Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 544
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2316733121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38215181

ABSTRACT

The epithelial-mesenchymal transition (EMT) program is crucial for transforming carcinoma cells into a partially mesenchymal state, enhancing their chemoresistance, migration, and metastasis. This shift in cell state is tightly regulated by cellular mechanisms that are not yet fully characterized. One intriguing EMT aspect is the rewiring of the proteoglycan landscape, particularly the induction of heparan sulfate proteoglycan (HSPG) biosynthesis. This proteoglycan functions as a co-receptor that accelerates cancer-associated signaling pathways through its negatively-charged residues. However, the precise mechanisms through which EMT governs HSPG biosynthesis and its role in cancer cell plasticity remain elusive. Here, we identified exostosin glycosyltransferase 1 (EXT1), a central enzyme in HSPG biosynthesis, to be selectively upregulated in aggressive tumor subtypes and cancer cell lines, and to function as a key player in breast cancer aggressiveness. Notably, ectopic expression of EXT1 in epithelial cells is sufficient to induce HSPG levels and the expression of known mesenchymal markers, subsequently enhancing EMT features, including cell migration, invasion, and tumor formation. Additionally, EXT1 loss in MDA-MB-231 cells inhibits their aggressiveness-associated traits such as migration, chemoresistance, tumor formation, and metastasis. Our findings reveal that EXT1, through its role in HSPG biosynthesis, governs signal transducer and activator of transcription 3 (STAT3) signaling, a known regulator of cancer cell aggressiveness. Collectively, we present the EXT1/HSPG/STAT3 axis as a central regulator of cancer cell plasticity that directly links proteoglycan synthesis to oncogenic signaling pathways.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Heparan Sulfate Proteoglycans/metabolism , STAT3 Transcription Factor/metabolism , Cell Line , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Cell Movement
2.
FASEB J ; 38(7): e23607, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38581245

ABSTRACT

Pathogenic Th17 cells play a crucial role in autoimmune diseases like uveitis and its animal model, experimental autoimmune uveitis (EAU). Dimethyl itaconate (DMI) possesses potent anti-inflammatory effects. However, there is still a lack of knowledge about the role of DMI in regulating pathogenic Th17 cells and EAU. Here, we reported that intraperitoneal administration of DMI significantly inhibited the severity of EAU via selectively suppressing Th17 cell responses. In vitro antigen stimulation studies revealed that DMI dramatically decreased the frequencies and function of antigen-specific Th17, but not Th1, cells. Moreover, DMI hampered the differentiation of naive CD4+ T cells toward pathogenic Th17 cells. DMI-treated DCs produced less IL-1ß, IL-6, and IL-23, and displayed an impaired ability to stimulate antigen-specific Th17 activation. Mechanistically, DMI activated the NRF2/HO-1 pathway and suppressed STAT3 signaling, which subsequently restrains p-STAT3 nuclear translocation, leading to decreased pathogenic Th17 cell responses. Thus, we have identified an important role for DMI in regulating pathogenic Th17 cells, supporting DMI as a promising therapy in Th17 cell-driven autoimmune diseases including uveitis.


Subject(s)
Autoimmune Diseases , Succinates , Uveitis , Animals , Mice , Th17 Cells , NF-E2-Related Factor 2/metabolism , Inflammation/metabolism , Autoimmune Diseases/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Th1 Cells
3.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38848951

ABSTRACT

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Subject(s)
Apoptosis , Ciliary Neurotrophic Factor , Homocysteine , Human Umbilical Vein Endothelial Cells , Inflammation , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , Janus Kinase 2/metabolism , Humans , STAT3 Transcription Factor/metabolism , Homocysteine/pharmacology , Homocysteine/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Inflammation/pathology , Ciliary Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/genetics , Apoptosis/drug effects , Cells, Cultured , Cell Survival/drug effects
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35177474

ABSTRACT

Viral causes of pneumonia pose constant threats to global public health, but there are no specific treatments currently available for the condition. Antivirals are ineffective when administered late after the onset of symptoms. Pneumonia is caused by an exaggerated inflammatory cytokine response to infection, but tissue necrosis and damage caused by virus also contribute to lung pathology. We hypothesized that viral pneumonia can be treated effectively if both virus and inflammation are simultaneously targeted. Combined treatment with the antiviral drug cidofovir and etanercept, which targets tumor necrosis factor (TNF), down-regulated nuclear factor kappa B-signaling and effectively reduced morbidity and mortality during respiratory ectromelia virus (ECTV) infection in mice even when treatment was initiated after onset of clinical signs. Treatment with cidofovir alone reduced viral load, but animals died from severe lung pathology. Treatment with etanercept had no effect on viral load but diminished levels of inflammatory cytokines and chemokines including TNF, IL-6, IL-1ß, IL-12p40, TGF-ß, and CCL5 and dampened activation of the STAT3 cytokine-signaling pathway, which transduces signals from multiple cytokines implicated in lung pathology. Consequently, combined treatment with a STAT3 inhibitor and cidofovir was effective in improving clinical disease and lung pathology in ECTV-infected mice. Thus, the simultaneous targeting of virus and a specific inflammatory cytokine or cytokine-signaling pathway is effective in the treatment of pneumonia. This approach might be applicable to pneumonia caused by emerging and re-emerging viruses, like seasonal and pandemic influenza A virus strains and severe acute respiratory syndrome coronavirus 2.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Antiviral Agents/therapeutic use , Cidofovir/therapeutic use , Etanercept/administration & dosage , Pneumonia, Viral/drug therapy , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Cidofovir/pharmacology , Cytokines/metabolism , Drug Evaluation, Preclinical , Drug Therapy, Combination , Ectromelia virus/drug effects , Female , Lung/drug effects , Lung/metabolism , Mice, Inbred C57BL , NF-kappa B/metabolism , Pneumonia, Viral/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Viral Load/drug effects
5.
Int J Cancer ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989970

ABSTRACT

Appropriate host-microbiota interactions are essential for maintaining intestinal homeostasis; hence, an imbalance in these interactions leads to inflammation-associated intestinal diseases. Toll-like receptors (TLRs) recognize microbial ligands and play a key role in host-microbe interactions in health and disease. TLR13 has a well-established function in enhancing host defenses against pathogenic bacteria. However, its role in maintaining intestinal homeostasis and controlling colitis-associated colon cancer (CAC) is largely unknown. This study aimed to investigate the involvement of TLR13-mediated signaling in intestinal homeostasis and colonic tumorigenesis using ex vivo cell and in vivo CAC animal model. Tlr13-deficient mice were prone to dextran sodium sulfate (DSS)-induced colitis. During the early stages of the CAC regimen (AOM/DSS-treated), Tlr13 deficiency led to severe ulcerative colitis. Moreover, Tlr13-deficient mice exhibited increased intestinal permeability, as evidenced by elevated levels of fluorescein isothiocyanate (FITC)-dextran, endotoxins, and bacterial translocation. Enhanced cell survival and proliferation of colonic intestinal cells were observed in Tlr13-deficient mice. A transcriptome analysis revealed that Tlr13 deficiency is associated with substantial changes in gene expression profile of colonic tumor tissue. Tlr13-deficient mice were more susceptible to CAC, with increased production of interleukin (IL)-6, IL-12, and TNF-α cytokines and enhanced STAT3, NF-κB, and MAPK signaling in colon tissues. These findings suggest that TLR13 plays a protective role in maintaining intestinal homeostasis and controlling CAC. Our study provides a novel perspective on intestinal health via TLR13-mediated signaling, which is crucial for deciphering the role of host-microbiota interactions in health and disease.

6.
Biochem Biophys Res Commun ; 706: 149758, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38484571

ABSTRACT

Byakangelicin mostly obtained from the root of Angelica dahurica and has protective effect on liver injury and fibrosis. In addition, Byakangelicin, as a traditional medicine, is also used to treat colds, headache and toothache. Recent studies have shown that Byakangelicin exhibits anti-tumor function; however, the role of Byakangelicin in breast tumor progression and related mechanism has not yet been elucidated. Our study aims to investigate the role of Byakangelicin in breast tumor progression and the underlying mechanism. To measure the effect of Byakangelicin on JAK2/STAT3 signaling, a dual luciferase reporter assay and a Western blot assay were performed. CCK8, colony formation, apoptosis and cell invasion assays were used to examine the inhibitory potential of Byakangelicin on breast cancer cells. Additionally, SHP-1 was silenced by specific siRNA duplex and the function of SHP-1 on Byakangelicin-mediated inhibition of JAK2/STAT3 signaling was evaluated. Byakangelicin treatment significantly inhibited STAT3 transcriptional activity. In addition, Byakangelicin treatment blocked JAK2/STAT3 signaling in a dose-dependent manner. Byakangelicin-treated tumor cells showed a dramatically reduced proliferation, colony formation and invasion ability. Moreover, Byakangelicin remarkedly induced breast cancer cell apoptosis. Furthermore, Byakangelicin regulated the expression of SHP1.In conclusion, our current study indicated that Byakangelicin, a natural compound, inhibits SHP-1/JAK2/STAT3 signaling and thus blocks tumor growth and motility.


Subject(s)
Breast Neoplasms , Furocoumarins , Signal Transduction , Humans , Female , Cell Line, Tumor , Cell Proliferation , Apoptosis , Breast Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism
7.
Biol Proced Online ; 26(1): 27, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187810

ABSTRACT

To explore the effects and mechanisms of the Xianhecao-Huanglian drug pair on autophagy-mediated intervention in acute inflammatory bowel disease (IBD) via the JAK2/STAT3 pathway. The study examined the underlying mechanisms of action of Xianhecao (APL) and Huanglian (CR) using a mouse model of dextran sodium sulfate (DSS)-induced acute inflammatory bowel disease (IBD) and in an in vitro model of IBD induced by lipopolysaccharide (LPS). The assessment of the therapeutic efficacy of the Xianhecao-Huanglian drug combination in a mouse model of IBD caused by DSS included the following parameters: Assessment of weight loss or gain. Measurement of the disease activity index (DAI). Assessment of histological damage. Determination of organ index. Measurement of colon length. Ascertain the levels of inflammatory cytokines in the intestinal tissues and serum of mice. Immunohistochemistry (IHC) for the measurement of tight junction protein concentrations in the colon mucosa, including ZO-1, claudin-1, and occludin. Measurement of mucin levels, specifically Mucin 2 (Muc2). Hematoxylin and eosin (HE) staining for the observation of histopathological alterations in colonic tissues. Examining the effect on goblet cells using periodic acid-Schiff (PAS) labeling. Application of Western blot and immunofluorescence techniques for the detection of autophagy-related markers in colonic tissues and proteins associated with the JAK2/STAT3 pathway. A cell inflammation model of IBD was induced through LPS stimulation, and a serum containing the Xianhecao-Huanglian drug pair (referred to as ACHP-DS) was formulated. Cell viability, anti-proinflammatory cytokines, tight junction proteins, mucins, autophagy-related markers, and the JAK2/STAT3 signaling pathway were assessed. The Xianhecao-Huanglian drug pair significantly ameliorated the symptoms and survival quality of acute IBD mice, reducing the disease activity index score, raising MUC2 secretion and tight junction protein expression to improve the integrity of the intestinal barrier, and preserving goblet cell function; thus, protecting the intestines. It effectively restrained triggering the signaling pathway that involves JAK2 and STAT3, leading to the suppression of inflammation and amelioration of colonic inflammation damage. Additionally, it induced autophagy in mouse colonic tissues.The in vitro experiments demonstrated that the Xianhecao-Huanglian drug combination enhanced the viability of LOVO and NCM460 cells when exposed to LPS stimulation. Furthermore, it suppressed the production of inflammatory cytokines such as IL-6, IL-1ß, as well as TNF-α, whilst increasing the production of IL-10, ZO-1, along with MUC2. These effects collectively led to the alleviation of inflammation and the restoration of mucosal integrity. The results were consistent with what was shown in the in vivo trial. Moreover, the medication demonstrated effectiveness in reducing JAK2 along with STAT3 phosphorylation levels in the LPS-induced inflammatory model of IBD cells. The intervention with either the Xianhecao-Huanglian drug combination-containing serum or the JAK2/STAT3 pathway inhibitor AG490 reversed the pro-inflammatory effects and increased autophagy levels in the LPS-stimulated cells. The Xianhecao-Huanglian drug combination modulates the JAK2/STAT3 pathway, leading to the induction of autophagy, which serves as an intervention for IBD.

8.
Mol Carcinog ; 63(6): 1133-1145, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38426797

ABSTRACT

Bruceantinol (BOL) is a quassinoid compound found in the fruits of Brucea javanica. Previous research has highlighted the manifold physiological and pharmacological activities of BOL. Notably, BOL has demonstrated antitumor cytotoxic and antibacterial effects, lending support to its potential as a promising therapeutic agent for various diseases. Despite being recognized as a potent antitumor inhibitor in multiple cancer types, its efficacy against osteosarcoma (OS) has not been elucidated. In this work, we investigated the antitumor properties of BOL against OS. Our findings showed that BOL significantly decreased the proliferation and migration of OS cells, induced apoptosis, and caused cell death without affecting the cell cycle. We further confirmed that BOL potently suppressed tumor growth in vivo. Mechanismly, we discovered that BOL directly bound to STAT3, and prevent the activation of STAT3 signaling at low nanomolar concentrations. Overall, our study demonstrated that BOL potently inhibited the growth and metastasis of OS, and efficiently suppressed STAT3 signaling pathway. These results suggest that BOL could be a promising therapeutic candidate for OS.


Subject(s)
Bone Neoplasms , Osteosarcoma , Quassins , STAT3 Transcription Factor , Animals , Humans , Mice , Apoptosis/drug effects , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Mice, Nude , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Quassins/pharmacology , Quassins/therapeutic use , Signal Transduction/drug effects , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays
9.
Exp Eye Res ; 238: 109748, 2024 01.
Article in English | MEDLINE | ID: mdl-38081573

ABSTRACT

Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.


Subject(s)
Corneal Diseases , Signal Transduction , Corneal Diseases/drug therapy , Corneal Diseases/metabolism , Corneal Diseases/physiopathology , Humans , Cornea/metabolism , Janus Kinases/metabolism , Clinical Trials as Topic
10.
Int Arch Allergy Immunol ; : 1, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991517

ABSTRACT

INTRODUCTION: Rheumatoid arthritis (RA) combined with hashimoto thyroiditis (HT) is an important cause of various fatal comorbidities of RA. There is no precise conclusion about the cause of this disease. METHODS: Peripheral blood and synovial tissue were collected from healthy participants, patients with RA, and patients with both RA and HT. Immunofluorescence staining and Pearson correlation analysis were used to detect the levels of γδTCR and the correlation between IL-17 and p-STAT3, respectively. ELISA, chemiluminescence assays, qRT-PCR and Western blot were performed to detect the levels of IgG, IgM, IFN-γ, IL-1ß, TNF-α, Tg-Ab, Tpo-Ab, IL-17, IL-2, p-SATA3, and STAT3, respectively. RESULTS: There was increased proportion of γδT cells, IL-17, and p-STAT3 levels in RA and HT patients. IL-17 was positively correlated with p-STAT3. γδT cells significantly promoted the expression of IgG, Tg-Ab, Tpo-Ab, and IL-17. When γδT and human fibroblast-like synoviocytes (FLSs) were co-cultured, the levels of IL-2, IFN-γ, IL-1ß, TNF-α, and IL-17 were increased, and the IL-17/STAT3 signaling pathway was activated. When IL-17-silenced γδT cells and STAT3-silenced FLSs were co-cultured, the levels of IL-1ß and TNF-α in FLSs were significantly decreased. Furthermore, when STAT3-silenced FLSs were added to the co-culture medium of B cells and γδT cells, the levels of IL-1ß and TNF-α were also decreased significantly. CONCLUSION: γδT cells induced RA directly or by stimulating B cells to activate STAT3 through IL-17.

11.
Mol Cell Biochem ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349465

ABSTRACT

Mesenchymal stem cells (MSCs) may play a pivotal role in shaping the tumor microenvironment (TME), influencing tumor growth. Nonetheless, conflicting evidence exists regarding the distinct impacts of MSCs on tumor progression, with some studies suggesting promotion while others indicate suppression of tumor cell growth. Considering that oxidative stress is implicated in the dynamic interaction between components of the TME and tumor cells, we investigated the contribution of exosomes released by hydrogen peroxide (H2O2)-treated MSCs to murine mammary tumor growth and progression. Additionally, we aimed to identify the underlying mechanism through which MSC-derived exosomes affect breast tumor growth and angiogenesis. Our findings demonstrated that exosomes released by H2O2-treated, stress-induced MSCs (St-MSC Exo) promoted breast cancer cell progression by inducing the expression of vascular endothelial growth factor (VEGF) and markers associated with epithelial-to-mesenchymal transition. Further clarification revealed that the promoting effect of St-MSC Exo on VEGF expression may, in part, depend on activating STAT3 signaling in BC cells. In contrast, exosomes derived from untreated MSCs retarded JAK1/STAT3 phosphorylation and reduced VEGF expression. Additionally, our observations revealed that the activation of the transcription factor NF-κB in BC cells, stimulated with St-MSC Exo, occurs concurrently with an increase in intracellular ROS production. Moreover, we observed that the increase in VEGF secretion into the conditioned media of 4T1 BC, mediated by St-MSC Exo, positively influenced endothelial cell proliferation, migration, and vascular behavior in vitro. In turn, our in vivo studies confirmed that St-MSC Exo, but not exosomes derived from untreated MSCs, exhibited a significant promoting effect on breast tumorigenicity. Collectively, our findings provide new insights into how MSCs may contribute to modulating the TME. We propose a novel mechanism through which exosomes derived from oxidative stress-induced MSCs may contribute to tumor progression and angiogenesis.

12.
Mol Cell Biochem ; 479(4): 929-940, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37256445

ABSTRACT

Previous reports have confirmed that miR-206 participates in inflammatory cardiomyopathy, but its definite mechanism remains elusive. This study aims to elucidate the potential mechanism of miR-206 in septic cardiomyopathy (SCM). The primary mouse cardiomyocytes were isolated and exposed to lipopolysaccharides (LPS) to construct a septic injury model in vitro. Then, the gene transcripts and protein levels were detected by RT-qPCR and/or Western blot assay. Cell proliferation, apoptosis, and inflammatory responses were evaluated by CCK-8/EdU, flow cytometry, and ELISA assays, respectively. Dual luciferase assay, Co-IP, and ubiquitination experiments were carried out to validate the molecular interactions among miR-206, USP33, and JAK2/STAT3 signaling. miR-206 was significantly downregulated, but USP33 was upregulated in LPS-induced cardiomyocytes. Gain-of-function of miR-206 elevated the proliferation but suppressed the inflammatory responses and apoptosis in LPS-induced cardiomyocytes. USP33, as a member of the USP protein family, was confirmed to be a direct target of miR-206 and could catalyze deubiquitination of JAK2 to activate JAK2/STAT3 signaling. Rescue experiments presented that neither upregulation of USP33 nor JAK2/STAT3 signaling activation considerably reversed the protective effects of miR-206 upregulation in LPS-induced cardiomyocytes. The above data showed that miR-206 protected cardiomyocytes from LPS-induced inflammatory injuries by targeting the USP33/JAK2/STAT3 signaling pathway, which might be a novel target for SCM treatment.


Subject(s)
Cardiomyopathies , MicroRNAs , Animals , Mice , Apoptosis/physiology , Janus Kinase 2/metabolism , Lipopolysaccharides , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
13.
Cell Biol Int ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39001618

ABSTRACT

Transfer RNA-derived fragments (tRFs) represent a novel class of non-coding RNA transcripts that possess specific biological functions. However, the involvement of tRFs in retinal microvascular diseases remains poorly understood. In this study, we aimed to reveal whether modulation of tRF-30 expression could attenuate pathological retinal neovascular diseases. Our findings demonstrate a significant upregulation of tRF-30 expression levels in both in vivo models of diabetic retinopathy (DR) and in vitro endothelial sprouting models. Conversely, inhibition of tRF-30 expression suppressed the formation of abnormal neovascularization in the retina in vivo, while reducing the proliferation and migration activity of retinal vascular endothelial cells in vitro. We also found that tRF-30 modulates retinal neovascularization through the tRF-30/TRIB3/signal transducer and activated transcription 3 signaling pathway. Furthermore, we validated a significant upregulation of tRF-30 expression levels in the vitreous humor of DR patients, with high levels of both validity and specificity in diagnostic testing. Collectively, our findings highlight a pro-angiogenic role for tRF-30 in DR. Intervening in the tRF-30 signaling pathway may represent a promising prevention and treatment strategy for retinal angiogenesis.

14.
J Pathol ; 259(2): 180-193, 2023 02.
Article in English | MEDLINE | ID: mdl-36373877

ABSTRACT

Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease, and so far, there is no specific targeted therapy. Here, we report that CXCL16 is upregulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis and, at the same time, to transcriptionally modulate the levels of BMP4 and hepatocyte growth factor (HGF) in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE and suggest that CXCL16 signaling could be a potential therapeutic target for RE. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Chemokine CXCL16 , Enteritis , Radiation Injuries , Animals , Mice , Chemokine CXCL16/metabolism , Enteritis/etiology , Enteritis/metabolism , Fibrosis , Radiation Injuries/genetics , Receptors, CXCR6 , Regeneration
15.
Exp Cell Res ; 430(1): 113689, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37355151

ABSTRACT

BACKGROUND: The accurate identification and isolation of ovarian stem cells from mammalian ovaries remain a major challenge because of the lack of specific surface markers and suitable in vitro culture systems. Optimized culture conditions for in vitro expansion of ovarian stem cells would allow for identifying requirements of these stem cells for proliferation and differentiation that would pave the way to uncover role of ovarian stem cells in ovarian pathophysiology. Here, we used three-dimensional (3D) aggregate culture system for enrichment of ovarian stem cells and named them aggregate-derived stem cells (ASCs). We hypothesized that mimicking the ovarian microenvironment in vitro by using an aggregate model of the ovary would provide a suitable niche for the isolation of ovarian stem cells from adult mouse and human ovaries and wanted to find out the main cellular pathway governing the proliferation of these stem cells. RESULTS: We showed that ovarian aggregates take an example from ovary microenvironment in terms of expression of ovarian markers, hormone secretion and supporting the viability of the cells. We found that aggregates-derived stem cells proliferate in vitro as long-term while remained expression of germline markers. These ovarian stem cells differentiated to oocyte like cells in vitro spontaneously. Transplantation of these stem cells in to chemotherapy mouse ovary could restore ovarian structure. RNA-sequencing analysis revealed that interleukin6 is upregulated pathway in ovarian aggregate-derived stem cells. Our data showed that JAK/Stat3 signaling pathway which is activated downstream of IL6 is critical for ovarian stem cells proliferation. CONCLUSIONS: We developed a platform that is highly reproducible for in vitro propagation of ovarian stem cells. Our study provides a primary insight into cellular pathway governing the proliferation of ovarian stem cells.


Subject(s)
Oocytes , Ovary , Adult , Female , Mice , Humans , Animals , Ovary/metabolism , Oocytes/metabolism , Stem Cells , Germ Cells/metabolism , Cell Proliferation , Mammals/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
16.
Mol Divers ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158620

ABSTRACT

The pachysandra alkaloids found in Sarcococca ruscifolia demonstrate notable anti-hepatocellular carcinoma activity. Despite their efficacy, the structural diversity of these compounds remains limited, and their precise antitumor mechanism is still unclear. In pursuit of identifying novel lead compounds with high efficacy and low toxicity for combating hepatocellular carcinoma, twenty-three compounds of C20-ketone pachysandra alkaloid derivatives were designed and synthesized by using 3-dimethylamine pachysandra alkaloids as scaffolds. Subsequent in vitro anticancer activity experiments showed that synthetic pachysandra alkaloids had a stronger effect on HepG2 cells than did their natural counterparts, with low toxicity and high selectivity. The most potent derivative, 6k, had an IC50 value of 0.75 µM, demonstrating 25.7-fold greater anticancer activity than sarcovagine D against HepG2 cells. Through network pharmacology and molecular docking analysis, it was revealed that synthetic pachysandra alkaloids may exert their effects by inhibiting the JAK2/STAT3 pathway, thereby preventing the proliferation of liver cancer cells. Further research through scratch tests, immunofluorescence experiments, and Western blot analysis revealed that compound 6k effectively inhibited the migration of HepG2 cells and induced mitochondria-mediated intrinsic apoptosis of HepG2 cells by regulating the JAK2/STAT3 signaling pathway. The aforementioned results indicate that compound 6k could be developed as a potential candidate for the treatment of hepatocellular carcinoma.

17.
Ann Hepatol ; 29(6): 101538, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147129

ABSTRACT

INTRODUCTION AND OBJECTIVES: Prostate apoptosis response protein-4 (PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma (HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS: TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS: Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase (JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS: PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.

18.
Drug Resist Updat ; 68: 100957, 2023 05.
Article in English | MEDLINE | ID: mdl-36990047

ABSTRACT

Resistance to epidermal growth factor receptor (EGFR) inhibitors, from the first-generation erlotinib to the third generation osimertinib, is a clinical challenge in the treatment of patients with EGFR-mutant lung adenocarcinoma. Our previous work found that a novel allosteric inhibitor of phosphoglycerate mutase 1 (PGAM1), HKB99, restrains erlotinib resistance in lung adenocarcinoma cells. However, the role of HKB99 in osimertinib resistance and its underlying molecular mechanism remains to be elucidated. Herein, we found that IL-6/JAK2/STAT3 signaling pathway is aberrantly activated in both erlotinib and osimertinib resistant cells. Importantly, HKB99 significantly blocks the interaction of PGAM1 with JAK2 and STAT3 via the allosteric sites of PGAM1, which leads to inactivation of JAK2/STAT3 and thereby disrupts IL-6/JAK2/STAT3 signaling pathway. Consequently, HKB99 remarkably restores EGFR inhibitor sensitivity and exerts synergistic tumoricidal effect. Additionally, HKB99 alone or in combination with osimertinib down-regulated the level of p-STAT3 in xenograft tumor models. Collectively, this study identifies PGAM1 as a key regulator in IL-6/JAK2/STAT3 axis in the development of resistance to EGFR inhibitors, which could serve as a therapeutic target in lung adenocarcinoma with acquired resistance to EGFR inhibitors.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Interleukin-6/genetics , Interleukin-6/pharmacology , Interleukin-6/therapeutic use , Phosphoglycerate Mutase/metabolism , Phosphoglycerate Mutase/pharmacology , Drug Resistance, Neoplasm , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , ErbB Receptors , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Cell Line, Tumor , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Janus Kinase 2/pharmacology
19.
Ecotoxicol Environ Saf ; 272: 116069, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38340601

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP), a common endocrine-disrupting chemical (EDC), is widely used in daily articles, early exposure to DEHP is associated with many behavioral changes in pups. This study aimed to investigate the effects and underlying mechanisms of maternal exposure to DEHP on the impaired social interaction in pups. Pregnant rats were administered 0, 30, 300, or 750 mg/kg/d DEHP daily by oral gavage. Highly aggressive proliferating immortalized (HAPI) cells were treated with mono-(2-ethylhexyl) phthalate (MEHP) and tyrosine phosphorylation inhibitor (AG490). Our results showed that DEHP exposure induced the activation of microglias (MGs) via activating the janus kinase 2 / signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway, and increased the level of pro-inflammatory factors, then impaired the social behavior in male pups, but not female pups. Moreover, MEHP exposure could also activate HAPI via activating this signaling pathway, and AG490 could inhibit the activation of this signaling pathway caused by MEHP. Therefore, we indicated that maternal exposure to DEHP could cause the gender-specific impaired social interaction in pups that might be related to the activation of MGs.


Subject(s)
Diethylhexyl Phthalate , Diethylhexyl Phthalate/analogs & derivatives , Phthalic Acids , Tyrphostins , Humans , Pregnancy , Female , Male , Rats , Animals , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Maternal Exposure/adverse effects , Microglia/metabolism , Social Interaction
20.
Phytother Res ; 38(6): 2800-2817, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38526171

ABSTRACT

BACKGROUND AND AIM: Although the anti-cancer activity of isoalantolactone (IATL) has been extensively studied, the anti-melanoma effects of IATL are still unknown. Here, we have investigated the anti-melanoma effects and mechanism of action of IATL. MTT and crystal violet staining assays were performed to detect the inhibitory effect of IATL on melanoma cell viability. Apoptosis and cell cycle arrest induced by IATL were examined using flow cytometry. The molecular mechanism of IATL was explored by Western blotting, confocal microscope analysis, molecular docking, and cellular thermal shift assay (CETSA). A B16F10 allograft mouse model was constructed to determine the anti-melanoma effects of IATL in vivo. The results showed that IATL exerted anti-melanoma effects in vitro and in vivo. IATL induced cytoprotective autophagy in melanoma cells by inhibiting the PI3K/AKT/mTOR signaling. Moreover, IATL inhibited STAT3 activation both in melanoma cells and allograft tumors not only by binding to the SH2 domain of STAT3 but also by suppressing the activity of its upstream kinase Src. These findings demonstrate that IATL exerts anti-melanoma effects via inhibiting the STAT3 and PI3K/AKT/mTOR signaling pathways, and provides a pharmacological basis for developing IATL as a novel phytotherapeutic agent for treating melanoma clinically.


Subject(s)
Melanoma, Experimental , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , STAT3 Transcription Factor , Signal Transduction , TOR Serine-Threonine Kinases , Animals , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/metabolism , Mice , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Apoptosis/drug effects , Mice, Inbred C57BL , Humans , Furans/pharmacology , Molecular Docking Simulation , Cell Survival/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Autophagy/drug effects , Sesquiterpenes
SELECTION OF CITATIONS
SEARCH DETAIL