Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Small ; 20(28): e2310540, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597766

ABSTRACT

Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.


Subject(s)
Nanostructures , Humans , Nanostructures/chemistry , Nanotechnology/methods , Animals
2.
Environ Sci Technol ; 58(21): 9051-9060, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38742946

ABSTRACT

Research on plant-nanomaterial interactions has greatly advanced over the past decade. One particularly fascinating discovery encompasses the immunomodulatory effects in plants. Due to the low doses needed and the comparatively low toxicity of many nanomaterials, nanoenabled immunomodulation is environmentally and economically promising for agriculture. It may reduce environmental costs associated with excessive use of chemical pesticides and fertilizers, which can lead to soil and water pollution. Furthermore, nanoenabled strategies can enhance plant resilience against various biotic and abiotic stresses, contributing to the sustainability of agricultural ecosystems and the reduction of crop losses due to environmental factors. While nanoparticle immunomodulatory effects are relatively well-known in animals, they are still to be understood in plants. Here, we provide our perspective on the general components of the plant's immune system, including the signaling pathways, networks, and molecules of relevance for plant nanomodulation. We discuss the recent scientific progress in nanoenabled immunomodulation and nanopriming and lay out key avenues to use plant immunomodulation for agriculture. Reactive oxygen species (ROS), the mitogen-activated protein kinase (MAPK) cascade, and the calcium-dependent protein kinase (CDPK or CPK) pathway are of particular interest due to their interconnected function and significance in the response to biotic and abiotic stress. Additionally, we underscore that understanding the plant hormone salicylic acid is vital for nanoenabled applications to induce systemic acquired resistance. It is suggested that a multidisciplinary approach, incorporating environmental impact assessments and focusing on scalability, can expedite the realization of enhanced crop yields through nanotechnology while fostering a healthier environment.


Subject(s)
Agriculture , Nanostructures , Plant Immunity
3.
Sci Eng Ethics ; 29(2): 9, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882674

ABSTRACT

Synthetic biologists design and engineer organisms for a better and more sustainable future. While the manifold prospects are encouraging, concerns about the uncertain risks of genome editing affect public opinion as well as local regulations. As a consequence, biosafety and associated concepts, such as the Safe-by-design framework and genetic safeguard technologies, have gained notoriety and occupy a central position in the conversation about genetically modified organisms. Yet, as regulatory interest and academic research in genetic safeguard technologies advance, the implementation in industrial biotechnology, a sector that is already employing engineered microorganisms, lags behind. The main goal of this work is to explore the utilization of genetic safeguard technologies for designing biosafety in industrial biotechnology. Based on our results, we posit that biosafety is a case of a changing value, by means of further specification of how to realize biosafety. Our investigation is inspired by the Value Sensitive Design framework, to investigate scientific and technological choices in their appropriate social context. Our findings discuss stakeholder norms for biosafety, reasonings about genetic safeguards, and how these impact the practice of designing for biosafety. We show that tensions between stakeholders occur at the level of norms, and that prior stakeholder alignment is crucial for value specification to happen in practice. Finally, we elaborate in different reasonings about genetic safeguards for biosafety and conclude that, in absence of a common multi-stakeholder effort, the differences in informal biosafety norms and the disparity in biosafety thinking could end up leading to design requirements for compliance instead of for safety.


Subject(s)
Biotechnology , Containment of Biohazards , Humans , Communication , Engineering , Fenbendazole
4.
Regul Toxicol Pharmacol ; 128: 105093, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34864125

ABSTRACT

The European Commission's Green Deal is a major policy initiative aiming to achieve a climate-neutral, zero-pollution, sustainable, circular and inclusive economy, driving both the New Industrial Strategy for Europe and the Chemicals Strategy for Sustainability. Innovative materials can help to reach these policy goals, but they need to be safe and sustainable themselves. Thus, one aim is to shift the development of chemicals to Safe- and Sustainable-by-Design, and define a new systems approach and criteria for sustainability to achieve this. An online workshop was organised in September 2020 by the Joint Research Centre and the Directorate-General Research and Innovation of the European Commission, with participants from academia, non-governmental organisations, industry and regulatory bodies. The aims were to introduce the concept of Safe- and Sustainable-by-Design, to identify industrial and regulatory challenges in achieving safer and more sustainable Smart Nanomaterials as an example of innovative materials, and to deliver recommendations for directions and actions necessary to meet these challenges. The following needs were identified: (i) an agreed terminology, (ii) a common understanding of the principles of Safe- and Sustainable-by-Design, iii) criteria, assessment tools and incentives to achieve a transition from Safe-by-Design to Safe- and Sustainable-by-Design, and (iv) preparedness of regulators and legislation for innovative chemicals/nanomaterials. This paper presents the authors' view on the state of the art as well as the needs for future activities, based on discussions at the workshop and further considerations. The case of Smart Nanomaterials is used to illustrate the Safe- and Sustainable-by-Design concept and challenges for its implementation. Most of the considerations can be extended to other advanced materials and to chemicals and products in general.


Subject(s)
Chemistry/standards , Environment , Government Regulation , Nanostructures/chemistry , Nanotechnology/organization & administration , Sustainable Development/trends , European Union , Humans , Nanotechnology/standards , Policy
5.
Adv Exp Med Biol ; 1357: 19-41, 2022.
Article in English | MEDLINE | ID: mdl-35583639

ABSTRACT

Different types of natural and synthetic polymeric nanocarriers are being tested for diverse biomedical applications ranging from drug/gene delivery vehicles to imaging probes. The development of such innovative nanoparticulate systems (NPs) should include in the very beginning of their conception a comprehensive evaluation of the nano-bio interactions. Specifically, intrinsic physicochemical properties as size, surface charge and shape may have an impact on cellular uptake, intracellular trafficking, exocytosis and cyto- or genocompatibility. Those properties can be tuned for effectiveness purposes such as targeting intracellular organelles, but at the same time inducing unforeseen adverse nanotoxicological effects. Further, those properties may change due to the adsorption of biological components (e.g. proteins) with a tremendous impact on the cellular response. The evaluation of these NPs is highly challenging and has produced some controversial results. Future research work should focus on the standardization of analytical or computational methodologies, aiming the identification of toxicity trends and the generation of a useful meta-analysis database on polymeric nanocarriers.This chapter covers all the aforementioned aspects, emphasizing the importance of the in vitro cellular studies in the first stages of polymeric nanocarriers development.


Subject(s)
Nanoparticles , Nanostructures , Biological Transport , Drug Carriers/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Nanostructures/chemistry , Nanostructures/toxicity , Organelles/metabolism , Polymers/chemistry , Proteins/metabolism
6.
J Supercrit Fluids ; 173: 105204, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34219919

ABSTRACT

Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients. In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability. Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease. Through a risk analysis and a Design of Experiments (DoE), we obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.

7.
Mikrochim Acta ; 188(10): 321, 2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34482449

ABSTRACT

Functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are of increasing relevance for many key technologies of the twenty-first century. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide-based NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. The surface chemistry can significantly affect the physicochemical properties of NM, their charge, their processability and performance, as well as their impact on human health and the environment. Thus, analytical methods for the characterization of NM surface chemistry regarding chemical identification, quantification, and accessibility of functional groups (FG) and surface ligands bearing such FG are of increasing importance for quality control of NM synthesis up to nanosafety. Here, we provide an overview of analytical methods for FG analysis and quantification with special emphasis on bioanalytically relevant FG broadly utilized for the covalent attachment of biomolecules like proteins, peptides, and oligonucleotides and address method- and material-related challenges and limitations. Analytical techniques reviewed include electrochemical titration methods, optical assays, nuclear magnetic resonance and vibrational spectroscopy, as well as X-ray based and thermal analysis methods, covering the last 5-10 years. Criteria for method classification and evaluation include the need for a signal-generating label, provision of either the total or derivatizable number of FG, need for expensive instrumentation, and suitability for process and production control during NM synthesis and functionalization.


Subject(s)
Chemistry Techniques, Analytical/methods , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Ligands , Metals, Heavy/chemistry
8.
Int J Mol Sci ; 22(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361117

ABSTRACT

It is acknowledged that the physicochemical properties of nanomaterials (NMs) have an impact on their toxicity and, eventually, their pathogenicity. These properties may include the NMs' surface chemical composition, size, shape, surface charge, surface area, and surface coating with ligands (which can carry different functional groups as well as proteins). Nanotopography, defined as the specific surface features at the nanoscopic scale, is not widely acknowledged as an important physicochemical property. It is known that the size and shape of NMs determine their nanotopography which, in turn, determines their surface area and their active sites. Nanotopography may also influence the extent of dissolution of NMs and their ability to adsorb atoms and molecules such as proteins. Consequently, the surface atoms (due to their nanotopography) can influence the orientation of proteins as well as their denaturation. However, although it is of great importance, the role of surface topography (nanotopography) in nanotoxicity is not much considered. Many of the issues that relate to nanotopography have much in common with the fundamental principles underlying classic catalysis. Although these were developed over many decades, there have been recent important and remarkable improvements in the development and study of catalysts. These have been brought about by new techniques that have allowed for study at the nanoscopic scale. Furthermore, the issue of quantum confinement by nanosized particles is now seen as an important issue in studying nanoparticles (NPs). In catalysis, the manipulation of a surface to create active surface sites that enhance interactions with external molecules and atoms has much in common with the interaction of NP surfaces with proteins, viruses, and bacteria with the same active surface sites of NMs. By reviewing the role that surface nanotopography plays in defining many of the NMs' surface properties, it reveals the need for its consideration as an important physicochemical property in descriptive and predictive toxicology. Through the manipulation of surface topography, and by using principles developed in catalysis, it may also be possible to make safe-by-design NMs with a reduction of the surface properties which contribute to their toxicity.


Subject(s)
Drug Delivery Systems , Drug Design , Nanostructures/chemistry , Nanostructures/toxicity , Catalysis , Nanostructures/administration & dosage , Surface Properties
9.
Sci Eng Ethics ; 27(2): 22, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33779839

ABSTRACT

Genetic engineering techniques (e.g., CRISPR-Cas) have led to an increase in biotechnological developments, possibly leading to uncertain risks. The European Union aims to anticipate these by embedding the Precautionary Principle in its regulation for risk management. This principle revolves around taking preventive action in the face of uncertainty and provides guidelines to take precautionary measures when dealing with important values such as health or environmental safety. However, when dealing with 'new' technologies, it can be hard for risk managers to estimate the societal or environmental consequences of a biotechnology that might arise once introduced or embedded in society due to that these sometimes do not comply with the established norms within risk assessment. When there is insufficient knowledge, stakeholders active in early developmental stages (e.g., researchers) could provide necessary knowledge by conducting research specifically devoted to what these unknown risks could entail. In theory, the Safe-by-Design (SbD) approach could enable such a controlled learning environment to gradually identify what these uncertain risks are, to which we refer as responsible learning. In this paper, we argue that three conditions need to be present to enable such an environment: (1) regulatory flexibility, (2) co-responsibility between researchers and regulators, and (3) openness towards all stakeholders. If one of these conditions would not be present, the SbD approach cannot be implemented to its fullest potential, thereby limiting an environment for responsible learning and possibly leaving current policy behind to anticipate uncertain risks.


Subject(s)
Biotechnology , Risk Management , European Union , Humans , Risk Assessment
10.
Small ; 16(36): e2000673, 2020 09.
Article in English | MEDLINE | ID: mdl-32406992

ABSTRACT

The rate of translational effort of nanomedicine requires strategic planning of nanosafety research in order to enable clinical trials and safe use of nanomedicine in patients. Herein, the experiences that have emerged based on the safety data of classic liposomal formulations in the space of oncology are discussed, along with a description of the new challenges that need to be addressed according to the rapid expansion of nanomedicine platform beyond liposomes. It is valuable to consider the combined use of predictive toxicological assessment supported by deliberate investigation on aspects such as absorption, distribution, metabolism, and excretion (ADME) and toxicokinetic profiles, the risk that may be introduced during nanomanufacture, unique nanomaterials properties, and nonobvious nanosafety endpoints, for example. These efforts will allow the generation of investigational new drug-enabling safety data that can be incorporated into a rational infrastructure for regulatory decision-making. Since the safety assessment relates to nanomaterials, the investigation should cover the important physicochemical properties of the material that may lead to hazards when the nanomedicine product is utilized in humans.


Subject(s)
Nanomedicine , Neoplasms , Toxicology , Antineoplastic Agents/toxicity , Drug and Narcotic Control , Humans , Nanomedicine/standards , Nanostructures/toxicity , Neoplasms/therapy , Toxicology/methods , Toxicology/standards , Toxicology/trends
11.
Small ; 16(36): e2001883, 2020 09.
Article in English | MEDLINE | ID: mdl-32537842

ABSTRACT

Robotics and automation provide potentially paradigm shifting improvements in the way materials are synthesized and characterized, generating large, complex data sets that are ideal for modeling and analysis by modern machine learning (ML) methods. Nanomaterials have not yet fully captured the benefits of automation, so lag behind in the application of ML methods of data analysis. Here, some key developments in, and roadblocks to the application of ML methods are reviewed to model and predict potentially adverse biological and environmental effects of nanomaterials. This work focuses on the diverse ways a range of ML algorithms are applied to understand and predict nanomaterials properties, provides examples of the application of traditional ML and deep learning methods to nanosafety, and provides context and future perspectives on developments that are likely to occur, or need to occur in the near future that allow artificial intelligence to make a deeper contribution to nanosafety.


Subject(s)
Artificial Intelligence , Machine Learning , Safety , Toxicology , Algorithms , Robotics , Toxicology/methods , Toxicology/trends
12.
Risk Anal ; 40(8): 1632-1644, 2020 08.
Article in English | MEDLINE | ID: mdl-32421209

ABSTRACT

Advanced gene editing techniques such as Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas have increased the pace of developments in the field of industrial biotechnology. Such techniques imply new possibilities when working with living organisms, possibly leading to uncertain risks. In the Netherlands, current policy fails to address these uncertain risks because risk classification is determined process-wise (i.e., genetically modified organism [GMO] and non-GMO), there is a strong focus on quantifiable risks, and the linearity within current governance (science-policy-society) hinders iterative communication between stakeholders, leaving limited room to anticipate uncertainties at an early stage of development. A suggested concept to overcome these shortcomings is the Safe-by-Design (SbD) approach, which, theoretically, allows stakeholders to iteratively incorporate safety measures throughout a technology's development process, creating a dynamic environment for the anticipation of uncertain risks. Although this concept originates from chemical engineering and is already widely applied in nanotechnology, for the field of biotechnology, there is no agreed upon definition yet. To explore the possibilities of SbD for future governance of biotechnology, we should gain insight in how various stakeholders perceive notions of risk, safety, and inherent safety, and what this implies for the applicability of SbD for risk governance concerning industrial biotechnology. Our empirical research reveals three main themes: (1) diverging expectations with regard to safety and risks, and to establish an acceptable level of risk; (2) different applications of SbD and inherent safety, namely, product- and process-wise; and (3) unclarity in allocating responsibilities to stakeholders in the development process of a biotechnology and within society.


Subject(s)
Biotechnology , Risk , Uncertainty , Netherlands , Safety
13.
Sci Eng Ethics ; 24(6): 1673-1696, 2018 12.
Article in English | MEDLINE | ID: mdl-28952071

ABSTRACT

The Safe-by-Design approach in synthetic biology holds the promise of designing the building blocks of life in an organism guided by the value of safety. This paves a new way for using biotechnologies safely. However, the Safe-by-Design approach moves the bulk of the responsibility for safety to the actors in the research and development phase. Also, it assumes that safety can be defined and understood by all stakeholders in the same way. These assumptions are problematic and might actually undermine safety. This research explores these assumptions through the use of a Group Decision Room. In this set up, anonymous and non-anonymous deliberation methods are used for different stakeholders to exchange views. During the session, a potential synthetic biology application is used as a case for investigation: the Food Warden, a biosensor contained in meat packaging for indicating the freshness of meat. Participants discuss what potential issues might arise, how responsibilities should be distributed in a forward-looking way, who is to blame if something would go wrong. They are also asked what safety and responsibility mean at different phases, and for different stakeholders. The results of the session are not generalizable, but provide valuable insights. Issues of safety cannot all be taken care of in the R&D phase. Also, when things go wrong, there are proximal and distal causes to consider. In addition, capacities of actors play an important role in defining their responsibilities. Last but not least, this research provides a new perspective on the role of instruction manuals in achieving safety.


Subject(s)
Attitude , Biotechnology/ethics , Food Safety , Meat-Packing Industry , Research Personnel/ethics , Social Responsibility , Synthetic Biology/ethics , Biosensing Techniques , Decision Making , Ethics, Research , Humans , Stakeholder Participation
14.
Sci Total Environ ; 914: 169590, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38154635

ABSTRACT

With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.


Subject(s)
Nanoparticles , Protein Corona , Nanoparticles/toxicity , Nanoparticles/chemistry
15.
Toxicol In Vitro ; 97: 105792, 2024 May.
Article in English | MEDLINE | ID: mdl-38364873

ABSTRACT

The objective of Safe-by-Design (SbD) is to support the development of safer products and production processes, and enable safe use throughout a materials' life cycle; an intervention at an early stage of innovation can greatly benefit industry by reducing costs associated with the development of products later found to elicit harmful effects. Early hazard screening can support this process, and is needed for all of the expected nanomaterial exposure routes, including inhalation, ingestion and dermal. In this study, we compare in vitro and ex vivo cell models that represent dermal exposures (including HaCaT cells, primary keratinocytes, and reconstructed human epidermis (RhE)), and when possible consider these in the context of regulatory accepted OECD TG for in vitro dermal irritation. Various benchmark nanomaterials were used to assess markers of cell stress in each cell model. In addition, we evaluated different dosing strategies that have been used when applying the OECD TG for dermal irritation in assessment of nanomaterials, and how inconsistencies in the approach used can have considerable impact of the conclusions made. Although we could not demonstrate alignment of all models used, there was an indication that the simpler in vitro cell model aligned more closely with RhE tissue than ex vivo primary keratinocytes, supporting the use of HaCaT cells for screening of dermal toxicity of nanomaterials and in early-stage SbD decision-making.


Subject(s)
Keratinocytes , Nanostructures , Humans , Epidermis , Nanostructures/toxicity , Administration, Inhalation , HaCaT Cells
16.
Adv Drug Deliv Rev ; 204: 115138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37980951

ABSTRACT

Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.


Subject(s)
Nanoparticles , Nanostructures , Humans , Nanomedicine , Microscopy , Optical Imaging
17.
Environ Int ; 183: 108305, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048736

ABSTRACT

With the introduction of the European Commission's "Safe and Sustainable-by-Design" (SSbD) framework, the interest in understanding the implications of safety and sustainability assessments of chemicals, materials, and processes at early-innovation stages has skyrocketed. Our study focuses on the "Safe-by-Design" (SbD) approach from the nanomaterials sector, which predates the SSbD framework. In this assessment, SbD studies have been compiled and categorized into reviews, case studies, and frameworks. Reviews of SbD tools have been further classified as quantitative, qualitative, or toolboxes and repositories. We assessed the SbD case studies and classified them into three categories: safe(r)-by-modeling, safe(r)-by-selection, or safe(r)-by-redesign. This classification enabled us to understand past SbD work and subsequently use it to define future SSbD work so as to avoid confusion and possibilities of "SSbD-washing" (similar to greenwashing). Finally, the preexisting SbD frameworks have been studied and contextualized against the SSbD framework. Several key recommendations for SSbD based on our analysis can be made. Knowledge gained from existing approaches such as SbD, green and sustainable chemistry, and benign-by-design approaches needs to be preserved and effectively transferred to SSbD. Better incorporation of chemical and material functionality into the SSbD framework is required. The concept of lifecycle thinking and the stage-gate innovation model need to be reconciled for SSbD. The development of high-throughput screening models is critical for the operationalization of SSbD. We conclude that the rapid pace of both SbD and SSbD development necessitates a regular mapping of the newly published literature that is relevant to this field.


Subject(s)
Nanostructures , Sustainable Development , Forecasting , Research Design
18.
ACS Nano ; 18(8): 6038-6094, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38350010

ABSTRACT

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.

19.
Sci Total Environ ; 946: 174155, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38942309

ABSTRACT

In 2020, the European Commission published a regulation that states all producers of white paints containing titanium dioxide (TiO2) must provide a warning label on their products. Exposure during the production and application of products containing TiO2 can be harmful, and therefore these products must be labeled as "may cause cancer." The paint industry is a major user of TiO2 pigment. This study focuses on pigment release from three TiO2-based paints and discusses the effect of paint formulation, more precisely the Pigment Volume Concentration (PVC), to predict TiO2 pigment release from the paints during a simulated use phase and at the end of life (EoL). The use phase considered mild abrasion of painted panels that simulated cleaning or touching. The EoL phase was studied using leaching tests simulating landfill disposal. TiO2 release during both activities was evident with a high discrepancy between the three paints. While dry rubbing was similar for all paints, activities involving water present a high release link to paint matrix degradation. The paint pigment volume concentration and the paint permeability determines the TiO2 release during wet rubbing and leaching. This work represents an attempt to identify the paint permeability as a matrix-related parameter to predict TiO2 release and a way to use of this parameter to develop safer products.

20.
Comput Struct Biotechnol J ; 25: 105-126, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38974014

ABSTRACT

The adoption of innovative advanced materials holds vast potential, contingent upon addressing safety and sustainability concerns. The European Commission advocates the integration of Safe and Sustainable by Design (SSbD) principles early in the innovation process to streamline market introduction and mitigate costs. Within this framework, encompassing ecological, social, and economic factors is paramount. The NanoSafety Cluster (NSC) delineates key safety and sustainability areas, pinpointing unresolved issues and research gaps to steer the development of safe(r) materials. Leveraging FAIR data management and integration, alongside the alignment of regulatory aspects, fosters informed decision-making and innovation. Integrating circularity and sustainability mandates clear guidance, ensuring responsible innovation at every stage. Collaboration among stakeholders, anticipation of regulatory demands, and a commitment to sustainability are pivotal for translating SSbD into tangible advancements. Harmonizing standards and test guidelines, along with regulatory preparedness through an exchange platform, is imperative for governance and market readiness. By adhering to these principles, the effective and sustainable deployment of innovative materials can be realized, propelling positive transformation and societal acceptance.

SELECTION OF CITATIONS
SEARCH DETAIL