ABSTRACT
Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.
Subject(s)
Microalgae , Seaweed , Ecosystem , Budgets , Carbon , Climate Change , Ice Cover , PhytoplanktonABSTRACT
Most measurements and models of forest carbon cycling neglect the carbon flux associated with the turnover of branch biomass, a physiological process quantified for other organs (fine roots, leaves, and stems). Synthesizing data from boreal, temperate, and tropical forests (184,815 trees), we found that including branch turnover increased empirical estimates of aboveground wood production by 16% (equivalent to 1.9 Pg Cy-1 globally), of similar magnitude to the observed global forest carbon sinks. In addition, reallocating carbon to branch turnover in model simulations reduced stem wood biomass, a long-lasting carbon storage, by 7 to 17%. This prevailing neglect of branch turnover suggests widespread biases in carbon flux estimates across global datasets and model simulations. Branch litterfall, sometimes used as a proxy for branch turnover, ignores carbon lost from attached dead branches, underestimating branch C turnover by 38% in a pine forest. Modifications to field measurement protocols and existing models are needed to allow a more realistic partitioning of wood production and forest carbon storage.
Subject(s)
Carbon Cycle , Carbon , Forests , Trees , Carbon/metabolism , Trees/metabolism , Biomass , Wood/metabolism , Carbon SequestrationABSTRACT
Global warming accelerates melting of glaciers and increases the supply of meltwater and associated inorganic particles, nutrients, and organic matter to adjacent coastal seas, but the ecosystem impact is poorly resolved and quantified. When meltwater is delivered by glacial rivers, the potential impact could be a reduction in light and nutrient availability for primary producers while supplying allochthonous carbon for heterotrophic processes, thereby tipping the net community metabolism toward heterotrophy. To test this hypothesis, we determined physical and biogeochemical parameters along a 110-km fjord transect in NE Greenland fjord, impacted by glacial meltwater from the Greenland Ice Sheet. The meltwater is delivered from glacier-fed river outlets in the inner parts of the fjord, creating a gradient in salinity and turbidity. The planktonic primary production was low, 20-45 mg C m-2 d-1, in the more turbid inner half of the fjord, increasing 10-fold to around 350 mg C m-2 d-1 in the shelf waters outside the fjord. Plankton community metabolism was measured at three stations, which displayed a transition from net heterotrophy in the inner fjord to net autotrophy in the coastal shelf waters. Respiration was significantly correlated to turbidity, with a 10-fold increase in the inner turbid part of the fjord. We estimated the changes in meltwater input and sea ice coverage in the area for the last 60 y. The long-term trend and the observed effects demonstrated the importance of freshwater runoff as a key driver of coastal ecosystem change in the Arctic with potential negative consequences for coastal productivity.
Subject(s)
Ecosystem , Estuaries , Heterotrophic Processes , Greenland , Autotrophic Processes , Plankton , Ice CoverABSTRACT
Marine algae are central to global carbon fixation, and their productivity is dictated largely by resource availability. Reduced nutrient availability is predicted for vast oceanic regions as an outcome of climate change; however, there is much to learn regarding response mechanisms of the tiny picoplankton that thrive in these environments, especially eukaryotic phytoplankton. Here, we investigate responses of the picoeukaryote Micromonas commoda, a green alga found throughout subtropical and tropical oceans. Under shifting phosphate availability scenarios, transcriptomic analyses revealed altered expression of transfer RNA modification enzymes and biased codon usage of transcripts more abundant during phosphate-limiting versus phosphate-replete conditions, consistent with the role of transfer RNA modifications in regulating codon recognition. To associate the observed shift in the expression of the transfer RNA modification enzyme complement with the transfer RNAs encoded by M. commoda, we also determined the transfer RNA repertoire of this alga revealing potential targets of the modification enzymes. Codon usage bias was particularly pronounced in transcripts encoding proteins with direct roles in managing phosphate limitation and photosystem-associated proteins that have ill-characterized putative functions in "light stress." The observed codon usage bias corresponds to a proposed stress response mechanism in which the interplay between stress-induced changes in transfer RNA modifications and skewed codon usage in certain essential response genes drives preferential translation of the encoded proteins. Collectively, we expose a potential underlying mechanism for achieving growth under enhanced nutrient limitation that extends beyond the catalog of up- or downregulated protein-encoding genes to the cell biological controls that underpin acclimation to changing environmental conditions.
Subject(s)
Chlorophyta , Codon Usage , Phosphates/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Codon/genetics , Codon/metabolism , Chlorophyta/genetics , Chlorophyta/metabolism , Protein BiosynthesisABSTRACT
Enhancement of net primary production (NPP) in forests as atmospheric [CO2 ] increases is likely limited by the availability of other growth resources. The Duke Free Air CO2 Enrichment (FACE) experiment was located on a moderate-fertility site in the southeastern US, in a loblolly pine (Pinus taeda L.) plantation with broadleaved species growing mostly in mid-canopy and understory. Duke FACE ran from 1994 to 2010 and combined elevated [CO2 ] (eCO2 ) with nitrogen (N) additions. We assessed the spatial and temporal variation of NPP response using a dataset that includes previously unpublished data from 6 years of the replicated CO2 × N experiment and extends to 2 years beyond the termination of enrichment. Averaged over time (1997-2010), NPP of pine and broadleaved species were 38% and 52% higher under eCO2 compared to ambient conditions. Furthermore, there was no evidence of a decline in enhancement over time in any plot regardless of its native site quality. The relation between spatial variation in the response and native site quality was suggested but inconclusive. Nitrogen amendments under eCO2 , in turn, resulted in an additional 11% increase in pine NPP. For pine, the eCO2 -induced increase in NPP was similar above- and belowground and was driven by both increased leaf area index (L) and production efficiency (PE = NPP/L). For broadleaved species, coarse-root biomass production was more than 200% higher under eCO2 and accounted for the entire production response, driven by increased PE. Notably, the fraction of annual NPP retained in total living biomass was higher under eCO2 , reflecting a slight shift in allocation fraction to woody mass and a lower mortality rate. Our findings also imply that tree growth may not have been only N-limited, but perhaps constrained by the availability of other nutrients. The observed sustained NPP enhancement, even without N-additions, demonstrates no progressive N limitation.
Subject(s)
Carbon Dioxide , Pinus , Nitrogen , Pinus/physiology , Forests , Trees , Pinus taeda , Plant Leaves/physiologyABSTRACT
Soil organic carbon (SOC) accrual, and particularly the formation of fine fraction carbon (OCfine), has a large potential to act as sink for atmospheric CO2. For reliable estimates of this potential and efficient policy advice, the major limiting factors for OCfine accrual need to be understood. The upper boundary of the correlation between fine mineral particles (silt + clay) and OCfine is widely used to estimate the maximum mineralogical capacity of soils to store OCfine, suggesting that mineral surfaces get C saturated. Using a dataset covering the temperate zone and partly other climates on OCfine contents and a SOC turnover model, we provide two independent lines of evidence, that this empirical upper boundary does not indicate C saturation. Firstly, the C loading of the silt + clay fraction was found to strongly exceed previous saturation estimates in coarse-textured soils, which raises the question of why this is not observed in fine-textured soils. Secondly, a subsequent modelling exercise revealed, that for 74% of all investigated soils, local net primary production (NPP) would not be sufficient to reach a C loading of 80 g C kg-1 silt + clay, which was previously assumed to be a general C saturation point. The proportion of soils with potentially enough NPP to reach that point decreased strongly with increasing silt + clay content. High C loadings can thus hardly be reached in more fine-textured soils, even if all NPP would be available as C input. As a pragmatic approach, we introduced texture-dependent, empirical maximum C loadings of the fine fraction, that decreased from 160 g kg-1 in coarse to 75 g kg-1 in most fine-textured soils. We conclude that OCfine accrual in soils is mainly limited by C inputs and is strongly modulated by texture, mineralogy, climate and other site properties, which could be formulated as an ecosystem capacity to stabilise SOC.
Subject(s)
Carbon , Ecosystem , Soil , Soil/chemistry , Carbon/analysis , Carbon Sequestration , Models, TheoreticalABSTRACT
In China, the Grain for Green Program (GGP) is an ambitious project to convert croplands into natural vegetation, but exactly how changes in vegetation translate into changes in soil organic carbon remains less clear. Here we conducted a meta-analysis using 734 observations to explore the effects of land recovery on soil organic carbon and nutrients in four provinces in Southwest China. Following GGP, the soil organic carbon content (SOCc) and soil organic carbon stock (SOCs) increased by 33.73% and 22.39%, respectively, compared with the surrounding croplands. Similarly, soil nitrogen increased, while phosphorus decreased. Outcomes were heterogeneous, but depended on variations in soil and environmental characteristics. Both the regional land use and cover change indicated by the landscape type transfer matrix and net primary production from 2000 to 2020 further confirmed that the GGP promoted the forest area and regional mean net primary production. Our findings suggest that the GGP could enhance soil and vegetation carbon sequestration in Southwest China and help to develop a carbon-neutral strategy.
Subject(s)
Carbon , Soil , Carbon/analysis , Forests , Edible Grain , ChinaABSTRACT
Rangelands are the dominant land use across a broad swath of central North America where they span a wide gradient, from <350 to >900 mm, in mean annual precipitation. Substantial efforts have examined temporal and spatial variation in aboveground net primary production (ANPP) to precipitation (PPT) across this gradient. In contrast, net secondary productivity (NSP, e.g., primary consumer production) has not been evaluated analogously. However, livestock production, which is a form of NSP or primary consumer production supported by primary production, is the dominant non-cultivated land use and an integral economic driver in these regions. Here, we used long-term (mean length = 19 years) ANPP and NSP data from six research sites across the Central Great Plains with a history of a conservative stocking to determine resource (i.e., PPT)-productivity relationships, NSP sensitivities to dry-year precipitation, and regional trophic efficiencies (e.g., NSP:ANPP ratio). PPT-ANPP relationships were linear for both temporal (site-based) and spatial (among site) gradients. The spatial PPT-NSP model revealed that PPT mediated a saturating relationship for NSP as sites became more mesic, a finding that contrasts with many plant-based PPT-ANPP relationships. A saturating response to high growing-season precipitation suggests biogeochemical rather than vegetation growth constraints may govern NSP (i.e., large herbivore production). Differential sensitivity in NSP to dry years demonstrated that the primary consumer production response heightened as sites became more xeric. Although sensitivity generally decreased with increasing precipitation as predicted from known PPT-ANPP relationships, evidence suggests that the dominant species' identity and traits influenced secondary production efficiency. Non-native northern mixed-grass prairie was outperformed by native Central Great Plains rangeland in sensitivity to dry years and efficiency in converting ANPP to NSP. A more comprehensive understanding of the mechanisms leading to differences in producer and consumer responses will require multisite experiments to assess biotic and abiotic determinants of multi-trophic level efficiency and sensitivity.
Subject(s)
Ecosystem , United States , Animals , Rain , Models, Biological , Time FactorsABSTRACT
Net primary productivity (NPP) is highly sensitive to multiple stressors under progressive and intensifying climate change and anthropogenic impacts. The importance of understanding spatiotemporal distribution patterns and the associated driving factors that govern estuary NPP is paramount for regional carbon (C) budget assessments. Using a combined remote sensing and machine learning (ML) approach, the average NPP of the Yangtze Estuarine-offshore continuum (YEOC) was measured at 273.19 ± 21.26 mgC m-2 day-1 over the past two decades. Temporally, NPP exhibited a significant downward trend between 2002 and 2022. Climate factors (climate fluctuations, sea level rise, and discharge) drove phytoplankton biomass (Chl-a) while light conditions (PAR and Kd490) affected photosynthesis rates. Together, they can explain 65% of the NPP variation. Anthropogenic disturbances (i.e., damming and nutrient emissions) were not significant. Additionally, changes in NPP decreased phytoplankton C sequestration rates from 11.9 to 10.4 Tg C year-1, reducing the estuary's C sink capacity, which relies on biological C fixation. This study highlights the climate's influence on the spatiotemporal transformation of YEOC NPP while enhancing our understanding of the response of EOC C budgets to climate change and anthropogenic activities.
Subject(s)
Climate Change , Estuaries , Phytoplankton , Biomass , China , CarbonABSTRACT
We found that a winter of abnormally low snowfall and numerous dust storms from eolian processes acting on exposed landscapes (including a major 4-day dust storm while onsite in May 2014) caused a cascade of impacts on the physical, chemical, and ecological functioning of the largest lake by volume in the High Arctic (Lake Hazen; Nunavut, Canada). MODIS imagery revealed that dust deposited in snowpacks on the lake's ice acted as light-absorbing impurities (LAIs), reducing surface reflectance and increasing surface temperatures relative to normal snowpack years, causing early snowmelt and drainage of meltwaters into the lake. LAIs remaining on the ice surface melted into the ice, causing premature candling and one of the earliest ice-offs and longest ice-free seasons on record for Lake Hazen. Meltwater inputs from snowpacks resulted in dilution of dissolved, and increased concentration of particulate bound, chemical species in Lake Hazen's upper water column. Spring inputs of nutrients increased both heterotrophy and algal productivity under the surface ice following snowmelt, with a net consumption of dissolved oxygen. As climate change continues to alter High Arctic temperatures and precipitation patterns, we can expect further changes in dust storm frequency and severity with corresponding impacts for freshwater ecosystems.
Subject(s)
Dust , Lakes , Seasons , Arctic Regions , Snow , Climate ChangeABSTRACT
This review article provides a comprehensive examination of sustainable extraction and recycling methods for non-ferrous metals, which are critical to a wide range of industries including electronics, construction and renewable energy. Focusing on metals such as aluminium, copper and silicon, the study highlights the importance of recycling in conserving resources and minimizing environmental impact. It discusses the challenges posed by material diversity in recycling processes and the advances in recycling technologies that have emerged in response. Special emphasis is placed on the importance of a circular economy in maintaining a sustainable balance between consumption and conservation of metal resources. Through detailed analysis, it advocates innovative recycling practices and improved design for recyclability and highlights the role of policy, industry and consumer behaviour in achieving sustainability goals. The findings contribute to the discourse on strategic self-sufficiency in Europe through recycling, providing insights into how to improve efficiency and manage the complexity of the global material cycle. This work calls for a collaborative effort towards sustainable metallurgy and underlines the critical need for advances in recycling infrastructure and technology to ensure the long-term availability and environmental stewardship of non-ferrous metals.This article is part of the discussion meeting issue 'Sustainable metals: science and systems'.
ABSTRACT
Diatoms are key components of freshwater ecosystems and are regularly used for paleolimnological reconstructions, in which defining species optima and tolerances is fundamental for interpreting assemblage shifts in a sediment record. Here, we examined responses of diatoms across three major environmental gradients-dissolved inorganic carbon (range: 0.1-230.5 mg · L-1), total phosphorus (range: 3-326 µg · L-1), and maximum lake depth (range: 0.9-55.0 m)-taken from 158 lakes from across Canada. The lakes were sampled as part of the LakePulse Network, which conducted a standardized sampling of lakes spanning 12 Canadian ecozones. Hierarchical logistic regression was used to model the species responses of 37 common taxa, and species optima and tolerances were calculated with weighted average modeling. The most common response detected was the symmetrical unimodal model, suggesting we likely captured the full environmental ranges for many species, although skewed unimodal responses were also common. Indicator species analyses identified taxa with high predictive values and fidelities to particular ecozones, with high-nutrient-adapted taxa such as Stephanodiscus spp. and Cyclotella meneghiniana characteristic of the agriculturally productive Prairie region. The Prairies stood out in the dataset as the region with the most unique flora from the local contribution to beta diversity analysis. Overall, the autecological data provided by our study will allow for improved interpretations of paleolimnological records and other biomonitoring efforts, addressing management concerns and contributing to a better understanding of our changing environment.
Subject(s)
Carbon , Diatoms , Lakes , Phosphorus , Diatoms/classification , Diatoms/physiology , Phosphorus/analysis , Canada , Carbon/analysisABSTRACT
The high uncertainty regarding global gross primary production (GPP) remains unresolved. This study explored the relationships between phenology, physiology, and annual GPP to provide viable alternatives for accurate estimation. A statistical model of integrated phenology and physiology (SMIPP) was developed using GPP data from 145 FLUXNET sites to estimate the annual GPP for various vegetation types. By employing the SMIPP model driven by satellite-derived datasets of the global carbon uptake period (CUP) and maximal carbon uptake capacity (GPPmax), the global annual GPP was estimated for the period from 2001 to 2018. The results demonstrated that the SMIPP model accurately predicted annual GPP, with relative root mean square error values ranging from 11.20 to 19.29% for forest types and 20.49-35.71% for non-forest types. However, wetlands, shrublands, and evergreen forests exhibited relatively low accuracies. The average, trend, and interannual variation of global GPP during 2001-2018 were 132.6 Pg C yr-1, 0.25 Pg C yr-2, and 1.57 Pg C yr-1, respectively. They were within the ranges estimated in other global GPP products. Sensitivity analysis revealed that GPPmax had comparable effects to CUP in high-latitude regions but significantly greater impacts at the global scale, with sensitivity coefficients of 0.85 ± 0.23 for GPPmax and 0.46 ± 0.28 for CUP. This study provides a simple and practical method for estimating global annual GPP and highlights the influence of GPPmax and CUP on global-scale annual GPP.
Subject(s)
Carbon , Carbon/metabolism , Carbon/analysis , Forests , Seasons , Carbon CycleABSTRACT
Robust estimates for the rates and trends in terrestrial gross primary production (GPP; plant CO2 uptake) are needed. Carbonyl sulfide (COS) is the major long-lived sulfur-bearing gas in the atmosphere and a promising proxy for GPP. Large uncertainties in estimating the relative magnitude of the COS sources and sinks limit this approach. Sulfur isotope measurements (34S/32S; δ34S) have been suggested as a useful tool to constrain COS sources. Yet such measurements are currently scarce for the atmosphere and absent for the marine source and the plant sink, which are two main fluxes. Here we present sulfur isotopes measurements of marine and atmospheric COS, and of plant-uptake fractionation experiments. These measurements resulted in a complete data-based tropospheric COS isotopic mass balance, which allows improved partition of the sources. We found an isotopic (δ34S ± SE) value of 13.9 ± 0.1 for the troposphere, with an isotopic seasonal cycle driven by plant uptake. This seasonality agrees with a fractionation of -1.9 ± 0.3 which we measured in plant-chamber experiments. Air samples with strong anthropogenic influence indicated an anthropogenic COS isotopic value of 8 ± 1. Samples of seawater-equilibrated-air indicate that the marine COS source has an isotopic value of 14.7 ± 1. Using our data-based mass balance, we constrained the relative contribution of the two main tropospheric COS sources resulting in 40 ± 17% for the anthropogenic source and 60 ± 20% for the oceanic source. This constraint is important for a better understanding of the global COS budget and its improved use for GPP determination.
ABSTRACT
In the Arctic and Boreal region (ABR) where warming is especially pronounced, the increase of gross primary production (GPP) has been suggested as an important driver for the increase of the atmospheric CO2 seasonal cycle amplitude (SCA). However, the role of GPP relative to changes in ecosystem respiration (ER) remains unclear, largely due to our inability to quantify these gross fluxes on regional scales. Here, we use atmospheric carbonyl sulfide (COS) measurements to provide observation-based estimates of GPP over the North American ABR. Our annual GPP estimate is 3.6 (2.4 to 5.5) PgC · y-1 between 2009 and 2013, the uncertainty of which is smaller than the range of GPP estimated from terrestrial ecosystem models (1.5 to 9.8 PgC · y-1). Our COS-derived monthly GPP shows significant correlations in space and time with satellite-based GPP proxies, solar-induced chlorophyll fluorescence, and near-infrared reflectance of vegetation. Furthermore, the derived monthly GPP displays two different linear relationships with soil temperature in spring versus autumn, whereas the relationship between monthly ER and soil temperature is best described by a single quadratic relationship throughout the year. In spring to midsummer, when GPP is most strongly correlated with soil temperature, our results suggest the warming-induced increases of GPP likely exceeded the increases of ER over the past four decades. In autumn, however, increases of ER were likely greater than GPP due to light limitations on GPP, thereby enhancing autumn net carbon emissions. Both effects have likely contributed to the atmospheric CO2 SCA amplification observed in the ABR.
ABSTRACT
In aquatic ecosystems, light penetrating the sediment surface in shallow lakes may regulate the internal phosphorus (P) release through benthic primary production, which subsequently affects oxidation, pH levels, and alkaline phosphatase activity in the upper sediment. To study the effects of light exposure on the P dynamics at the sediment-water interface under eutrophic conditions, a two-month mesocosm experiment was conducted in twelve cement tanks (1000 L each). The tanks were equipped with Light-Emitting Diode (LED) lights, and surface sediments collected from eutrophic Lake Nanhu (China) were exposed to four different light intensities (0, 50, 100, 200 µmol m-2 s-1). The results revealed that: 1) Both the total phosphorus concentration and the phosphorus release flux from the sediment were lower in the light treatments (mean value, 0.59-0.71 mg L-1 and 0.00-0.01 mg m-2 d-1, respectively) than in the control treatment (0.77 mg L-1 and 0.01 mg m-2 d-1, respectively), indicating that light supplement could decrease the internal P release. 2) Benthic primary production promoted by light directly absorbed soluble reactive phosphorus and decreased the internal P release. The resulting improved production could also increase dissolved oxygen concentrations at the sediment-water interface, thus indirectly inhibiting internal P release. 3) The relative contributions of direct absorption and indirect inhibition on the internal P release ranged between 23% to 69% and 31% to 77% depending on the light intensity.
Subject(s)
Phosphorus , Water Pollutants, Chemical , Phosphorus/analysis , Lakes , Ecosystem , Eutrophication , Geologic Sediments , Water , China , Water Pollutants, Chemical/analysis , Environmental MonitoringABSTRACT
Stomatal conductance (gs) and compensatory water uptake (CWU) are crucial processes in land surface models, as they directly influence the exchange of carbon and water fluxes between terrestrial ecosystems and the atmosphere. In this study, we integrated a new stomatal scheme derived from optimal stomatal theory (Medlyn's gs model), and an empirical CWU scheme into the Common Land Model (CoLM). Assessing the impacts on modeling gross primary productivity (GPP) and latent flux (LE) through observations obtained from eddy covariance (EC) measurements at three forest sites in China. Our results show that replacing the Ball-Berry's gs model (termed BB) with Medlyn's gs model (termed MED) did not bring about significant changes (had neutral impacts) in the performance of CoLM simulations at three forest sites. Considering the climate factors of annual mean precipitation to optimize key fitting parameters in gs exhibited improvement in model simulations. The average coefficient of determination (R2) achieved to 0.65 for GPP and LE at three sites, and the normalized root mean squared error (NRMSE) decreased from 0.83 to 0.77 at those sites. Besides, incorporating CWU into the model improved its performance. The R2 increased to 0.84 and RMSE decreased to 4.84 µmol m-2 s-1 for GPP, and the R2 increased to 0.62 and RMSE decreased to 55.64 W m-2 for LE. Therefore, modifying the model process of both contributed more to enhancing the model simulations than relying solely on one of these functions. Our study highlights that the response of plant functional types (PFTs) to water stress can be effectively represented in gs models when coupled with biochemical capacity to quantify carbon and water fluxes in forest ecosystems or other ecosystems.
Subject(s)
Carbon , Ecosystem , Forests , Plants , China , Carbon CycleABSTRACT
Chlorophyll fluorescence is the long-wave light released by the residual energy absorbed by vegetation after photosynthesis and dissipation, which can directly and non-destructively reflect the photosynthetic state of plants from the perspective of the mechanism of photosynthetic process. Moso bamboo has a substantial carbon sequestration ability, and leaf-expansion stage is an important phenological period for carbon sequestration. Gross primary production (GPP) is a key parameter reflecting vegetation carbon sequestration process. However, the ability of chlorophyll fluorescence in moso bamboo to explain GPP changes is unclear. The research area of this study is located in the bamboo forest near the flux station of Anji County, Zhejiang Province, where an observation tower is built to monitor the carbon flux and meteorological change of bamboo forest. The chlorophyll fluorescence physiological parameters (Fp) and fluorescence yield (Fy) indices were measured and calculated for the leaves of newborn moso bamboo (I Du bamboo) and the old leaves of 4- to 5-year-old moso bamboo (â ¢ Du bamboo) during the leaf-expansion stage. The chlorophyll fluorescence in response to the environment and its effect on carbon flux were analyzed. The results showed that: Fv/Fm, Y(II) and α of â Du bamboo gradually increased, while â ¢ Du bamboo gradually decreased, and FYint and FY687/FY738 of â Du bamboo were higher than those of â ¢ Du bamboo; moso bamboo was sensitive to changes in air temperature(Ta), relative humidity(RH), water vapor pressure(E), soil temperature(ST) and soil water content (SWC), the Fy indices of the upper, middle and lower layers were significantly correlated with Ta, E and ST; single or multiple vegetation indices were able to estimate the fluorescence yield indices well (all with R2 greater than 0.77); chlorophyll fluorescence (Fp and Fy indices) of â Du bamboo and â ¢ Du bamboo could explain 74.4% and 72.7% of the GPP variation, respectively; chlorophyll fluorescence and normalized differential vegetation index of the canopy (NDVIc) could estimate GPP well using random forest (â Du bamboo: r = 0.929, RMSE = 0.069 g C·m-2; â ¢ Du bamboo: r = 0.899, RMSE = 0.134 g C·m-2). The results of this study show that chlorophyll fluorescence can provide a basis for judging the response of moso bamboo to environmental changes and can well explain GPP. This study has important scientific significance for evaluating the potential mechanisms of growth, stress feedback and photosynthetic carbon sequestration of bamboo.
Subject(s)
Chlorophyll , Photosynthesis , Plant Leaves , Chlorophyll/metabolism , Plant Leaves/metabolism , Fluorescence , Poaceae/metabolism , Poaceae/growth & development , Carbon Sequestration , Carbon/metabolismABSTRACT
Human activities and climate change impact ecosystem services, thereby affecting economic and social sustainable development. Measuring the heterogeneity in space and time of how human activities affect ecosystem services poses a challenge for the sustainable management of land resources. Based on "human appropriation of net primary production (HANPP) - Fractional Vegetation Cover (FVC) - Soil Conservation Service (SCS)" cascading effect, first, a geographically and temporally weighted regression (GTWR) model was employed to assess the impact of HANPP in percent of potential NPP (hereafter HANPP%) on the FVC; second, changes in the FVC caused by human activities were quantified; and third, the potential soil conservation service (SCSp) and actual soil conservation service (SCSa) were estimated using the Revised Universal Soil Loss Equation (RUSLE) model, and the difference between them represented the changes in soil conservation service caused by human activities (SCSh). Taking the Qinghai-Tibet Plateau as a case study, we found that the GTWR model was well suited for analyzing the relationship between the HANPP% and the FVC (R2 = 0.897). The HANPP resulted in a decrease in the FVC from 0.222 in 2001 to 0.199 in 2019 and correspondingly resulted in a decrease in the ratio of SCSh to SCSp from 8.95% to 7.24%. This study provides a quantitative method that allows quantifying the influence of human activity on ecosystem services closely related to the FVC.
Subject(s)
Conservation of Natural Resources , Ecosystem , Human Activities , Soil , Conservation of Natural Resources/methods , Humans , Climate ChangeABSTRACT
The dune ecosystem plays a significant role in the global carbon cycle. The Horqin Sandy Land is a typical semi-arid fragile ecosystem in northern China. Understanding the magnitudes and dynamics of carbon dioxide fluxes within this region is essential for understanding the carbon balance. Used 6 years (2013-2018) measurements from an eddy-covariance system, we analyzed the dynamic patterns of net ecosystem carbon exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco) of the dune ecosystem in Horqin Sandy Land and examined their responses to climate factors with a focus on the precipitation. The results showed that the NEE of the dune ecosystem fluctuated from -166 to 100 gCO2·m-2·year-1 across the 6 growing seasons, with an average of -56 gCO2·m-2·year-1. The precipitation was not a key factor influencing the carbon flux variability. During the mid-growth stage, GPP was primarily affected by the effective precipitation frequency (R2 ranging from 0.65 to 0.85, P < 0.05), followed by fractional vegetation cover (R2 ranging from 0.65 to 0.68, P < 0.05). However, in the early and late growth stages, temperature predominantly drove the carbon flux (R2 = 0.75, P < 0.01). The interannual variability of carbon flux can be predominantly elucidated by phenological indicators such as CO2 uptake (CUstart), end of CO2 uptake (CUend), CO2 uptake period (CUP), and Spring lag. The results demonstrated the dune ecosystem is a weak carbon sink in semi-arid ecosystems. Furthermore, we emphasized the significance of effective precipitation frequency in regulating carbon fluxes. Our results provide a foundational understanding of the carbon balance in semi-arid ecosystems.