Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 207
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genes Dev ; 36(3-4): 133-148, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35086862

ABSTRACT

The regeneration of peripheral nerves is guided by regeneration tracks formed through an interplay of many cell types, but the underlying signaling pathways remain unclear. Here, we demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerves. Conditional deletion of Plexin-B2 in myeloid lineage resulted in not only macrophage misalignment but also matrix disarray and Schwann cell disorganization, leading to misguided axons and delayed functional recovery. Plexin-B2 is not required for macrophage recruitment or activation but enables macrophages to steer clear of colliding axons, in particular the growth cones at the tip of regenerating axons, leading to parallel alignment postcollision. Together, our studies unveil a novel reparative function of macrophages and the importance of Plexin-B2-mediated collision-dependent contact avoidance between macrophages and regenerating axons in forming regeneration tracks during peripheral nerve regeneration.


Subject(s)
Nerve Regeneration , Peripheral Nerves , Axons/physiology , Cell Adhesion Molecules , Macrophages/metabolism , Nerve Regeneration/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Peripheral Nerves/metabolism , Schwann Cells/metabolism
2.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38738602

ABSTRACT

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Subject(s)
Drosophila Proteins , Morphogenesis , Nerve Tissue Proteins , Neuropil , Optic Lobe, Nonmammalian , Receptors, Cell Surface , Semaphorins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Semaphorins/metabolism , Semaphorins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Morphogenesis/genetics , Neuropil/metabolism , Optic Lobe, Nonmammalian/metabolism , Optic Lobe, Nonmammalian/embryology , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Neurons/metabolism , Drosophila/metabolism , Drosophila/embryology , Mutation/genetics
3.
Proc Natl Acad Sci U S A ; 121(22): e2400648121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781210

ABSTRACT

After central nervous system injury, a rapid cellular and molecular response is induced. This response can be both beneficial and detrimental to neuronal survival in the first few days and increases the risk for neurodegeneration if persistent. Semaphorin4B (Sema4B), a transmembrane protein primarily expressed by cortical astrocytes, has been shown to play a role in neuronal cell death following injury. Our study shows that after cortical stab wound injury, cytokine expression is attenuated in Sema4B-/- mice, and microglia/macrophage reactivity is altered. In vitro, Sema4B enhances the reactivity of microglia following injury, suggesting astrocytic Sema4B functions as a ligand. Moreover, injury-induced microglia reactivity is attenuated in the presence of Sema4B-/- astrocytes compared to Sema4B+/- astrocytes. In vitro experiments indicate that Plexin-B2 is the Sema4B receptor on microglia. Consistent with this, in microglia/macrophage-specific Plexin-B2-/- mice, similar to Sema4B-/- mice, microglial/macrophage reactivity and neuronal cell death are attenuated after cortical injury. Finally, in Sema4B/Plexin-B2 double heterozygous mice, microglial/macrophage reactivity is also reduced after injury, supporting the idea that both Sema4B and Plexin-B2 are part of the same signaling pathway. Taken together, we propose a model in which following injury, astrocytic Sema4B enhances the response of microglia/macrophages via Plexin-B2, leading to increased reactivity.


Subject(s)
Astrocytes , Mice, Knockout , Microglia , Nerve Tissue Proteins , Semaphorins , Animals , Mice , Astrocytes/metabolism , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/genetics , Cell Communication , Macrophages/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Semaphorins/metabolism , Semaphorins/genetics
4.
Mol Cell Proteomics ; 23(7): 100796, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851451

ABSTRACT

Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.


Subject(s)
Mannose , Humans , Glycosylation , Mannose/metabolism , Substrate Specificity , Glycoproteins/metabolism , Proteomics/methods , Cell Line , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Protein Processing, Post-Translational , Cell Engineering/methods
5.
Proc Natl Acad Sci U S A ; 120(21): e2302584120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186866

ABSTRACT

Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.


Subject(s)
Mannose , Mannosyltransferases , Animals , Glycosylation , Mammals/metabolism , Mannose/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism
6.
Development ; 149(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36205097

ABSTRACT

Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.


Subject(s)
Lymphatic Vessels , Semaphorins , Animals , Zebrafish/genetics , Zebrafish/metabolism , Endothelial Cells/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Lymphangiogenesis/genetics , Lymphatic Vessels/metabolism , Semaphorins/genetics , Semaphorins/metabolism , Carrier Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
Mol Cell Neurosci ; 128: 103920, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38331011

ABSTRACT

Synapse formation in the mammalian brain is a complex and dynamic process requiring coordinated function of dozens of molecular families such as cell adhesion molecules (CAMs) and ligand-receptor pairs (Ephs/Ephrins, Neuroligins/Neurexins, Semaphorins/Plexins). Due to the large number of molecular players and possible functional redundancies within gene families, it is challenging to determine the precise synaptogenic roles of individual molecules, which is key to understanding the consequences of mutations in these genes for brain function. Furthermore, few molecules are known to exclusively regulate either GABAergic or glutamatergic synapses, and cell and molecular mechanisms underlying GABAergic synapse formation in particular are not thoroughly understood. We previously demonstrated that Semaphorin-4D (Sema4D) regulates GABAergic synapse development in the mammalian hippocampus while having no effect on glutamatergic synapse development, and this effect occurs through binding to its high affinity receptor, Plexin-B1. In addition, we demonstrated that RNAi-mediated Plexin-B2 knock-down decreases GABAergic synapse density suggesting that both receptors function in this process. Here, we perform a structure-function study of the Plexin-B1 and Plexin-B2 receptors to identify the protein domains in each receptor which are required for its synaptogenic function. Further, we examine whether Plexin-B2 is required in the presynaptic neuron, the postsynaptic neuron, or both to regulate GABAergic synapse formation. Our data reveal that Plexin-B1 and Plexin-B2 function non-redundantly to regulate GABAergic synapse formation and suggest that the transmembrane domain may underlie functional distinctions. We also provide evidence that Plexin-B2 expression in presynaptic GABAergic interneurons, as well as postsynaptic pyramidal cells, regulates GABAergic synapse formation in hippocampus. These findings lay the groundwork for future investigations into the precise signaling pathways required for synapse formation downstream of Plexin-B receptor signaling.


Subject(s)
Cell Adhesion Molecules , Receptors, Cell Surface , Semaphorins , Animals , Receptors, Cell Surface/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Synapses/metabolism , Semaphorins/genetics , Semaphorins/metabolism , Mammals
8.
EMBO J ; 39(13): e102926, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32500924

ABSTRACT

Semaphorin ligands interact with plexin receptors to contribute to functions in the development of myriad tissues including neurite guidance and synaptic organisation within the nervous system. Cell-attached semaphorins interact in trans with plexins on opposing cells, but also in cis on the same cell. The interplay between trans and cis interactions is crucial for the regulated development of complex neural circuitry, but the underlying molecular mechanisms are uncharacterised. We have discovered a distinct mode of interaction through which the Drosophila semaphorin Sema1b and mouse Sema6A mediate binding in cis to their cognate plexin receptors. Our high-resolution structural, biophysical and in vitro analyses demonstrate that monomeric semaphorins can mediate a distinctive plexin binding mode. These findings suggest the interplay between monomeric vs dimeric states has a hereto unappreciated role in semaphorin biology, providing a mechanism by which Sema6s may balance cis and trans functionalities.


Subject(s)
Cell Adhesion Molecules/chemistry , Drosophila Proteins/chemistry , Nerve Tissue Proteins/chemistry , Semaphorins/chemistry , Animals , COS Cells , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Chlorocebus aethiops , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Structure, Quaternary , Semaphorins/genetics , Semaphorins/metabolism , Structure-Activity Relationship
9.
Biochem Biophys Res Commun ; 725: 150236, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38897039

ABSTRACT

BACKGROUND: Macrophage-derived foam cell formation is a hallmark of atherosclerosis and is retained during plaque formation. Strategies to inhibit the accumulation of these cells hold promise as viable options for treating atherosclerosis. Plexin D1 (PLXND1), a member of the Plexin family, has elevated expression in atherosclerotic plaques and correlates with cell migration; however, its role in macrophages remains unclear. We hypothesize that the guidance receptor PLXND1 negatively regulating macrophage mobility to promote the progression of atherosclerosis. METHODS: We utilized a mouse model of atherosclerosis based on a high-fat diet and an ox-LDL- induced foam cell model to assess PLXND1 levels and their impact on cell migration. Through western blotting, Transwell assays, and immunofluorescence staining, we explored the potential mechanism by which PLXND1 mediates foam cell motility in atherosclerosis. RESULTS: Our study identifies a critical role for PLXND1 in atherosclerosis plaques and in a low-migration capacity foam cell model induced by ox-LDL. In the aortic sinus plaques of ApoE-/- mice, immunofluorescence staining revealed significant upregulation of PLXND1 and Sema3E, with colocalization in macrophages. In macrophages treated with ox-LDL, increased expression of PLXND1 led to reduced pseudopodia formation and decreased migratory capacity. PLXND1 is involved in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK. Additionally, FAK inhibitors counteract the ox-LDL-induced migration suppression by modulating the phosphorylation states of FAK, Paxillin and their downstream effectors CDC42 and PAK. CONCLUSION: Our findings indicate that PLXND1 plays a role in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK to promoting atherosclerosis.


Subject(s)
Atherosclerosis , Cell Movement , Foam Cells , Mice, Inbred C57BL , Paxillin , Animals , Paxillin/metabolism , Foam Cells/metabolism , Foam Cells/pathology , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Signal Transduction , Lipoproteins, LDL/metabolism , Male , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , cdc42 GTP-Binding Protein/metabolism , Macrophages/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Disease Models, Animal , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mice, Knockout , Membrane Glycoproteins , Intracellular Signaling Peptides and Proteins
10.
BMC Cancer ; 24(1): 1004, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138404

ABSTRACT

BACKGROUND: Metastatic prostate cancer is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We recently found that a single clinically relevant specific amino acid change (Proline1597Leucine, (P1597L)), found in metastatic deposits of prostate cancer patients, converts PlexinB1 from a metastasis suppressor to a gene that drives prostate cancer metastasis in vivo. However, the mechanism by which PlexinB1(P1597L) promotes metastasis is not known. METHODS: Pull down assays using GST-RalGDS or -GSTRaf1-RBD were used to reveal the effect of mutant or wild-type PlexinB1 expression on Rap and Ras activity respectively. Protein-protein interactions were assessed in GST pulldown assays, Akt/ERK phosphorylation by immunoblotting and protein stability by treatment with cycloheximide. Rho/ROCK activity was monitored by measuring MLC2 phosphorylation and actin stress fiber formation. PlexinB1 function was measured using cell-collapse assays. RESULTS: We show here that the single clinically relevant P1597L amino acid change converts PlexinB1 from a repressor of Ras to a Ras activator. The PlexinB1(P1597L) mutation inhibits the RapGAP activity of PlexinB1, promoting a significant increase in Ras activity. The P1597L mutation also blocks PlexinB1-mediated reduction in Rho/ROCK activity, restraining the decrease in MLC2 phosphorylation and actin stress fiber formation induced by overexpression of wild-type PlexinB1. PlexinB1(P1597L) has little effect on the interaction of PlexinB1 with small GTPases or receptor tyrosine kinases and does not inhibit PlexinB1-stimulated Akt or ERK phosphorylation. These results indicate that the mutation affects Rho signalling via the Rap/Ras pathway. The PlexinB1(P1597L) mutation inhibits morphological cell collapse induced by wild-type PlexinB1 expression, suggesting that the mutation induces a loss of an inhibitory tumour suppressor function. CONCLUSION: These results suggest that the clinically relevant P1597L mutation in PlexinB1 may transform PlexinB1 from a suppressor to a driver of metastasis in mouse models of prostate cancer by reducing the RapGAP activity of PlexinB1, leading to Ras activation. These findings highlight the PlexinB1-Rap-Ras pathway for therapeutic intervention in prostate cancer.


Subject(s)
Nerve Tissue Proteins , Prostatic Neoplasms , Receptors, Cell Surface , Humans , Male , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Mutation , ras Proteins/genetics , ras Proteins/metabolism , Neoplasm Metastasis , Animals , Phosphorylation , Signal Transduction , Mice , Semaphorins/metabolism , Semaphorins/genetics , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/genetics
11.
J Neurosci ; 42(20): 4087-4100, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35437280

ABSTRACT

Nogo-66 receptors (NgR1-3) are glycosylphosphatidyl inositol-linked proteins that belong to the leucine-rich repeat superfamily. Through binding to myelin-associated inhibitors, NgRs contribute to the inhibition of axonal regeneration after spinal cord injury. Their role in limiting synaptic plasticity and axonal outgrowth in the adult CNS has been described previously, but not much is known about their role during the development of the nervous system. Here, we show that NgR1 and NgR3 mRNAs are expressed during spinal cord development of the chicken embryo. In particular, they are expressed in the dI1 subpopulation of commissural neurons during the time when their axons navigate toward and across the floorplate, the ventral midline of the spinal cord. To assess a potential role of NgR1 and NgR3 in axon guidance, we downregulated them using in ovo RNAi and analyzed the trajectory of commissural axons by tracing them in open-book preparations of spinal cords. Our results show that loss of either NgR1 or NgR3 causes axons to stall in the midline area and to interfere with the rostral turn of postcrossing axons. In addition, we also show that NgR1, but not NgR3, requires neuronal PlexinA2 for the regulation of commissural axon guidance.SIGNIFICANCE STATEMENT Over the last decades, many studies have focused on the role of NgRs, particularly NgR1, in axonal regeneration in the injured adult CNS. Here, we show a physiological role of NgRs in guiding commissural axons during early development of the chicken spinal cord in vivo Both NgR1 and NgR3 are required for midline crossing and subsequent turning of postcrossing axons into the longitudinal axis of the spinal cord. NgR1, but not NgR3, forms a receptor complex with PlexinA2 during axon guidance. Overall, these findings provide a link between neural regenerative mechanisms and developmental processes.


Subject(s)
Axon Guidance , Receptors, Cell Surface , Animals , Axons/physiology , Chick Embryo , Nogo Receptor 1/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Spinal Cord/metabolism
12.
J Biol Chem ; 298(9): 102265, 2022 09.
Article in English | MEDLINE | ID: mdl-35850304

ABSTRACT

Osteoporosis and multiple sclerosis are highly prevalent diseases with limited treatment options. In light of these unmet medical needs, novel therapeutic approaches are urgently sought. Previously, the activation of the transmembrane receptor Plexin-B1 by its ligand semaphorin 4D (Sema4D) has been shown to suppress bone formation and promote neuroinflammation in mice. However, it is unclear whether inhibition of this receptor-ligand interaction by an anti-Plexin-B1 antibody could represent a viable strategy against diseases related to these processes. Here, we raised and systematically characterized a monoclonal antibody directed against the extracellular domain of human Plexin-B1, which specifically blocks the binding of Sema4D to Plexin-B1. In vitro, we show that this antibody inhibits the suppressive effects of Sema4D on human osteoblast differentiation and mineralization. To test the therapeutic potential of the antibody in vivo, we generated a humanized mouse line, which expresses transgenic human Plexin-B1 instead of endogenous murine Plexin-B1. Employing these mice, we demonstrate that the anti-Plexin-B1 antibody exhibits beneficial effects in mouse models of postmenopausal osteoporosis and multiple sclerosis in vivo. In summary, our data identify an anti-Plexin-B1 antibody as a potential therapeutic agent for the treatment of osteoporosis and multiple sclerosis.


Subject(s)
Antibodies, Monoclonal , Antigens, CD , Multiple Sclerosis , Nerve Tissue Proteins , Osteoporosis, Postmenopausal , Receptors, Cell Surface , Semaphorins , Animals , Antibodies, Monoclonal/therapeutic use , Antigens, CD/metabolism , Disease Models, Animal , Female , Humans , Ligands , Mice , Multiple Sclerosis/therapy , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Osteoporosis, Postmenopausal/therapy , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/metabolism , Semaphorins/antagonists & inhibitors , Semaphorins/metabolism
13.
Neurobiol Dis ; 182: 106129, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37068642

ABSTRACT

BACKGROUND: Olfactory ensheathing cells (OECs) serve as a bridge by migrating at the site of spinal cord injury (SCI) to facilitate the repair of the neural structure and neural function. However, OEC migration at the injury site not only faces the complex and disordered internal environment but also is closely associated with the migration ability of OECs. METHODS: We extracted OECs from the olfactory bulb of SD rats aged <7 days old. We verified the micro ribonucleic acid (miR)-145a-5p expression level in the gene chip after SCI and OEC transplantation using quantitative reverse transcription (qRT)-polymerase chain reaction (PCR). The possible target gene Plexin-A2 of miR-145a-5p was screened using bioinformatics and was verified using dual-luciferase reporter assay, Western blot, and qRT-PCR. The effect of miR-145a-5p/plexin-A2 on OEC migration ability was verified by wound healing assay, Transwell cell migration assay, and immunohistochemistry. Nerve repair was observed at the injured site of the spinal cord after OEC transplantation using tissue immunofluorescence and magnetic resonance imaging, diffusion tensor imaging, and the Basso-Beattie-Bresnahan locomotor rating scale were further used for imaging and functional evaluation. RESULTS: miR-145a-5p expression in the injured spinal cord tissue after SCI considerably decreased, while Plexin-A2 expression significantly increased. OEC transplantation can reverse miR-145a-5p and Plexin-A2 expression after SCI. miR-145a-5p overexpression enhanced the intrinsic migration ability of OECs. As a target gene of miR-145a-5p, Plexin-A2 hinders OEC migration. OEC transplantation overexpressing miR-145a-5p after SCI can increase miR-145a-5p levels in the spinal cord, reduce Plexin-A2 expression in the OECs and the spinal cord tissue, and promote OEC migration and distribution at the injured site. OEC transplantation overexpressing miR-145a-5p can promote the repair of neural morphology and neural function. CONCLUSIONS: Our study demonstrated that miR-145a-5p could promote OEC migration by down-regulating the target gene Plexin-A2, and transplantation of miR-145a-5p engineered OECs was beneficial to enhance neural structural and functional recovery in SCI rats.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Rats , Animals , Rats, Sprague-Dawley , Diffusion Tensor Imaging , Spinal Cord Injuries/metabolism , Olfactory Bulb/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
14.
FASEB J ; 36(10): e22509, 2022 10.
Article in English | MEDLINE | ID: mdl-36063107

ABSTRACT

Semaphorins (Semas), which belongs to the axonal guidance molecules, include 8 classes and could affect axon growth in the nervous system. Recently, semaphorins were found to regulate other pathophysiological processes, such as immune response, oncogenesis, tumor angiogenesis, and bone homeostasis, through binding with their plexin and neuropilin receptors. In this review, we summarized the detailed role of semaphorins and their receptors in the pathological progression of various cardiovascular diseases (CVDs), highlighting that semaphorins may be potential therapeutic targets and novel biomarkers for CVDs.


Subject(s)
Cardiovascular Diseases , Semaphorins , Biomarkers , Cell Transformation, Neoplastic , Humans , Neovascularization, Pathologic/pathology , Semaphorins/metabolism
15.
Contact Dermatitis ; 89(6): 442-452, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37700557

ABSTRACT

BACKGROUND: Allergic contact dermatitis (ACD) is an inflammatory disease with a complex pathophysiology in which epidermal-resident memory CD8+ T (TRM ) cells play a key role. The mechanisms involved in the activation of CD8+ TRM cells during allergic flare-up responses are not understood. METHODS: The expression of CD100 and its ligand Plexin B2 on CD8+ TRM cells and keratinocytes before and after allergen exposure was determined by flow cytometry and RT-qPCR. The role of CD100 in the inflammatory response during the challenge phase of ACD was determined in a model of ACD in CD100 knockout and wild-type mice. RESULTS: We show that CD8+ TRM cells express CD100 during homeostatic conditions and up-regulate it following re-exposure of allergen-experienced skin to the experimental contact allergen 1-fluoro-2,4-dinitrobenzene (DNFB). Furthermore, Plexin B2 is up-regulated on keratinocytes following exposure to some contact allergens. We show that loss of CD100 results in a reduced inflammatory response to DNFB with impaired production of IFNγ, IL-17A, CXCL1, CXCL2, CXCL5, and IL-1ß and decreased recruitment of neutrophils to the epidermis. CONCLUSION: Our study demonstrates that CD100 is expressed on CD8+ TRM cells and is required for full activation of CD8+ TRM cells and the flare-up response of ACD.


Subject(s)
Dermatitis, Allergic Contact , Animals , Mice , Allergens , Dermatitis, Allergic Contact/metabolism , Dinitrofluorobenzene/metabolism , Keratinocytes/metabolism , Skin
16.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37685898

ABSTRACT

Breast cancer is the most common cancer worldwide and a leading cause of cancer-related deaths in women. The clinical management of breast cancer is further complicated by the heterogeneous nature of the disease, which results in varying prognoses and treatment responses in patients. The semaphorins are a family of proteins with varied roles in development and homoeostasis. They are also expressed in a wide range of human cancers and are implicated as regulators of tumour growth, angiogenesis, metastasis and immune evasion. More recently, semaphorins have been implicated in drug resistance across a range of malignancies. In breast cancer, semaphorins are associated with resistance to endocrine therapy as well as breast cancer chemotherapeutic agents such as taxanes and anthracyclines. This review will focus on the semaphorins involved in breast cancer progression and their association with drug resistance.


Subject(s)
Breast Neoplasms , Semaphorins , Humans , Female , Breast Neoplasms/drug therapy , Breast , Anthracyclines , Homeostasis
17.
Development ; 146(21)2019 11 05.
Article in English | MEDLINE | ID: mdl-31690636

ABSTRACT

Gonadotropin-releasing hormone (GnRH) neurons regulate puberty onset and sexual reproduction by secreting GnRH to activate and maintain the hypothalamic-pituitary-gonadal axis. During embryonic development, GnRH neurons migrate along olfactory and vomeronasal axons through the nose into the brain, where they project to the median eminence to release GnRH. The secreted glycoprotein SEMA3A binds its receptors neuropilin (NRP) 1 or NRP2 to position these axons for correct GnRH neuron migration, with an additional role for the NRP co-receptor PLXNA1. Accordingly, mutations in SEMA3A, NRP1, NRP2 and PLXNA1 have been linked to defective GnRH neuron development in mice and inherited GnRH deficiency in humans. Here, we show that only the combined loss of PLXNA1 and PLXNA3 phenocopied the full spectrum of nasal axon and GnRH neuron defects of SEMA3A knockout mice. Together with Plxna1, the human orthologue of Plxna3 should therefore be investigated as a candidate gene for inherited GnRH deficiency.


Subject(s)
Axons/physiology , Gene Expression Regulation, Developmental , Gonadotropin-Releasing Hormone/physiology , Nerve Tissue Proteins/physiology , Neurons/physiology , Receptors, Cell Surface/physiology , Animals , Body Patterning , Brain/physiology , Cell Movement , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nerve Tissue Proteins/genetics , Neuropilin-1/physiology , Neuropilin-2/physiology , Nose , Phenotype , Receptors, Cell Surface/genetics , Semaphorin-3A/physiology , Sexual Maturation/genetics , Signal Transduction
18.
Rheumatology (Oxford) ; 61(4): 1669-1679, 2022 04 11.
Article in English | MEDLINE | ID: mdl-34297034

ABSTRACT

OBJECTIVES: We aimed to identify disease-specific surface proteins on extracellular vesicles (EVs) as novel serum biomarkers of PM/DM. METHODS: We performed liquid chromatography-tandem mass spectrometry (LC/MS) on purified EVs from sera of 10 PM/DM patients, 23 patients with other autoimmune diseases and 10 healthy controls (HCs). We identified membrane proteins preferentially present in EVs of PM/DM patients by bioinformatics and biostatistical analyses. We developed an EV sandwich ELISA for directly detecting serum EVs expressing disease-specific membrane proteins and evaluated their clinical utility using sera from 54 PM/DM, 24 RA, 20 SLE, 13 SSc and 25 Duchenne and Becker types of muscular dystrophy (DMD/BMD) patients and 36 HCs. RESULTS: LC/MS analysis identified 1220 proteins in serum EVs. Of these, plexin D1 was enriched in those from PM/DM patients relative to HCs or patients without PM/DM. Using a specific EV sandwich ELISA, we found that levels of plexin D1+ EVs in serum were significantly greater in PM/DM patients than in HCs or RA, SLE or DMD/BMD patients. Serum levels of plexin D1+ EVs were greater in those PM/DM patients with muscle pain or weakness. Serum levels of plexin D1+ EVs were significantly correlated with levels of aldolase (rs = 0.481), white blood cells (rs = 0.381), neutrophils (rs = 0.450) and platelets (rs = 0.408) in PM/DM patients. Finally, serum levels of plexin D1+ EVs decreased significantly in patients with PM/DM in clinical remission after treatment. CONCLUSION: We identified levels of circulating plexin D1+ EVs as a novel serum biomarker for PM/DM.


Subject(s)
Dermatomyositis , Extracellular Vesicles , Lupus Erythematosus, Systemic , Polymyositis , Biomarkers , Cell Adhesion Molecules , Extracellular Vesicles/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Lupus Erythematosus, Systemic/diagnosis , Membrane Glycoproteins , Membrane Proteins , Nerve Tissue Proteins , Polymyositis/diagnosis , Polymyositis/metabolism
19.
Int Immunol ; 33(12): 749-754, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34174067

ABSTRACT

Semaphorins were originally identified as axon-guidance molecules essential for neural development. In addition to their functions in the neural system, members of the semaphorin family have critical functions in many pathophysiological processes, including immune responses, bone homeostasis, cancer and metabolic disorders. In particular, several lines of evidence indicate that mammalian/mechanistic target of rapamycin (mTOR), a central regulator of cell metabolism, regulates the functions of semaphorins in various types of cells, revealing a novel link between semaphorins and cell metabolism. In this review, we discuss recent advances in the immunometabolic functions of semaphorins, with a particular focus on mTOR signaling.


Subject(s)
Nerve Tissue Proteins , Semaphorins , Animals , Humans , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/metabolism , Semaphorins/immunology , Semaphorins/metabolism , Signal Transduction/immunology , Sirolimus/immunology , Sirolimus/metabolism
20.
Cell Commun Signal ; 20(1): 126, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986301

ABSTRACT

BACKGROUND: During development a pool of precursors form a heart with atrial and ventricular chambers that exhibit distinct transcriptional and electrophysiological properties. Normal development of these chambers is essential for full term survival of the fetus, and deviations result in congenital heart defects. The large number of genes that may cause congenital heart defects when mutated, and the genetic variability and penetrance of the ensuing phenotypes, reveals a need to understand the molecular mechanisms that allow for the formation of chamber-specific cardiomyocyte differentiation. METHODS: We used in situ hybridization, immunohistochemistry and functional analyses to identify the consequences of the loss of the secreted semaphorin, Sema3fb, in the development of the zebrafish heart by using two sema3fb CRISPR mutant alleles. RESULTS: We find that in the developing zebrafish heart sema3fb mRNA is expressed by all cardiomyocytes, whereas mRNA for a known receptor Plexina3 (Plxna3) is expressed preferentially by ventricular cardiomyocytes. In sema3fb CRISPR zebrafish mutants, heart chamber development is impaired; the atria and ventricles of mutants are smaller in size than their wild type siblings, apparently because of differences in cell size and not cell numbers. Analysis of chamber differentiation indicates defects in chamber specific gene expression at the border between the ventricular and atrial chambers, with spillage of ventricular chamber genes into the atrium, and vice versa, and a failure to restrict specialized cardiomyocyte markers to the atrioventricular canal (AVC). The hypoplastic heart chambers are associated with decreased cardiac output and heart edema. CONCLUSIONS: Based on our data we propose a model whereby cardiomyocytes secrete a Sema cue that, because of spatially restricted expression of the receptor, signals in a ventricular chamber-specific manner to establish a distinct border between atrial and ventricular chambers that is important to produce a fully functional heart. Video abstract.


Subject(s)
Heart Defects, Congenital , Myocytes, Cardiac , Animals , Gene Expression Regulation, Developmental , Heart/physiology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Ventricles/metabolism , RNA, Messenger/metabolism , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL