Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
Small ; 20(13): e2307298, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37972284

ABSTRACT

As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2. Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.

2.
Angew Chem Int Ed Engl ; 63(42): e202410689, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39072910

ABSTRACT

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs), abbreviated as P-QLEDs have been regarded as significantly crucial emitters for lighting and displays. Efficient and stable P-QLEDs still lack ideal electron transport materials (ETM), which could efficiently block hole, transport electron, reduce interface non-radiative recombination and possess high thermal stability. Here, we report 2,4,6-Tris(3'-(pyridine-3-yl) biphenyl-3-yl)-1,3,5-triazine (TmPPPyTz, 3P) with strong electron-withdrawing moieties of pyridine and triazine to modulate the performance of P-QLEDs. Compared with commonly used 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), the pyridine in 3P have a strong interaction with perovskites, which can effectively suppress the interface non-radiative recombination caused by the Pb2+ defects on the surface of QDs. In addition, 3P have deep highest occupied molecular orbital (HOMO) (enhancing hole-blocking properties), matched lowest unoccupied molecular orbital (LUMO) and excellent electron mobility (enhancing electron transport properties), realizing the carrier balance and maximizing the exciton recombination. Furthermore, high thermal resistance of 3P obviously improves the stability of QDs under variable temperature, continuous UV illumination, and electric field excitation. Resultantly, the P-QLEDs using the 3P as ETM achieved an outstanding performance with a champion EQE of 30.2 % and an operational lifetime T50 of 3220 hours at an initial luminance of 100 cd m-2, which is 151 % and about 11-fold improvement compared to control devices (EQE=20 %, T50=297 hours), respectively. These results provide a new concept for constructing the efficient and stable P-QLEDs from the perspective of selective ETM.

3.
Small ; : e2307115, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059744

ABSTRACT

The imbalance of charge injection is considered to be a major factor that limits the device performance of cadmium-free quantum-dot light-emitting diodes (QLEDs). In this work, high-performance cadmium-free Cu─In─Zn─S(CIZS)-based QLEDs are designed and fabricated through tailoring interfacial energy level alignment and improving the balance of charge injection. This is achieved by introducing a bilayered hole-injection layer (HIL) of Cu-doped NiOx (Cu─NiOx )/Poly(3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS). High-quality Cu─NiOx film is prepared through a novel and straightforward sol-gel procedure. Multiple experimental characterizations and theoretical calculations show that the incorporation of Cu2+ ions can regulate the energy level structure of NiOx and enhance the hole mobility. The state-of-art CIZS-based QLEDs with Cu─NiOx /PEDOT:PSS bilayered HIL exhibit the maximum external quantum efficiency of 6.04% and half-life time of 48 min, which is 1.3 times and four times of the device with only PEDOT:PSS HIL. The work provides a new pathway for developing high-performance cadmium-free QLEDs.

4.
Angew Chem Int Ed Engl ; 62(46): e202311089, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37770413

ABSTRACT

Resurfacing perovskite nanocrystals (NCs) with tight-binding and conductive ligands to resolve the dynamic ligands-surface interaction is the fundamental issue for their applications in perovskite light-emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these ligands either exhibit weak Lewis acid/base interactions or need high polar solvents for dissolution and passivation, resulting in a compromise in the efficiency and stability of PeLEDs. Herein, we report a chemically reactive agent (Iodotrimethylsilane, TMIS) to address the trade-off among conductivity, solubility and passivation using all-inorganic CsPbI3 NCs. The liquid TMIS ensures good solubility in non-polar solvents and reacts with oleate ligands and produces in situ HI for surface etching and passivation, enabling strong-binding ligands on the NCs surface. We report, as a result, red PeLEDs with an external quantum efficiency (EQE) of ≈23 %, which is 11.2-fold higher than the control, and is among the highest CsPbI3 PeLEDs. We further demonstrate the universality of this ligand strategy in the pure bromide system (CsPbBr3 ), and report EQE of ≈20 % at 640, 652, and 664 nm. This represents the first demonstration of a chemically reactive ligand strategy that applies to different systems and works effectively in red PeLEDs spanning emission from pure-red to deep-red.

5.
Small ; 15(50): e1905162, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31729177

ABSTRACT

InP quantum dots (QDs) based light-emitting diodes (QLEDs) are considered as one of the most promising candidates as a substitute for the environmentally toxic Cd-based QLEDs for future displays. However, the device architecture of InP QLEDs is almost the same as the Cd-based QLEDs even though the properties of Cd-based and InP-based QDs are quite different in their energy levels and shapes. Thus, it is highly required to develop a proper device structure for InP-based QLEDs to improve the efficiency and stability. In this work, efficient, bright, and stable InP/ZnSeS QLEDs based on an inverted top emission QLED (ITQLED) structure by newly introducing a "hole-suppressing interlayer" are demonstrated. The green-emitting ITQLEDs with the hole-suppressing interlayer exhibit a maximum current efficiency of 15.1-21.6 cd A-1 and the maximum luminance of 17 400-38 800 cd m-2 , which outperform the recently reported InP-based QLEDs. The operational lifetime is also increased when the hole-suppressing interlayer is adopted. These superb QLED performances originate not only from the enhanced light-outcoupling by the top emission structure but also from the improved electron-hole balance by introducing a hole-suppressing interlayer which can control the hole injection into QDs.

6.
Small ; 14(1)2018 01.
Article in English | MEDLINE | ID: mdl-29194973

ABSTRACT

Perovskite quantum dots (PQDs) attract significant interest in recent years because of their unique optical properties, such as tunable wavelength, narrow emission, and high photoluminescence quantum efficiency (PLQY). Recent studies report new types of formamidinium (FA) PbBr3 PQDs, PQDs with organic-inorganic mixed cations, divalent cation doped colloidal CsPb1-x Mx Br3 PQDs (M = Sn2+ , Cd2+ , Zn2+ , Mn2+ ) featuring partial cation exchange, and heterovalent cation doped into PQDs (Bi3+ ). These PQD analogs open new possibilities for optoelectronic devices. For commercial applications in lighting and backlight displays, stability of PQDs requires further improvement to prevent their degradation by temperature, oxygen, moisture, and light. Oxygen and moisture-facilitated ion migration may easily etch unstable PQDs. Easy ion migration may result in crystal growth, which lowers PLQY of PQDs. Surface coating and treatment are important procedures for overcoming such factors. In this study, new types of PQDs and a strategy of improving their stabilities are introduced. Finally, this paper discusses future applications of PQDs in light-emitting diodes.

7.
J Soc Inf Disp ; 25(3): 177-184, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28867926

ABSTRACT

While OLEDs have struggled to find a niche lighting application that can fully take advantage of their unique form factors as thin, flexible, lightweight and uniformly large-area luminaire, photomedical researchers have been in search of low-cost, effective illumination devices with such form factors that could facilitate widespread clinical applications of photodynamic therapy (PDT) or photobiomodulation (PBM). Although existing OLEDs with either fluorescent or phosphorescent emitters cannot achieve the required high power density at the right wavelength windows for photomedicine, the recently developed ultrabright and efficient deep red quantum dot light emitting devices (QLEDs) can nicely fit into this niche. Here, we report for the first time the in-vitro study to demonstrate that this QLED-based photomedical approach could increase cell metabolism over control systems for PBM and kill cancerous cells efficiently for PDT. The perspective of developing wavelength-specific, flexible QLEDs for two critical photomedical fields (wound repair and cancer treatment) will be presented with their potential impacts summarized. The work promises to generate flexible QLED-based light sources that could enable the widespread use and clinical acceptance of photomedical strategies including PDT and PBM.

8.
Adv Mater ; 36(25): e2313888, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38488320

ABSTRACT

In this study, the fundamental but previously overlooked factors of charge generation efficiency and light extraction efficiency (LEE) are explored and collaboratively optimized in tandem quantum-dot light-emitting diodes (QLEDs). By spontaneously forming a microstructured interface, a bulk-heterojunction-like charge-generation layer composed of a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ZnO bilayer is fabricated and an ideal charge-generation efficiency surpassing 115% is obtained. The coupling strength of the waveguide mode for the top unit and the plasmon polariton loss for the bottom unit are highly suppressed using precise thickness control, which increases the LEE of the tandem devices. The red tandem QLED achieves an exceptionally low turn-on voltage for electroluminescence at 4.0 V and outstanding peak external quantum efficiency of 42.9%. The ultralow turn-on voltage originates from the sequential electroluminescence turn-on of the two emissive units of the tandem QLED. Benefiting from its unique electroluminescent features, an easily fabricated optical-electrical dual anti-counterfeiting display is built by combining a dichromatic tandem QLED with masking technology.

9.
ACS Nano ; 18(2): 1485-1495, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38175971

ABSTRACT

Despite the significant progress that has been made in recent years in improving the performance of quantum dot light-emitting devices (QLEDs), the effect of charge imbalance and excess carriers on excitons in red (R) vs green (G) vs blue (B) QLEDs has not been compared or systematically studied. In this work we study the effect of changing the electron (e)/hole (h) supply ratio in the QDs emissive layer (EML) in CdSe-based R-, G-, and B-QLEDs with inverted structure in order to identify the type of excess carriers and investigate their effect on the electroluminescence performance of QLEDs of each color. Results show that in R-QLEDs, the e/h ratio in the EML is >1, whereas in G- and B-QLEDs, the e/h ratio is <1 with charge balance conditions being significantly worse in the case of B-QLEDs. Transient photoluminescence (PL) and steady state PL measurements show that, compared to electrons, holes lead to a stronger Auger quenching effect. Transient electroluminescence (TrEL) results indicate that Auger quenching leads to a gradual decline in the EL performance of the QLEDs after a few microseconds, with a stronger effect observed for positive charging versus negative charging. The results provide insights into the differences in the efficiency behavior of R-, G-, and B-QLEDs and uncover the role of excess holes and poor charge balance in the lower efficiency and EL stability of B-QLEDs.

10.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745377

ABSTRACT

The widely used ZnO quantum dots (QDs) as an electron transport layer (ETL) in quantum dot light-emitting diodes (QLEDs) have one drawback. That the balancing of electrons and holes has not been effectively exploited due to the low hole blocking potential difference between the valence band (VB) (6.38 eV) of ZnO ETL and (6.3 eV) of CdSe/ZnS QDs. In this study, ZnO QDs chemically reacted with capping ligands of oleic acid (OA) to decrease the work function of 3.15 eV for ZnO QDs to 2.72~3.08 eV for the ZnO-OA QDs due to the charge transfer from ZnO to OA ligands and improve the efficiency for hole blocking as the VB was increased up to 7.22~7.23 eV. Compared to the QLEDs with a single ZnO QDs ETL, the ZnO-OA/ZnO QDs double ETLs optimize the energy level alignment between ZnO QDs and CdSe/ZnS QDs but also make the surface roughness of ZnO QDs smoother. The optimized glass/ITO/PEDOT:PSS/PVK//CdSe/ZnS//ZnO-OA/ZnO/Ag QLEDs enhances the maximum luminance by 5~9% and current efficiency by 16~35% over the QLEDs with a single ZnO QDs ETL, which can be explained in terms of trap-charge limited current (TCLC) and the Fowler-Nordheim (F-N) tunneling conduction mechanism.

11.
ACS Appl Mater Interfaces ; 14(46): 52253-52261, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36346779

ABSTRACT

To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer. The electrical field intensity across the organic layer is evaluated through the charge density at the electrode calculated by the transient current. Then, the charge carrier mobility is obtained by combining the electroluminescence (EL) delay time and the thickness of the organic layer. Additionally, we demonstrate that the large roughness of the organic layer leads to serious charge accumulation and, hence, a high localized electrical field, which provides preferred charge injection paths, reducing the EL delay time and underestimating the EL delay time. Therefore, a thick organic film is the prerequisite for a reliable measurement of charge carrier mobility, which can circumvent the negative effect of film roughness.

12.
Nanomaterials (Basel) ; 11(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207371

ABSTRACT

We report the effects of ultraviolet (UV) irradiation and storage on the performance of ZnO-based inverted quantum-dot light-emitting diodes (QLEDs). The effects of UV irradiation on the electrical properties of ZnO nanoparticles (NPs) were investigated. We demonstrate that the charge balance was enhanced by improving the electron injection. The maximum external quantum efficiency (EQE) and power efficiency (PE) of QLEDs were increased by 26% and 143% after UV irradiation for 15 min. In addition, we investigated the storage stabilities of the inverted QLEDs. During the storage period, the electron current from ZnO gradually decreased, causing a reduction in the device current. However, the QLEDs demonstrated improvements in maximum EQE by 20.7% after two days of storage. Our analysis indicates that the suppression of exciton quenching at the interface of ZnO and quantum dots (QDs) during the storage period could result in the enhancement of EQE. This study provides a comprehension of the generally neglected factors, which could be conducive to the realization of high-efficiency and highly storage-stable practical applications.

13.
ACS Appl Mater Interfaces ; 13(38): 45815-45821, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34519471

ABSTRACT

To date, it remains a central challenge to achieve electroluminescence in both positive and negative half cycles of alternating-current (AC) voltage for a light-emitting device. Herein, we successfully demonstrated a novel structure to construct a real AC quantum dot light-emitting device (QLED) with two charge generation layers (CGLs) consisting of the poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ZnO nanoparticle bilayer structure. Besides the conventional driving way with power input from a pair of opposite electrodes, this AC QLED can also work in the manner of in-planar-electrode driving mode, achieving simultaneous electroluminescence of each pixel. By employing a bilayer emissive layer composed of red and green quantum dots, the emission color of the AC QLED can be tuned by both the polarity and amplitude of the driving voltage. Leveraging the excellent electron injection and negligible voltage consumption from the CGLs, this QLED can be turned on at a record low voltage of 5.6 V. We believe that this AC QLED can provide a platform for the realization of simple and smart plug-and-play QLED-based display and lighting systems.

14.
Nanomaterials (Basel) ; 11(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918667

ABSTRACT

Here, we report on the high-performance blue quantum dots (QDs) light-emitting diodes (QLEDs), in which the ZnO nanoparticles (NPs) are employed as the electron transport layer (ETL) and optimized with different alcohol solvents. The experimental results demonstrate that the properties of solvent used for ZnO NPs-such as polarity, viscosity and boiling point-play a crucial role in the quality of film where they modulate the electron injection across the QDs/ETL interface. The maximum current efficiency of 3.02 cd/A and external quantum efficiency (EQE) of 3.3% are achieved for blue QLEDs with ZnO NPs dispersed in butanol, exhibiting obvious enhancement compared with the other solvents. This work provides a new method to select proper solvent for ETL which can further improve the device performance.

15.
ACS Appl Mater Interfaces ; 13(42): 50111-50120, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34636558

ABSTRACT

It was demonstrated through a comparison between the spin-coated and inkjet-printed quantum-dot light-emitting diodes' (QLED) performance analysis outcomes that the annealing temperature of a zinc oxide nanoparticle (ZnO NP) electron transport layer (ETL) optimized for intense pulsed light (IPL) via a post-treatment differs depending on the film-formation method used. For a naturally dried ZnO NP ETL formulated without annealing, different film morphologies were observed according to the film-formation method of spin coating and inkjet printing, and the surface-roughness root mean square (RMS) value was increased in an IPL post-treatment due to unevaporated residual solvent. Based on this phenomenon, we classified and analyzed different film profiles according to the deposition method, the presence or absence of annealing, and the annealing temperature.

16.
Nanomaterials (Basel) ; 10(4)2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32252329

ABSTRACT

In this study, we report on the application of a dielectric/ultra-thin metal/dielectric (DMD) multilayer consisting of ytterbium (Yb)-doped molybdenum oxide (MoO3)/silver (Ag)/MoO3 stacked as the transparent cathode in top-emitting green quantum dot light-emitting diodes (QLED). By optimizing the Yb doping ratio, we have highly improved the electron injection ability from 0.01 to 0.35. In addition, the dielectric/ultra-thin metal/dielectric (DMD) cathode also shows a low sheet resistance of only 12.2 Ω/sq, which is superior to the resistance of the commercially-available indium tin oxide (ITO) electrode (~15 Ω/sq). The DMD multilayer exhibits a maximum transmittance of 75% and an average transmittance of 70% over the visible range of 400-700 nm. The optimized DMD-based G-QLED has a smaller current leakage at low driving voltage. The optimized DMD-based G-QLED enhances the current density than that of G-QLED with indium zinc oxide (IZO) as a cathode. The fabricated DMD-based G-QLED shows a low turn-on voltage of 2.2 V, a high current efficiency of 38 cd/A, and external quantum efficiency of 9.8. These findings support the fabricated DMD multilayer as a promising cathode for transparent top-emitting diodes.

17.
Materials (Basel) ; 13(21)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182376

ABSTRACT

We investigated the effect of intense-pulsed light (IPL) post-treatment on the time-dependent characteristics of ZnO nanoparticles (NPs) used as an electron transport layer (ETL) of quantum-dot light-emitting diodes (QLEDs). The time-dependent characteristics of the charge injection balance in QLEDs was observed by fabrication and analysis of single carrier devices (SCDs), and it was confirmed that the time-dependent characteristics of the ZnO NPs affect the device characteristics of QLEDs. Stabilization of the ZnO NPs film properties for improvement of the charge injection balance in QLEDs was achieved by controlling the current density characteristics via filling of the oxygen vacancies by IPL post-treatment.

18.
Materials (Basel) ; 13(21)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114302

ABSTRACT

Optimization of ink-jet printing conditions of quantum-dot (QD) ink by cosolvent process and improvement of quantum-dot light-emitting diodes (QLEDs) characteristics assisted by vacuum annealing were analyzed in this research. A cosolvent process of hexane and ortho-dichlorobenzene (oDCB) was optimized at the ratio of 1:2, and ink-jetting properties were analyzed using the Ohnesorge number based on the parameters of viscosity and surface tension. However, we found that these cosolvents systems cause an increase in the boiling point and a decrease in the vapor pressure, which influence the annealing characteristics of the QD emission layer (EML). Therefore, we investigated QLEDs' performance depending on the annealing condition for ink-jet printed QD EML prepared using cosolvents systems of hexane and oDCB. We enhanced the quality of QD EML and device performance of QLEDs by a vacuum annealing process, which was used to prevent exposure to moisture and oxygen and to promote effective evaporation of solvent in QD EML. As a result, the characteristics of QLEDs formed using ink-jet printed QD EML annealed under vacuum environment increased luminescence (L), current efficiency (CE), external quantum efficiency (EQE), and lifetime (LT50) by 30.51%, 33.7%, 21.70%, and 181.97%, respectively, compared to QLEDs annealed under air environment.

19.
Nanomaterials (Basel) ; 9(11)2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31752259

ABSTRACT

In this report, we show that the annealing temperature in QDs/Mg-doped ZnO film plays a very important role in determining QLEDs performance. Measurements of capacitance and single carrier device reveal that the change of the device efficiency with different annealing temperatures is related to the balance of both electron and hole injection. A comparison of annealing temperatures shows that the best performance is demonstrated with 150 °C-annealing temperature. With the improved charge injection and charge balance, a maximum current efficiency of 24.81 cd/A and external quantum efficiency (EQE) of 20.09% are achievable in our red top-emission QLEDs with weak microcavity structure.

20.
ACS Appl Mater Interfaces ; 11(31): 28520-28526, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31305056

ABSTRACT

Precisely patterning large-area quantum dot (QD) nanoparticles is an essential technique for enhancing high-resolution and high-performance in the next-generation display-QLEDs. However, conventional solution-based assembly techniques suffer from trade-offs between large-scale and spatial precision. As such, large nondefect areas and ordered stacking of QD assembly architectures are difficult to achieve, and both are essential to fabricating a high-performance device. Herein, we demonstrate a facile method for assembling the QD nanoparticles into a microstructure using an asymmetric wettability template to regulate the dewetting process. The wettability difference of the interface induces the continuous liquid film to recede into individual liquid bridges, which enabled unidirectional dewetting and regulated the QD solution mass transport. In addition, because of the asymmetric wettability between the substrate and template, large-scale, ultrafine (1 µm), and highly flat microwire QD arrays with the precise position and strict alignment are easily assembled and transferred onto the target substrate. The method has been further introduced into the fabrication of high-resolution patterned QLED devices, with maximum electroluminescence values of 73 490, 4357, and 950 cd/m2 for green, red, and blue, respectively. This research provides a novel and facile perspective for manufacturing high-resolution and high-performance patterned QLED devices.

SELECTION OF CITATIONS
SEARCH DETAIL