Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Urol ; 196(2): 588-98, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26860791

ABSTRACT

PURPOSE: Lower urinary tract symptoms are a common finding in patients with chronic prostatitis/chronic pelvic pain syndrome. We previously reported that the mast cell-tryptase-PAR2 (protease activated receptor 2) axis has a critical role in the development of chronic pain in experimental autoimmune prostatitis, a mouse model of chronic prostatitis/chronic pelvic pain syndrome. Therefore, we examined whether PAR2 activation mediates lower urinary tract dysfunction. MATERIALS AND METHODS: Functional cystometry was done in male B6 mice along with immunoblotting and immunohistochemistry for the expression of COL1A1 (collagen type I α I) and α-SMA (α-smooth muscle actin). Flow cytometry analysis was performed on single cell suspensions of the prostate, bladder, lymph nodes and spleen. RESULTS: Experimental autoimmune prostatitis resulted in increased urinary voiding frequency and decreased bladder capacity 30 days after initiation. Concurrently, there was increased expression of COL1A1 and α-SMA in the prostates and bladders. In contrast, induction of experimental autoimmune prostatitis in PAR2 knockout mice did not result in altered urodynamics or increased markers of fibrosis in the prostate or the bladder. Single cell suspensions of the prostate, bladder, lymph nodes and spleen demonstrated that in the absence of PAR2 cellular inflammatory mechanisms were still initiated in experimental autoimmune prostatitis but PAR2 expression may be required to maintain chronic inflammation. Finally, antibody mediated PAR2 neutralization normalized urinary voiding frequency and bladder capacity, and attenuated chronic pelvic pain. CONCLUSIONS: PAR2 activation in the prostate may contribute to the development of lower urinary tract dysfunction through proinflammatory as well as profibrotic pathways.


Subject(s)
Chronic Pain/metabolism , Lower Urinary Tract Symptoms/metabolism , Pelvic Pain/metabolism , Prostatitis/metabolism , Receptor, PAR-2/metabolism , Actins/metabolism , Animals , Biomarkers/metabolism , Chronic Pain/physiopathology , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Lower Urinary Tract Symptoms/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prostatitis/immunology , Prostatitis/physiopathology
2.
Endocrinol Metab (Seoul) ; 36(1): 171-184, 2021 02.
Article in English | MEDLINE | ID: mdl-33677938

ABSTRACT

BACKGROUND: Protease-activated protein-2 (PAR2) has been reported to regulate hepatic insulin resistance condition in type 2 diabetes mice. However, the mechanism of lipid metabolism through PAR2 in obesity mice have not yet been examined. In liver, Forkhead box O1 (FoxO1) activity induces peroxisome proliferator-activated receptor γ (PPARγ), leading to accumulation of lipids and hyperlipidemia. Hyperlipidemia significantly influence hepatic steatoses, but the mechanisms underlying PAR2 signaling are complex and have not yet been elucidated. METHODS: To examine the modulatory action of FoxO1 and its altered interaction with PPARγ, we utilized db/db mice and PAR2-knockout (KO) mice administered with high-fat diet (HFD). RESULTS: Here, we demonstrated that PAR2 was overexpressed and regulated downstream gene expressions in db/db but not in db+ mice. The interaction between PAR2/ß-arrestin and Akt was also greater in db/db mice. The Akt inhibition increased FoxO1 activity and subsequently PPARγ gene in the livers that led to hepatic lipid accumulation. Our data showed that FoxO1 was negatively controlled by Akt signaling and consequently, the activity of a major lipogenesis-associated transcription factors such as PPARγ increased, leading to hepatic lipid accumulation through the PAR2 pathway under hyperglycemic conditions in mice. Furthermore, the association between PPARγ and FoxO1 was increased in hepatic steatosis condition in db/db mice. However, HFD-fed PAR2-KO mice showed suppressed FoxO1-induced hepatic lipid accumulation compared with HFD-fed control groups. CONCLUSION: Collectively, our results provide evidence that the interaction of FoxO1 with PPARγ promotes hepatic steatosis in mice. This might be due to defects in PAR2/ß-arrestin-mediated Akt signaling in diabetic and HFD-fed mice.


Subject(s)
Diabetes Mellitus, Type 2 , Fatty Liver , Animals , Lipids , Lipogenesis , Male , Mice , Mice, Inbred C57BL
3.
J Korean Med Sci ; 25(9): 1330-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20808677

ABSTRACT

This study was performed in order to assess whether acute stress can increase mast cell and enterochromaffin (EC) cell numbers, and proteinase-activated receptor-2 (PAR2) expression in the rat colon. In addition, we aimed to investigate the involvement of corticotrophin-releasing factor in these stress-related alterations. Eighteen adult rats were divided into 3 experimental groups: 1) a saline-pretreated non-stressed group, 2) a saline-pretreated stressed group, and 3) an astressin-pretreated stressed group. The numbers of mast cells, EC cells, and PAR2-positive cells were counted in 6 high power fields. In proximal colonic segments, mast cell numbers of stressed rats tended to be higher than those of non-stressed rats, and their PAR2-positive cell numbers were significantly higher than those of non-stressed rats. In distal colonic segments, mast cell numbers and PAR2-positive cell numbers of stressed rats were significantly higher than those of non-stressed rats. Mast cell and PAR2-positive cell numbers of astressin-pretreated stressed rats were significantly lower than those of saline-pretreated stressed rats. EC cell numbers did not differ among the three experimental groups. Acute stress in rats increases mast cell numbers and mucosal PAR2 expression in the colon. These stress-related alterations seem to be mediated by release of corticotrophin-releasing factor.


Subject(s)
Colon/metabolism , Corticotropin-Releasing Hormone/physiology , Mast Cells/cytology , Receptor, PAR-2/metabolism , Stress, Physiological , Animals , Corticotropin-Releasing Hormone/antagonists & inhibitors , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/pharmacology , Enterochromaffin Cells/cytology , Male , Mast Cells/immunology , Mast Cells/metabolism , Peptide Fragments/pharmacology , Rats , Rats, Wistar , Restraint, Physical
4.
J Thromb Haemost ; 15(4): 597-607, 2017 04.
Article in English | MEDLINE | ID: mdl-28079978

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with a 5-year mortality rate of > 50% and unknown etiology. Treatment options remain limited and, currently, only two drugs are available, i.e. nintedanib and pirfenidone. However, both of these antifibrotic agents only slow down the progression of the disease, and do not remarkably prolong the survival of IPF patients. Hence, the discovery of new therapeutic targets for IPF is crucial. Studies exploring the mechanisms that are involved in IPF have identified several possible targets for therapeutic interventions. Among these, blood coagulation factor receptors, i.e. protease-activated receptors (PARs), are key candidates, as these receptors mediate the cellular effects of coagulation factors and play central roles in influencing inflammatory and fibrotic responses. In this review, we will focus on the controversial role of the coagulation cascade in the pathogenesis of IPF. In the light of novel data, we will attempt to reconciliate the apparently conflicting data and discuss the possibility of pharmacologic targeting of PARs for the treatment of fibroproliferative diseases.


Subject(s)
Blood Coagulation/drug effects , Idiopathic Pulmonary Fibrosis/metabolism , Receptors, Proteinase-Activated/metabolism , Animals , Anticoagulants , Bleomycin/chemistry , Blood Coagulation Factors/therapeutic use , Disease Models, Animal , Disease Progression , Fibrosis/pathology , Humans , Idiopathic Pulmonary Fibrosis/mortality , Inflammation , Lactones/therapeutic use , Mice , Platelet Aggregation Inhibitors/therapeutic use , Pyridines/therapeutic use , Receptor, PAR-1/antagonists & inhibitors , Receptor, PAR-2/antagonists & inhibitors , Receptors, Proteinase-Activated/antagonists & inhibitors
5.
J Periodontol ; 87(2): 203-10, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26430924

ABSTRACT

BACKGROUND: Subantimicrobial dose doxycycline (SDD) has been used as an adjunct in periodontal treatment because of its matrix metalloproteinase inhibition properties. Although the benefits of SDD therapy, such as improvement in the parameters of periodontal probing depth and clinical attachment level, have been proven in multiple clinical studies, the comprehension of other biologic mechanisms of action on periodontitis remains poorly investigated. Therefore, this animal-model study evaluated the effects of SDD monotherapy on the expressions of the following key proinflammatory genes: proteinase-activated receptor-2 (PAR2), tumor necrosis factor (TNF)-α, interleukin (IL)-17, and IL-1ß. METHODS: Male Wistar rats were assigned randomly to the following: 1) control group: no ligature-induced periodontitis and no treatment; 2) ligature group: ligature-induced periodontitis and placebo treatment; and 3) ligature + doxycycline group: ligature-induced periodontitis and SDD treatment. After the experimental time, animals were sacrificed, and reverse transcription-polymerase chain reaction was performed to analyze the mRNA expression of IL-1ß, IL-17, TNF-α, and PAR2 in gingival tissue samples. Histologic analyses were performed on the furcation region and mesial gingiva of mandibular first molars to measure periodontal bone loss and collagen content. RESULTS: SDD administration significantly downregulated PAR2, IL-17, TNF-α, and IL-1ß mRNA expressions (P <0.05). In addition, SDD treatment was accompanied by lower rates of alveolar bone loss (P <0.05) and maintenance of the amount of gingival collagen fibers. CONCLUSION: These findings reveal new perspectives regarding SDD efficacy because it can be partially related to proinflammatory gene expression modulation, even considering PAR2 and IL-17, which has not been investigated thus far.


Subject(s)
Periodontitis , Animals , Anti-Bacterial Agents , Down-Regulation , Doxycycline , Interleukin-17 , Male , Rats , Rats, Wistar , Receptor, PAR-2
6.
J Neurogastroenterol Motil ; 20(1): 54-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24466445

ABSTRACT

BACKGROUND/AIMS: There have been no reports on the effect of chronic psychological stress on colonic immune cells or the regional differences. We aimed to investigate the effect of chronic psychological stress on the number of mast cells and protease-activated receptor (PAR)-2-positive cells in the rat colonic mucosa. METHODS: Six-week-old and 14-week-old Ws/Ws rats, which lack mast cells after 10 weeks, were used as control and mast cell-deficient groups, respectively. The rats were divided into stress and sham-treated groups. Rats in the stressed group were exposed to water avoidance stress (WAS, 1 hour/day) for 13 days. Fecal pellet output and the number of mast cells and PAR-2-positive cells in colonic mucosa were compared between the WAS and sham groups. RESULTS: In 6-week-old rats, the WAS group showed a significantly higher number of mast cells compared to the sham group. In 14-week-old rats, mast cells were nearly absent in the colonic mucosa. WAS significantly increased PAR-2-positive cells in 14-week-old rats, but not in 6-week-old rats. Indirect estimation of PAR-2-positive mast cells in 6-week-old rats suggested that the majority of increased mast cells following WAS did not express PAR-2. WAS increased mast cells and PAR-2-positive cells mainly in the proximal colon. Fecal pellet output was continuously higher in the WAS group than in the sham group, and the difference was significant for both 6-week-old and 14-week-old rats. CONCLUSIONS: Chronic psychological stress increased the number of mast cells and PAR-2-positive cells in rat colonic mucosa, and these increases were more prominent in the proximal colon.

7.
Tuberc Respir Dis (Seoul) ; 74(6): 264-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23814598

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a lethal pulmonary fibrotic disease. In general, the exaggerated activation of the coagulation cascade has been observed during initiation or maintenance of the fibrotic disease. In our recent study, immunohistochemical expression of protease-activated receptor-2 (PAR-2), which plays a key role in coagulation cascade, was observed in surgical specimen of IPF patients, and associated with poor clinical outcome. The aim of this study was to evaluate the overexpression of PAR-2 in inflammatory cells from peripheral blood and bronchoalveolar lavage fluid in IPF patients. METHODS: From May 2011 to March 2012, IPF patients and controls were enrolled in Seoul National University Hospital. Peripheral blood and bronchoalveolar lavage fluid were collected for analysis of PAR-2 expression. Flow cytometry and reverse transcription polymerase chain reaction were used for PAR-2 receptor and mRNA assessment. RESULTS: Twelve IPF patients and 14 controls were included in this study. Among them, flow cytometry analysis was conducted from 26 peripheral blood (patient group, 11; control group, 13) and 7 bronchoalveolar lavage fluid (patient group, 5; control group, 2). The expression of PAR-2 receptor was not different between patient and control groups (p=0.074). Among all 24 population, PAR-2 mRNA assessment was performed in 19 persons (patient group, 10; control group, 9). The mRNA expression of PAR-2 was not significant different (p=0.633). CONCLUSION: In IPF patients, PAR-2 receptor and mRNA expression were not different from control group.

8.
Braz. oral res. (Online) ; 31: e16, 2017. tab, graf
Article in English | LILACS | ID: biblio-839530

ABSTRACT

Abstract Recent studies investigating protease-activated receptor type 2 (PAR-2) suggest an association between the receptor and periodontal inflammation. It is known that gingipain, a bacterial protease secreted by the important periodontopathogen Porphyromonas gingivalis can activate PAR-2. Previous studies by our group found that PAR-2 is overexpressed in the gingival crevicular fluid (GCF) of patients with moderate chronic periodontitis (MP). The present study aimed at evaluating whether PAR-2 expression is associated with chronic periodontitis severity. GCF samples and clinical parameters, including plaque and bleeding on probing indices, probing pocket depth and clinical attachment level, were collected from the control group (n = 19) at baseline, and from MP patients (n = 19) and severe chronic periodontitis (SP) (n = 19) patients before and 6 weeks after periodontal non-surgical treatment. PAR-2 and gingipain messenger RNA (mRNA) in the GCF of 4 periodontal sites per patient were evaluated by Reverse Transcription Polymerase Chain Reaction (RT-qPCR). PAR-2 and gingipain expressions were greater in periodontitis patients than in control group patients. In addition, the SP group presented increased PAR-2 and gingipain mRNA levels, compared with the MP group. Furthermore, periodontal treatment significantly reduced (p <0.05) PAR-2 expression in patients with periodontitis. In conclusion, PAR-2 is associated with chronic periodontitis severity and with gingipain levels in the periodontal pocket, thus suggesting that PAR-2 expression in the GCF reflects the severity of destruction during periodontal infection.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Gingival Crevicular Fluid/chemistry , Receptor, PAR-2/analysis , Chronic Periodontitis/pathology , Reference Values , Severity of Illness Index , Cysteine Endopeptidases/analysis , Biomarkers/analysis , Case-Control Studies , Gene Expression , Periodontal Index , Dental Plaque Index , Periodontal Attachment Loss , Porphyromonas gingivalis , Statistics, Nonparametric , Adhesins, Bacterial/analysis
SELECTION OF CITATIONS
SEARCH DETAIL