ABSTRACT
Roselle is rich in an extensive diversity of beneficial substances, including phenolic acids, amino acids, anthocyanins, vitamins, and flavonoids. Herein, the chemical constituents in Roselle extract (RE) were identified by UPLC-DAD-QTOF-MS. Besides, its inhibitory effects on three digestive enzymes, i.e. α-amylase, α-glucosidase, and pancreatic lipase, were investigated in both in vitro and in vivo. Thirty-three constituents including hibiscus acid, 18 phenolic acids, 2 anthocyanins and 12 flavonoids were identified. The anthocyanins content in RE was 21.44 ± 0.68 %, while the contents of chlorogenic acids, rutin and quercetin were 17.76 ± 2.28 %, 0.31 ± 0.01 % and 0.32 ± 0.01 %, respectively. RE inhibited pancreatic lipase in a non-competitive way with an IC50 value of 0.84 mg/mL. Besides, it demonstrated a mixed-type inhibition on both α-glucosidase and α-amylase with IC50 values of 0.59 mg/mL and 1.93 mg/mL, respectively. Fluorescence quenching assays confirmed the binding of RE to the enzyme proteins. Furthermore, rats pre-treated with RE at doses of 50 and 100 mg/kg body weight (bwt) exhibited significant reductions in fat absorption and improvements in fat excretion through feces. Additionally, the in vivo study revealed that RE was effective in suppressing the increase of blood glucose after starch consumption, while its effects on maltose and sucrose consumption were relatively weak.
Subject(s)
Anthocyanins , Hibiscus , Rats , Animals , Hibiscus/chemistry , alpha-Glucosidases/metabolism , Enzyme Inhibitors/chemistry , Flavonoids/pharmacology , alpha-Amylases/chemistry , Lipase , Plant Extracts/chemistry , Gastrointestinal Agents , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistryABSTRACT
The aim of this work was to improve the stability of Roselle extract (RE) by spray-drying using maltodextrin (MD) alone, and in combination with WPC in the forms of unmodified and modified (via ultrasonication, UWPC, or enzymatic hydrolysis, HWPC). Enzymatic hydrolysis by improving the surface activity of WPC increased spray-drying yield (75.1 %), and improved physical (flow) and functional (solubility, and emulsifying) properties of obtained microparticles. Degree of hydrolysis of the primary WPC (2.6 %) was increased to 6.1 % and 24.6 % after ultrasonication and hydrolysis, respectively. Both modifications caused a significant increase in the solubility of WPC, in a way that initial solubility (10.6 %, at pH = 5) was significantly increased to 25.5 % in UWPC, and to 87.3 % in HWPC (P < 0.05). Furthermore, emulsifying activity (20.6 m2/g) and emulsifying stability (17 %) indices of primary WPC (at pH = 5) were significantly increased to 32 m2/g and 30 % in UWPC, and to 92.4 m2/g and 69.0 % in HWPC, respectively (P < 0.05). FT-IR analysis indicated successful encapsulation of RE within carriers' matrix. According to FE-SEM study, the surface morphology of microparticles was improved when modified HWPC was used as a carrier. Microencapsulation of RE with HWPC showed the highest contents of total phenolic compounds (13.3 mg GAE/mL), total anthocyanins (9.1 mg C3G/L) as well as a higher retention of antioxidant activity according to ABTS+ (85.0 %) and DPPH (79.5 %) radicals scavenging assays. Considering all properties of microparticles obtained by HWPC next to their color attributes, it can be concluded that HWPC-RE powders could be used as natural colorant and antioxidant source for the fortification of gummy candy. Gummy candy obtained using 6 % concentration of the above powder gave the highest overall sensory scores.
Subject(s)
Anthocyanins , Hibiscus , Anthocyanins/chemistry , Hibiscus/chemistry , Spectroscopy, Fourier Transform Infrared , Antioxidants/pharmacology , Antioxidants/chemistry , Candy/analysisABSTRACT
The separation and purification of biologically-active compounds from natural sources is of interest because such molecules find wide application in the pharmaceutical sector and in other industrial areas. Roselle (Hibiscus sabdariffa) plants are a good source of anthocyanins, flavonoids, hydroxycitric acid, tartaric acid, ascorbic acid and hibiscus acid. The separation of hibiscus acid from the Roselle extract is very challenging, requiring the use of selective methods. It is accomplished here by means of the indium-bearing Metal Organic Framework MIL-68-NH2. Before and after exposure to MIL-68-NH2, the Roselle extract is analyzed by thin-layer chromatography, ultraviolet-visible spectrophotometry, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The structural integrity of MIL-68-NH2 after the separations is investigated by powder X-ray diffraction, nuclear magnetic resonance and infrared spectroscopy, confirming the adsorption selectivity of MIL-68-NH2 towards hibiscus acid.