Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microb Pathog ; 189: 106592, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423406

ABSTRACT

Porcine circovirus type 2 (PCV2) infection cause multi-systemic inflammation in pigs. Platycodon grandiflorus polysaccharide (PGPSt) has been reported to have the effects of immune regulation and disease resistance. Nevertheless, the role and mechanism of PGPSt in the inflammatory response of 3D4/21 cells induced by PCV2 infection remain unclear. The present study aims to investigate effects of PGPSt on inflammatory response and its possible underlying mechanisms in vitro models. Cells were treated with PCV2 for 36 h to construct a cell inflammation model. The 3D4/21 cell lines were pretreated with or without PGPSt, and the changes of inflammation-related markers and the signaling pathway were detected by CCK-8, ELISA, qPCR and Western blot. The results showed that PGPSt was non-toxic to cells and protected PCV2-infected cells from inflammatory damage. PGPSt could significantly inhibit the high acetylation of histone H3 (AcH3) and histone H4 (AcH4), down-regulate HAT and up-regulate HDAC activity, and reduce the expression of pro-inflammatory enzymes iNOS and COX-2 proteins levels. Then the levels of IL-1ß, IL-6 and TNF-α were significantly inhibited, and the level of IL-10 was promoted. We also observed that PGPSt inhibited the phosphorylation of p65, p38 and Erk1/2, which subsequently inhibited nuclear translocation of NF-κB p65 to express pro-inflammatory factors. In conclusion, PGPSt can reduce the inflammatory response by regulating histone acetylation, reducing the release of inflammatory factors, reducing the expression of pro-inflammatory enzymes, and inhibiting the activation of NF-κB and MAPKs signaling pathways. This suggests that PGPSt had an anti-inflammatory effect on the inflammatory response caused by PCV2 infection, which provided theoretical data support for the research.


Subject(s)
Circovirus , Platycodon , Animals , Swine , NF-kappa B/metabolism , Platycodon/metabolism , Circovirus/physiology , Inflammation , Histones/metabolism , Polysaccharides/pharmacology
2.
Int J Biol Macromol ; 258(Pt 2): 129106, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161010

ABSTRACT

Platycodon grandiflorus (P. grandiflorus), a traditional Chinese medicinal herb used for both medicine and food, has a long history of treating respiratory infections, bronchitis, pneumonia, and other lung-related diseases. The therapeutic effects of P. grandiflorus are attributed to its chemical components, including polysaccharides. Among these components, Platycodon grandiflorus polysaccharides (PGP) are recognized as one of the most important and abundant active ingredients, exhibiting various biological activities such as prebiotic, antioxidant, antiviral, anticancer, antiangiogenic, and immune regulatory properties. Incorporating the principles of traditional Chinese medicine, carrier concepts, and modern targeted drug delivery technologies, PGP can influence the target sites and therapeutic effects of other drugs while also serving as a drug carrier for targeted and precise treatments. Therefore, it is essential to provide a comprehensive review of the extraction, separation, purification, physicochemical properties, and biological activities of PGP. In the future, by integrating new concepts, technologies, and processes, further references and guidance can be provided for the comprehensive development of PGP. This will contribute to the advancement of P. grandiflorus in various fields such as pharmaceuticals, health products, and food.


Subject(s)
Platycodon , Platycodon/chemistry , Polysaccharides/pharmacology , Prebiotics
3.
Chin J Nat Med ; 21(4): 263-278, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37120245

ABSTRACT

Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.


Subject(s)
Colitis, Ulcerative , Colitis , Platycodon , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colon/pathology , Cytokines , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Dextran Sulfate , Disease Models, Animal , Colitis/chemically induced , Mice, Inbred C57BL
4.
Cell Biochem Biophys ; 81(3): 493-502, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37310618

ABSTRACT

Previous studies have confirmed that Platycodon grandiflorus polysaccharide (PGPSt) has the effects of regulating immunity and anti-apoptosis, but its effect on mitochondrial damage and apoptosis caused by PRV infection is still unclear. In this research, the effects of PGPSt on the cell viability, mitochondria morphology, mitochondrial membrane potential and apoptosis caused by PRV based on PK-15 cells were respectively examined by CCK-F assay, Mito-Tracker Red CMXRos, JC-1 staining method and Western blot etc. CCK-F test results showed that PGPSt had a protective effect on the decrease of cell viability caused by PRV. The results of morphological observation found that PGPSt can improve mitochondrial morphology damage, mitochondrial swelling and thickening, and cristae fracture. Fluorescence staining test results showed that PGPSt alleviated the decrease of mitochondrial membrane potential and apoptosis in infected cells. The expression of apoptosis-related proteins showed that PGPSt down-regulated the expression of the pro-apoptotic protein Bax and up-regulated the expression of the anti-apoptotic protein Bcl-2 in infected cells. These results indicated that PGPSt protected against PRV-induced PK-15 cell apoptosis by inhibiting mitochondrial damage.


Subject(s)
Herpesvirus 1, Suid , Platycodon , Animals , Apoptosis , Apoptosis Regulatory Proteins , Polysaccharides/pharmacology
5.
Phytomedicine ; 103: 154212, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35665615

ABSTRACT

BACKGROUND: Fumonisin B1 is categorised as possible carcinogenic to humans which commonly contaminate maize and maize-based products worldwide, FB1, like other environmental pollutants, may activate apoptosis, autophagy, the inflammatory response and oxidative stress. Platycodon grandiflorus polysaccharide (PGPSt) is prepared from a traditional herbal medicine in Asia with tremendous pharmacological activities. However, whether PGPSt could relieve FB1-induced apoptosis has not been elucidated. The study aimed to evaluate the surface morphology of PGPSt and its protective effect on fumonisin B1-induced apoptosis. METHODS: The surface morphology of PGPSt was evaluated by SEM and AFM. Expressions of proteins involved in autophagy and apoptosis were detected by western blot analysis. Western blot, transient transfection, JC-1 and Annexin V-FITC/PI staining, CCK8, Live-cell imaging and autophagy inhibitor were used to observe the effect and explore the mechanism of PGPSt on FB1-induced apoptosis of 3D4/21 cells. RESULTS: PGPSt had triple helix conformation, and had the characteristics of compact, polyporous and agglomerated morphology. PGPSt promoted the expression of LC3-II and Beclin1, reduced the expression of p62, and significantly activated autophagy. PGPSt inhibited the Akt/mTOR signaling pathway at 24 h. Besides, PGPSt increased the expression of Bcl-2 and decreased the expression of Cleaved Caspase-3. PGPSt-mediated autophagy was inhibited by 3-MA, accompanied by the upregulation of Caspase-3 and Cleaved Caspase-3, suggesting that enhanced autophagy inhibited apoptosis. CONCLUSION: PGPSt can activate autophagy, which in turn protects FB1-induced apoptosis. Targeting autophagy may provide a new way to improve the health of humans or animals in FB1 contaminated areas.


Subject(s)
Platycodon , Animals , Apoptosis , Autophagy , Caspase 3/metabolism , Platycodon/chemistry , Polysaccharides/pharmacology
6.
Front Immunol ; 13: 934084, 2022.
Article in English | MEDLINE | ID: mdl-35844489

ABSTRACT

M1-polarized macrophages can improve the body's immune function. This study aimed to explore the mechanism of Platycodon grandiflorus polysaccharide (PGPSt) degrading SOCS1/2 protein through autophagy and promoting M1 polarization in 3D4/21 cells. Immunoprecipitation, confocal laser scanning microscopy, flow cytometry, and intracellular co-localization were used to detect the expression of related phenotypic proteins and cytokines in M1-polarized cells. The results showed that PGPSt significantly promoted the mRNA expression of IL-6, IL-12, and TNF-α and enhanced the protein expression of IL-6, IL-12, TNF-α, IL-1ß, iNOS, CD80, and CD86, indicating that PGPSt promoted M1 polarization in 3D4/21 cells. Next, the effect of the PGPSt autophagy degradation of SOCS1/2 on the M1 polarization of 3D4/21 cells was detected. The results showed that PGPSt significantly downregulated the expression level of SOCS1/2 protein, but had no obvious effect on the mRNA expression level of SOCS1/2, indicating that PGPSt degraded SOCS1/2 protein by activating the lysosome system. Further research found that under the action of 3-MA and BafA1, PGPSt upregulated LC3B II and downregulated SOCS1/2 protein expression, which increased the possibility of LC3B, the key component of autophagy, bridging this connection and degrading SOCS1/2. The interaction between SOCS1/2 and LC3 was identified by indirect immunofluorescence and Co-IP. The results showed that the co-localization percentage of the two proteins increased significantly after PGPSt treatment, and LC3 interacted with SOCS1 and SOCS2. This provides a theoretical basis for the application of PGPSt in the treatment or improvement of diseases related to macrophage polarization by regulating the autophagy level.


Subject(s)
Platycodon , Autophagy , Interleukin-12/pharmacology , Interleukin-6/pharmacology , Platycodon/genetics , Polysaccharides/pharmacology , RNA, Messenger , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling Proteins/genetics , Tumor Necrosis Factor-alpha/pharmacology
7.
Front Pharmacol ; 13: 927384, 2022.
Article in English | MEDLINE | ID: mdl-36160385

ABSTRACT

Platycodon grandiflorus (Jacq.) A. DC. (PG) root is one of the most commonly used medicine-food materials for respiratory discomfort in Asia, usually in the form of a decoction or leaching solution. As everyone knows, both of decoction and leaching solution is a polyphase dispersion system, containing low-molecular-weight water-soluble active ingredients and hydrophilic macromolecules. This study aimed to discuss the synergistic effect of Platycodon grandiflorus polysaccharide (PGP) and platycodin D (PD) in PG decoction against chronic bronchitis (CB) and the mechanism underlying. A series of PGP, PD, and PGD + PD suspensions were administrated to CB model rats, on the levels of whole animal and in situ intestinal segment with or without mesenteric lymphatic vessels ligation. It exhibited that PGP exhibited synergistic effects with PD, on improving the histopathological abnormity, mucus secretion excess, and immunological imbalance in lung of CB model rat, closely associated with its modulations on the mucosal immunity status in small intestine. The polysaccharide macromolecules in PG decoction or leaching solution should be responsible for the modulation of pulmonary immune state, possibly through the common mucosal immune between small intestine and lung. These results might be a new perspective that illustrates the classical theory of "the lung and intestine are related" in traditional Chinese medicine.

8.
Res Vet Sci ; 140: 18-25, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34391058

ABSTRACT

Pseudorabies virus (PRV) is one of the common pathogens in farms. Platycodon grandiflorus polysaccharide (PGPS) has been reported with a variety of biological activities. Autophagy is one of the vital mechanisms for cells to cope with virus infection, and it may also inhibit or promote virus replication. This study was conducted to investigate the antiviral activity of total PGPS(PGPSt) against PRV and the role of virus-induced autophagy in the anti-PRV effect of PGPSt in PK-15 cells. First, we established an infection model and detected the autophagy induced by PRV in PK-15 cells. Then, the protective effect of PGPSt against PRV was evaluated, and the effect of PGPSt on PRV replication and virus-induced autophagy were analysed by quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Western blot and confocal immunofluorescence. Results showed that PGPSt can reduce the PRV replication. PRV infection resulted in the accumulation of autophagosomes, which were inhibited by PGPSt. Moreover, PGPSt upregulated the Akt/mammalian target of rapamycin (mTOR) signalling pathway repressed by PRV infection, whereas rapamycin attenuated the anti-PRV effect of PGPSt. These findings suggest that PGPSt possess a protective effect against PRV infection and can inhibit PRV replication through relieving PRV-induced autophagy. This article can provide ideas for the development of antiviral drugs.


Subject(s)
Herpesvirus 1, Suid , Platycodon , Pseudorabies , Animals , Autophagy , Cell Line , Polysaccharides , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL