFP transformants of S. scitamineum. METHODS AND RESULTS: Haploid sporidia were isolated from the teliospores of Ss97009, and the opposite mating types (MAT-1 and MAT-2) were identified by random mating assay and mating type-specific PCR. Both haploid sporidia were individually transformed with pNIIST plasmid, harboring an enhanced green fluorescent protein (eGFP) gene and hygromycin gene by a modified protoplast-based PEG-mediated transformation method. Thereafter, the distinct in vitro developmental stages including fusion of haploid sporidia and formation of dikaryotic mycelia expressing GFP were demonstrated. To visualize in planta colonization, transformed haploids (MAT-1gfp and MAT-2gfp) were fused and inoculated onto the smut susceptible sugarcane cultivar, Co 97009 and examined microscopically at different stages of colonization. GFP fluorescence-based analysis presented an extensive fungal colonization of the bud surface as well as inter- and intracellular colonization of the transformed S. scitamineum in sugarcane tissues during initial stages of disease development. Noticeably, the GFP-tagged S. scitamineum led to the emergence of smut whips, which established their pathogenicity, and demonstrated initial colonization, active sporogenesis and teliospore maturation stages. CONCLUSION: Overall, for the first time, an efficient protoplast-based transformation method was employed to depict clear-cut developmental stages in vitro and in planta using GFP-tagged strains for better understanding of S. scitamineum life cycle development.


Subject(s)
Basidiomycota/growth & development , Saccharum/growth & development , Saccharum/genetics , Basidiomycota/metabolism , Basidiomycota/pathogenicity , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Plant Diseases/microbiology , Protoplasts , Saccharum/microbiology , Transcriptome/genetics
5.
J Proteome Res ; 17(4): 1361-1374, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29464956

ABSTRACT

Indole-3-acetic acid (IAA) plays a central role in plant growth and development, and many plant-associated microbes produce IAA using tryptophan as the precursor. Using genomic analyses, we predicted that Pantoea sp. YR343, a microbe isolated from Populus deltoides, synthesizes IAA using the indole-3-pyruvate (IPA) pathway. To better understand IAA biosynthesis and the effects of IAA exposure on cell physiology, we characterized proteomes of Pantoea sp. YR343 grown in the presence of tryptophan or IAA. Exposure to IAA resulted in upregulation of proteins predicted to function in carbohydrate and amino acid transport and exopolysaccharide (EPS) biosynthesis. Metabolite profiles of wild-type cells showed the production of IPA, IAA, and tryptophol, consistent with an active IPA pathway. Finally, we constructed an Δ ipdC mutant that showed the elimination of tryptophol, consistent with a loss of IpdC activity, but was still able to produce IAA (20% of wild-type levels). Although we failed to detect intermediates from other known IAA biosynthetic pathways, this result suggests the possibility of an alternate pathway or the production of IAA by a nonenzymatic route in Pantoea sp. YR343. The Δ ipdC mutant was able to efficiently colonize poplar, suggesting that an active IPA pathway is not required for plant association.


Subject(s)
Indoleacetic Acids/pharmacology , Pantoea/chemistry , Plant Growth Regulators/pharmacology , Populus/chemistry , Biosynthetic Pathways , Plant Growth Regulators/biosynthesis , Plant Proteins/drug effects , Populus/microbiology , Proteome/drug effects
6.
Biol Lett ; 12(9)2016 09.
Article in English | MEDLINE | ID: mdl-27651529

ABSTRACT

Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species.


Subject(s)
Embryophyta , Ice Cover , Plant Dispersal , Arctic Regions , Climate Change , Islands , Wood
7.
BMC Ecol ; 16: 19, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27056681

ABSTRACT

BACKGROUND: Several studies have examined the effects of plant colonization on aboveground communities and processes. However, the effects of plant colonization on soil microbial communities are less known. We addressed this gap by studying effects of plant colonization within an experimental plant diversity gradient in subplots that had not been weeded for 2 and 5 years. This study was part of a long-term grassland biodiversity experiment (Jena Experiment) with a gradient in plant species richness (1, 2, 4, 8, 16, and 60 sown species per plot). We measured plant species richness and productivity (aboveground cover and biomass) as well as soil microbial basal respiration and biomass in non-weeded subplots and compared the results with those of weeded subplots of the same plots. RESULTS: After 2 and 5 years of plant colonization, the number of colonizing plant species decreased with increasing plant diversity, i.e., low-diversity plant communities were most vulnerable to colonization. Plant colonization offset the significant relationship between sown plant diversity and plant biomass production. In line with plant community responses, soil basal respiration and microbial biomass increased with increasing sown plant diversity in weeded subplots, but soil microbial properties converged in non-weeded subplots and were not significantly affected by the initial plant species richness gradient. CONCLUSION: Colonizing plant species change the quantity and quality of inputs to the soil, thereby altering soil microbial properties. Thus, plant community convergence is likely to be rapidly followed by the convergence of microbial properties in the soil.


Subject(s)
Biodiversity , Plant Physiological Phenomena , Soil Microbiology , Species Specificity
9.
Plants (Basel) ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38475474

ABSTRACT

Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.

10.
Sci Total Environ ; 947: 174577, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38981540

ABSTRACT

Microorganisms are ubiquitous, and those inhabiting plants have been the subject of several studies. Plant-associated bacteria exhibit various biological mechanisms that enable them to colonize host plants and, in some cases, enhance their fitness. In this study, we describe the genomic features predicted to be associated with plant growth-promoting traits in six bacterial communities isolated from sugarcane. The use of highly accurate single-molecule real-time sequencing technology for metagenomic samples from these bacterial communities allowed us to recover 17 genomes. The taxonomic assignments for the binned genomes were performed, revealing taxa distributed across three main phyla: Bacillota, Bacteroidota, and Pseudomonadota, with the latter being the most representative. Subsequently, we functionally annotated the metagenome-assembled genomes (MAGs) to characterize their metabolic pathways related to plant growth-promoting traits. Our study successfully identified the enrichment of important functions related to phosphate and potassium acquisition, modulation of phytohormones, and mechanisms for coping with abiotic stress. These findings could be linked to the robust colonization of these sugarcane endophytes.


Subject(s)
Bacteria , Saccharum , Saccharum/microbiology , Bacteria/genetics , Bacteria/classification , Microbiota/genetics , Metagenome , Genome, Bacterial , Plant Development
11.
Pathogens ; 12(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36986302

ABSTRACT

The FTF (Fusarium Transcription Factor) gene family is composed of two members (FTF1 and FTF2) with high-sequence homology that encode transcription factors involved in the modulation of virulence in the F. oxysporum species complex (FOSC). While FTF1 is a multicopy gene exclusive of highly virulent strains of FOSC and is located in the accessory genome, FTF2 is a single-copy gene, located in the core genome, and well-conserved in all filamentous ascomycete fungi, except yeast. The involvement of FTF1 in the colonization of the vascular system and regulation of the expression of SIX effectors has been stablished. To address the role of FTF2, we generated and characterized mutants defective in FTF2 in a F. oxysporum f. sp. phaseoli weakly virulent strain and analyzed them together with the equivalent mutants formerly obtained in a highly virulent strain. The results obtained highlight a role for FTF2 as a negative regulator of the production of macroconidia and demonstrate that it is required for full virulence and the positive regulation of SIX effectors. In addition, gene expression analyses provided compelling evidence that FTF2 is involved in the regulation of hydrophobins likely required for plant colonization.

12.
Front Microbiol ; 14: 1218653, 2023.
Article in English | MEDLINE | ID: mdl-37670984

ABSTRACT

Paraburkholderia phytofirmans PsJN is an endophytic bacterium and has been shown to promote the growth and health of many different plants. Exopolysaccharide (EPS) plays important roles in plant-bacteria interaction and tolerance to environmental stresses. However, the function of EPS in PsJN and its interaction with plants remain largely unknown. In this study, a deletion mutation of bceQ gene, encoding a putative flippase for the EPS biosynthesis, was introduced in the genome of PsJN. The ΔbceQ mutant produced a significantly lower level of EPS than the wild type strain in culture media. Compared to the wild type PsJN, the ΔbceQ mutant was more sensitive to desiccation, UV damage, salt (NaCl) and iron (FeCl3) stresses, and bacteriophage infection. More importantly, the mutation of bceQ decreased the endophytic colonization of PsJN in camelina (Camelina sativa) and pea (Camelina sativa) under plant drought stress conditions. To the best of our knowledge, this is the first report that EPS production is required for the maximal colonization of an endophytic bacterium in the plant tissues under stress conditions.

13.
Sci Total Environ ; 905: 167140, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37722424

ABSTRACT

Alkalinity regulation and nutrient accumulation are critical factors in the construction of plant and microbial communities and soil formation in bauxite residue, and are extremely important for sustainable vegetation restoration in bauxite residue disposal areas. However, the establishment and succession of microbial communities driven by plant colonization-mediated improvements in the physicochemical properties of bauxite residues remain poorly understood. Thus, in this study, we determined the saline-alkali properties and dissolved organic matter (DOM) components under plant growth conditions and explored the microbial community diversity and structure using Illumina high-throughput sequencing. The planting of Elymus dahuricus (E. dahuricus) in the bauxite residue resulted in a significant decrease in total alkalinity (TA), exchangeable Na, and electrical conductivity (EC) as well as the release of more tryptophan-like protein compounds and low-molecular-weight humic substances associated with biological activities into the bauxite residue substrate. Taxonomical analysis revealed an initial-stage bacterial and fungal community dominated by alkaline-tolerant Actinobacteriota, Firmicutes, and Ascomycota, and an increase in the relative abundances of the phyla Bacteroidota, Cyanobacteria, Chloroflexi, and Gemmatimonadota. The biological activities of phylum Actinobacteriota, Bacteroidota, and Gemmatimonadota were significantly associated with protein-like and UVA-like humic substances. As eutrophic bacteria, Proteobacteria participate in the transformation of humic substances and can not only utilize small molecules of organic matter and convert them into humic substances but also promote the gradual conversion of humic acids into simple molecular compounds. Our results suggest that plant roots secrete organic matter and microbial metabolites as the main biogenic organic matter that participates in the establishment and succession of the microbial community in bauxite residues. Root length affects bacterial and fungal diversity by mediating the production of protein-like substances.


Subject(s)
Elymus , Microbiota , Soil Pollutants , Salt-Tolerant Plants/metabolism , Humic Substances/analysis , Aluminum Oxide/chemistry , Soil Pollutants/analysis , Soil/chemistry , Bacteria/metabolism , Bacteroidetes
14.
Microorganisms ; 11(8)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37630632

ABSTRACT

In the current study, we demonstrate that E. coli O104:H4 strain C227/11Φcu, a derivative of the 2011 enterohemorrhagic/enteroaggregative (EHEC/EAEC) E. coli outbreak strain, migrated into the edible portion of lamb's lettuce plants upon contamination of the surrounding soil. Seeds were surface-sterilized and cultivated on Murashige-Skoog agar or in autoclaved agricultural soil. Migration into the edible portions was investigated by inoculating the agar or soil close to the plants with 108 colony-forming units (CFU). The edible parts, which did not come into contact with the contaminated medium or soil, were quantitatively analyzed for the presence of bacteria after 2, 4 and 8 weeks. Strain C227/11Φcu could colonize lamb's lettuce when contamination of medium or soil occurs. The highest recovery rate (27%) was found for lettuce cultivated in agar, and up to 1.6 × 103 CFU/g lettuce was detected. The recovery rate was lower for the soil samples (9% and 13.5%). Although the used contamination levels were high, migration of C227/11Φcu from the soil into the edible parts was demonstrated. This study further highlights the risk of crop plant contamination with pathogenic E. coli upon soil contamination.

15.
Biology (Basel) ; 11(9)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36138785

ABSTRACT

The use of microorganism-based products in agricultural practices is gaining more interest as an alternative to chemical methods due to their non-toxic bactericidal and fungicidal properties. Various factors influence the efficacy of the microorganisms used as biological control agents in infield conditions as compared to laboratory conditions due to ecological and physiological aspects. Abiotic factors have been shown to trigger phase variations in bacterial microorganisms as a mechanism for adapting to hostile environments. In this study, we investigated the stability of the morphotype and the effects of phenotypic variation on the biological properties of Bacillus mojavensis strain PS17. B. mojavensis PS17 generated two variants (opaque and translucent) that were given the names morphotype I and II, respectively. The partial sequence of the 16S rRNA gene revealed that both morphotypes belonged to B. mojavensis. BOX and ERIC fingerprinting PCR also showed the same DNA profiles in both morphotypes. The characteristics of morphotype I did not differ from the original strain, while morphotype II showed a lower hydrolytic enzyme activity, phytohormone production, and antagonistic ability against phytopathogenic fungi. Both morphotypes demonstrated endophytic ability in tomato plants. A low growth rate of the strain PS17(II) in a minimal medium was observed in comparison to the PS17(I) strain. Furthermore, the capacity for biocontrol of B. mojavensis PS17(II) was not effective in the suppression of root rot disease in the tomato plants caused by Fusarium oxysporum f. sp. radices-lycopersici stain ZUM2407, compared to B. mojavensis PS17(I), whose inhibition was almost 47.9 ± 1.03% effective.

16.
Microb Genom ; 8(1)2022 01.
Article in English | MEDLINE | ID: mdl-35040428

ABSTRACT

The development of spots or lesions symptomatic of common scab on root and tuber crops is caused by few pathogenic Streptomyces with Streptomyces scabiei 87-22 as the model species. Thaxtomin phytotoxins are the primary virulence determinants, mainly acting by impairing cellulose synthesis, and their production in S. scabiei is in turn boosted by cello-oligosaccharides released from host plants. In this work we aimed to determine which molecules and which biosynthetic gene clusters (BGCs) of the specialized metabolism of S. scabiei 87-22 show a production and/or a transcriptional response to cello-oligosaccharides. Comparative metabolomic analyses revealed that molecules of the virulome of S. scabiei induced by cellobiose and cellotriose include (i) thaxtomin and concanamycin phytotoxins, (ii) desferrioxamines, scabichelin and turgichelin siderophores in order to acquire iron essential for housekeeping functions, (iii) ectoine for protection against osmotic shock once inside the host, and (iv) bottromycin and concanamycin antimicrobials possibly to prevent other microorganisms from colonizing the same niche. Importantly, both cello-oligosaccharides reduced the production of the spore germination inhibitors germicidins thereby giving the 'green light' to escape dormancy and trigger the onset of the pathogenic lifestyle. For most metabolites - either with induced or reduced production - cellotriose was revealed to be a slightly stronger elicitor compared to cellobiose, supporting an earlier hypothesis which suggested the trisaccharide was the real trigger for virulence released from the plant cell wall through the action of thaxtomins. Interestingly, except for thaxtomins, none of these BGCs' expression seems to be under direct control of the cellulose utilization repressor CebR suggesting the existence of a yet unknown mechanism for switching on the virulome. Finally, a transcriptomic analysis revealed nine additional cryptic BGCs that have their expression awakened by cello-oligosaccharides, suggesting that other and yet to be discovered metabolites could be part of the virulome of S. scabiei.


Subject(s)
Biosynthetic Pathways/drug effects , Cellobiose/pharmacology , Cellulose/pharmacology , Plant Tubers/microbiology , Streptomyces/growth & development , Trioses/pharmacology , Virulence Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Macrolides/metabolism , Metabolomics , Multigene Family/drug effects , Piperazines/metabolism , Plant Tubers/growth & development , RNA-Seq , Streptomyces/drug effects , Streptomyces/metabolism , Streptomyces/pathogenicity
17.
Microb Physiol ; 31(2): 88-98, 2021.
Article in English | MEDLINE | ID: mdl-34107493

ABSTRACT

Amyloids have proven to be a widespread phenomenon rather than an exception. Many proteins presenting the hallmarks of this characteristic beta sheet-rich folding have been described to date. Particularly common are functional amyloids that play an important role in the promotion of survival and pathogenicity in prokaryotes. Here, we describe important developments in amyloid protein research that relate to microbe-microbe and microbe-host interactions in the plant microbiome. Starting with biofilms, which are a broad strategy for bacterial persistence that is extremely important for plant colonization. Microbes rely on amyloid-based mechanisms to adhere and create a protective coating that shelters them from external stresses and promotes cooperation. Another strategy generally carried out by amyloids is the formation of hydrophobic surface layers. Known as hydrophobins, these proteins coat the aerial hyphae and spores of plant pathogenic fungi, as well as certain bacterial biofilms. They contribute to plant virulence through promoting dissemination and infectivity. Furthermore, antimicrobial activity is an interesting outcome of the amyloid structure that has potential application in medicine and agriculture. There are many known antimicrobial amyloids released by animals and plants; however, those produced by bacteria or fungi remain still largely unknown. Finally, we discuss amyloid proteins with a more indirect mode of action in their host interactions. These include virulence-promoting harpins, signaling transduction that functions through amyloid templating, and root nodule bacteria proteins that promote plant-microbe symbiosis. In summary, amyloids are an interesting paradigm for their many functional mechanisms linked to bacterial survival in plant-associated microbial communities.


Subject(s)
Amyloidogenic Proteins , Microbiota , Amyloid , Animals , Bacteria , Biofilms
18.
Microorganisms ; 9(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535657

ABSTRACT

Promoter-probe vectors carrying fluorescent protein-reporter genes are powerful tools used to study microbial ecology, epidemiology, and etiology. In addition, they provide direct visual evidence of molecular interactions related to cell physiology and metabolism. Knowledge and advances carried out thanks to the construction of soft-rot Pectobacteriaceae biosensors, often inoculated in potato Solanum tuberosum, are discussed in this review. Under epifluorescence and confocal laser scanning microscopies, Dickeya and Pectobacterium-tagged strains managed to monitor in situ bacterial viability, microcolony and biofilm formation, and colonization of infected plant organs, as well as disease symptoms, such as cell-wall lysis and their suppression by biocontrol antagonists. The use of dual-colored reporters encoding the first fluorophore expressed from a constitutive promoter as a cell tag, while a second was used as a regulator-based reporter system, was also used to simultaneously visualize bacterial spread and activity. This revealed the chronology of events leading to tuber maceration and quorum-sensing communication, in addition to the disruption of the latter by biocontrol agents. The promising potential of these fluorescent biosensors should make it possible to apprehend other activities, such as subcellular localization of key proteins involved in bacterial virulence in planta, in the near future.

19.
Fungal Biol ; 124(10): 877-883, 2020 10.
Article in English | MEDLINE | ID: mdl-32948275

ABSTRACT

Metarhizium is an insect pathogenic fungus and a plant root symbiont. Here the root association patterns (rhizoplane or endophytic colonization) were analyzed in common beans (Phaseolus vulgaris) and sweet corn (Zea mays) using M. robertsii and M. brunneum under various vermiculite treatments (control, with sucrose, with an insect) at two time points of plant growth (10 and 20 days). We observed that M. brunneum and M. robertsii preferentially endophytically colonized the hypocotyl, however, greater rhizoplane colonization was observed at the regions proximal to the hypocotyl in both plants. Vermiculite amended with an infected insect resulted in greater endophytic and rhizoplane colonization at 20 days compared to 10 days, for both plants as well as for both Metarhizium species. Regardless of the vermiculite treatment, corn was preferentially colonized compared to bean. Sucrose amendment in the vermiculite and infected insect amended vermiculite only showed differences in rhizoplane colonization. The greatest root association occurred with M. brunneum with an infected insect and that in corn after 20 days.


Subject(s)
Insecta/microbiology , Metarhizium , Phaseolus/microbiology , Plant Roots/microbiology , Zea mays/microbiology , Animals
20.
FEMS Microbiol Ecol ; 96(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-32445473

ABSTRACT

Plant growth-promoting bacteria (PGPB) have recently been demonstrated as a promising agent to improve wastewater treatment and biomass production efficiency of duckweed hydrocultures. With a view to their reliable use in aqueous environments, this study analysed the plant colonization dynamics of PGPB and the ecological consequences for the entire duckweed-associated bacterial community. A PGPB strain, Aquitalea magnusonii H3, was inoculated to duckweed at different cell densities or timings in the presence of three environmental bacterial communities. The results showed that strain H3 improved duckweed growth by 11.7-32.1% in five out of nine experiments. Quantitative-PCR and amplicon sequencing analyses showed that strain H3 successfully colonized duckweed after 1 and 3 d of inoculation in all cultivation tests. However, it significantly decreased in number after 7 d, and similar bacterial communities were observed on duckweed regardless of H3 inoculation. Predicted metagenome analysis suggested that genes related to bacterial chemotactic motility and surface attachment systems are consistently enriched through community assembly on duckweed. Taken together, strain H3 dominantly colonized duckweed for a short period and improved duckweed growth. However, the inoculation of the PGPB did not have a lasting impact due to the strong resilience of the natural duckweed microbiome.


Subject(s)
Araceae , Microbiota , Bacteria/genetics , Betaproteobacteria , Plant Development , Plant Roots
SELECTION OF CITATIONS
SEARCH DETAIL