Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Publication year range
1.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438581

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


Subject(s)
GABAergic Neurons , Hyperalgesia , Mice, Inbred C57BL , Receptors, Nicotinic , Animals , Receptors, Nicotinic/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Male , Hyperalgesia/metabolism , Hyperalgesia/drug therapy , Mice , Pars Reticulata/metabolism , Pars Reticulata/drug effects , Nicotine/pharmacology , Analgesics/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Capsaicin/pharmacology , Acetylcholine/metabolism , Optogenetics , Pain Threshold/drug effects
2.
Mov Disord ; 38(10): 1850-1860, 2023 10.
Article in English | MEDLINE | ID: mdl-37461292

ABSTRACT

BACKGROUND: Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE: The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS: We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS: Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS: Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Pars Reticulata , Mice , Animals , Levodopa/adverse effects , Halorhodopsins , GABAergic Neurons , Substantia Nigra
3.
Int J Neurosci ; 133(5): 523-531, 2023 May.
Article in English | MEDLINE | ID: mdl-34082662

ABSTRACT

The phenomenon of plasticity in the striatum, and its relation with the striatum-nigra neuronal circuit has clinical and neurophysiological relevance to Parkinson and epilepsy. High frequency stimulation (HFS) can induce neural plasticity. Furthermore, it is possible to induce plasticity in the dorsal striatum and this can be modulated by substantia nigra activity. But it has not been shown yet what would be the effects in the striatum-nigra circuit after plasticity induction in striatum with HSF. Literature also misses a detailed description of the way back loop of the circuit: the striatal firing rate after substantia nigrás inhibition. We here conducted: First Experiment, application of HFS in dorsomedial striatum and measure of spontaneous and longlasting behavior expression in the open field three days later; Second, application of single pulses on dorsomedial striatum and measure of the evoked potentials in substantia nigra before and after HFS; Third Experiment: inhibition of substantia nigra and recording of the firing rate of dorsomedial striatum. HFS in dorsomedial striatum caused increased locomotion behaviors, but not classical stereotypy. However, rats had either an increase or decrease in substantia nigrás evoked potentials. Also, substantia nigrás inhibition caused an increase in dorsomedial striatum firing rate. Present data are suggestive of a potential application of HFS in striatum, as an attempt to modulate behavior rigidity and hypokinesia of diseases involving the basal ganglia, especially Parkinson´s Disease.


Subject(s)
Epilepsy , Parkinson Disease , Rats , Animals , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Corpus Striatum , Basal Ganglia , Epilepsy/metabolism
4.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768403

ABSTRACT

The serotonin and kappa opioid receptor (KOR) systems are strongly implicated in disorders of negative affect, such as anxiety and depression. KORs expressed on axon terminals inhibit the release of neurotransmitters, including serotonin. The substantia nigra pars reticulata (SNr) is involved in regulating affective behaviors. It receives the densest serotonergic innervation in the brain and has high KOR expression; however, the influence of KORs on serotonin transmission in this region is yet to be explored. Here, we used ex vivo fast-scan cyclic voltammetry (FSCV) to investigate the effects of a KOR agonist, U50, 488 (U50), and a selective serotonin reuptake inhibitor, escitalopram, on serotonin release and reuptake in the SNr. U50 alone reduced serotonin release and uptake, and escitalopram alone augmented serotonin release and slowed reuptake, while pretreatment with U50 blunted both the release and uptake effects of escitalopram. Here, we show that the KOR influences serotonin signaling in the SNr in multiple ways and short-term activation of the KOR alters serotonin responses to escitalopram. These interactions between KORs and serotonin may contribute to the complexity in the responses to treatments for disorders of negative affect. Ultimately, the KOR system may prove to be a promising pharmacological target, alongside traditional antidepressant treatments.


Subject(s)
Pars Reticulata , Receptors, Opioid, kappa , Mice , Animals , Receptors, Opioid, kappa/metabolism , Serotonin/metabolism , Pars Reticulata/metabolism , Escitalopram , Selective Serotonin Reuptake Inhibitors/pharmacology , Substantia Nigra/metabolism
5.
J Neurosci ; 41(12): 2668-2683, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33563724

ABSTRACT

l-3,4-dihydroxyphenylalanine (l-DOPA) is an effective treatment for Parkinson's disease (PD); however, long-term treatment induces l-DOPA-induced dyskinesia (LID). To elucidate its pathophysiology, we developed a mouse model of LID by daily administration of l-DOPA to PD male ICR mice treated with 6-hydroxydopamine (6-OHDA), and recorded the spontaneous and cortically evoked neuronal activity in the external segment of the globus pallidus (GPe) and substantia nigra pars reticulata (SNr), the connecting and output nuclei of the basal ganglia, respectively, in awake conditions. Spontaneous firing rates of GPe neurons were decreased in the dyskinesia-off state (≥24 h after l-DOPA injection) and increased in the dyskinesia-on state (20-100 min after l-DOPA injection while showing dyskinesia), while those of SNr neurons showed no significant changes. GPe and SNr neurons showed bursting activity and low-frequency oscillation in the PD, dyskinesia-off, and dyskinesia-on states. In the GPe, cortically evoked late excitation was increased in the PD and dyskinesia-off states but decreased in the dyskinesia-on state. In the SNr, cortically evoked inhibition was largely suppressed, and monophasic excitation became dominant in the PD state. Chronic l-DOPA treatment partially recovered inhibition and suppressed late excitation in the dyskinesia-off state. In the dyskinesia-on state, inhibition was further enhanced, and late excitation was largely suppressed. Cortically evoked inhibition and late excitation in the SNr are mediated by the cortico-striato-SNr direct and cortico-striato-GPe-subthalamo-SNr indirect pathways, respectively. Thus, in the dyskinesia-on state, signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed, underlying LID.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is caused by progressive loss of midbrain dopaminergic neurons, characterized by tremor, rigidity, and akinesia, and estimated to affect around six million people world-wide. Dopamine replacement therapy is the gold standard for PD treatment; however, control of symptoms using l-3,4-dihydroxyphenylalanine (l-DOPA) becomes difficult over time because of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID), one of the major issues for advanced PD. Our electrophysiological data suggest that dynamic changes in the basal ganglia circuitry underlie LID; signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed. These results will provide the rationale for the development of more effective treatments for LID.


Subject(s)
Basal Ganglia/physiopathology , Cerebral Cortex/physiopathology , Disease Models, Animal , Dyskinesia, Drug-Induced/physiopathology , Levodopa/toxicity , Synaptic Transmission/physiology , Animals , Basal Ganglia/drug effects , Cerebral Cortex/drug effects , Male , Mice , Mice, Inbred ICR , Motor Activity/drug effects , Motor Activity/physiology , Synaptic Transmission/drug effects
6.
J Neurosci Res ; 100(11): 2090-2106, 2022 11.
Article in English | MEDLINE | ID: mdl-36107107

ABSTRACT

The subthalamic nucleus (STN), substantia nigra pars reticulata (SNr), and pedunculopontine tegmental nucleus (PPTg) are reciprocally connected brain regions that play significant roles in the motor control. However, the electrophysiological relationship among the STN, SNr, and PPTg remains controversial. The present study was designed to further explore the mutual electrophysiological relationship of these brain regions from the perspective of the PPTg-STN-SNr neural circuit. The neuronal activities in the STN and SNr were simultaneously recorded while the PPTg was stimulated in anesthetized rats. The activation of PPTg induced excitatory responses of both the STN and SNr neurons. Comparisons of excitation latencies between the STN and SNr were made to distinguish the excitation evoked from the PPTg-STN-SNr pathway. Additionally, two types of excitatory responses and various inhibitory responses with different latencies in the SNr were recorded. The SNr responses could also be classified into five different response categories, which might attribute to projections within different neural circuits. Neuronal recordings were analyzed in different electrophysiological features (i.e., interspike interval [ISI] mode, ISI asymmetry index, ISI coefficient of variance, firing rate, burst index, and trough peak duration), and different response patterns of neurons had their specific features in neuronal activities. These findings indicated the complex interactions among the STN, SNr, and PPTg electrophysiologically, and provided insights into exploring information transmission mechanisms underlying these circuits.


Subject(s)
Pars Reticulata , Pedunculopontine Tegmental Nucleus , Subthalamic Nucleus , Animals , Neurons/physiology , Rats , Rats, Sprague-Dawley , Substantia Nigra/metabolism
7.
J Neurosci Res ; 100(6): 1370-1385, 2022 06.
Article in English | MEDLINE | ID: mdl-35355316

ABSTRACT

Accumulating evidence implicates the parafascicular nucleus of the thalamus (Pf) in basal ganglia (BG)-related functions and pathologies. Despite Pf connectivity with all BG components, most attention is focused on the thalamostriatal system and an integrated view of thalamic information processing in this network is still lacking. Here, we addressed this question by recording the responses elicited by Pf activation in single neurons of the substantia nigra pars reticulata (SNr), the main BG output structure in rodents, in anesthetized mice. We performed optogenetic activation of Pf neurons innervating the striatum, the subthalamic nucleus (STN), or the SNr using virally mediated transcellular delivery of Cre from injection in either target in Rosa26-LoxP-stop-ChR2-EYFP mice to drive channelrhodopsin expression. Photoactivation of Pf neurons connecting the striatum evoked an inhibition often followed by an excitation, likely resulting from the activation of the trans-striatal direct and indirect pathways, respectively. Photoactivation of Pf neurons connecting the SNr or the STN triggered one or two early excitations, suggesting partial functional overlap of trans-subthalamic and direct thalamonigral projections. Excitations were followed in about half of the cases by an inhibition that might reflect recruitment of intranigral inhibitory loops. Finally, global Pf stimulation, electrical or optogenetic, elicited similar complex responses comprising up to four components: one or two short-latency excitations, an inhibition, and a late excitation. These data provide evidence for functional connections between the Pf and different BG components and for convergence of the information processed through these pathways in single SNr neurons, stressing their importance in regulating BG outflow.


Subject(s)
Intralaminar Thalamic Nuclei , Subthalamic Nucleus , Animals , Basal Ganglia/physiology , Corpus Striatum/physiology , Intralaminar Thalamic Nuclei/physiology , Mice , Neural Pathways/physiology , Thalamus/physiology
8.
Acta Pharmacol Sin ; 43(8): 1928-1939, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34880404

ABSTRACT

The subthalamic nucleus (STN) is one of the best targets for therapeutic deep brain stimulation (DBS) to control motor symptoms in Parkinson's disease. However, the precise circuitry underlying the effects of STN-DBS remains unclear. To understand how electrical stimulation affects STN projection neurons, we used a retrograde viral vector (AAV-retro-hSyn-eGFP) to label STN neurons projecting to the substantia nigra pars reticulata (SNr) (STN-SNr neurons) or the globus pallidus interna (GPi) (STN-GPi neurons) in mice, and performed whole-cell patch-clamp recordings from these projection neurons in ex vivo brain slices. We found that STN-SNr neurons exhibited stronger responses to depolarizing stimulation than STN-GPi neurons. In most STN-SNr and STN-GPi neurons, inhibitory synaptic inputs predominated over excitatory inputs and electrical stimulation at 20-130 Hz inhibited these neurons in the short term; its longer-term effects varied. 6-OHDA lesion of the nigrostriatal dopaminergic pathway significantly reduced inhibitory synaptic inputs in STN-GPi neurons, but did not change synaptic inputs in STN-SNr neurons; it enhanced short-term electrical-stimulation-induced inhibition in STN-SNr neurons but reversed the effect of short-term electrical stimulation on the firing rate in STN-GPi neurons from inhibitory to excitatory; in both STN-SNr and STN-GPi neurons, it increased the inhibition but attenuated the enhancement of firing rate induced by long-term electrical stimulation. Our results suggest that STN-SNr and STN-GPi neurons differ in their synaptic inputs, their responses to electrical stimulation, and their modification under parkinsonian conditions; STN-GPi neurons may play important roles in both the pathophysiology and therapeutic treatment of Parkinson's disease.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Parkinsonian Disorders , Subthalamic Nucleus , Animals , Deep Brain Stimulation/methods , Electric Stimulation/methods , Mice , Neurons , Parkinson Disease/pathology , Parkinsonian Disorders/therapy , Substantia Nigra/pathology , Substantia Nigra/physiology , Subthalamic Nucleus/pathology , Subthalamic Nucleus/physiology
9.
J Neurosci ; 40(46): 8853-8869, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33046548

ABSTRACT

Opioid reward has traditionally been thought to be mediated by GABA-induced disinhibition of dopamine (DA) neurons in the VTA. However, direct behavioral evidence supporting this hypothesis is still lacking. In this study, we found that the µ opioid receptor (MOR) gene, Oprm1, is highly expressed in GABA neurons, with ∼50% of GABA neurons in the substantia nigra pars reticulata (SNr), ∼30% in the VTA, and ∼70% in the tail of the VTA (also called the rostromedial tegmental nucleus) in male rats. No Oprm1 mRNA was detected in midbrain DA neurons. We then found that optogenetic inhibition of VTA DA neurons reduced intravenous heroin self-administration, whereas activation of these neurons produced robust optical intracranial self-stimulation in DAT-Cre mice, supporting an important role of DA neurons in opioid reward. Unexpectedly, pharmacological blockade of MORs in the SNr was more effective than in the VTA in reducing heroin reward. Optogenetic activation of VTA GABA neurons caused place aversion and inhibited cocaine, but not heroin, self-administration, whereas optogenetic activation of SNr GABA neurons caused a robust increase in heroin self-administration with an extinction pattern, suggesting a compensatory response in drug intake due to reduced heroin reward. In addition, activation of SNr GABA neurons attenuated heroin-primed, but not cue-induced, reinstatement of drug-seeking behavior, whereas inhibition of SNr GABA neurons produced optical intracranial self-stimulation and place preference. Together, these findings suggest that MORs on GABA neurons in the SNr play more important roles in opioid reward and relapse than MORs on VTA GABA neurons.SIGNIFICANCE STATEMENT Opioid reward has long been believed to be mediated by inhibition of GABA interneurons in the VTA that subsequently leads to disinhibition of DA neurons. In this study, we found that more µ opioid receptors (MORs) are expressed in GABA neurons in the neighboring SNr than in the VTA, and that pharmacological blockade of MORs in the SNr is more effective in reducing heroin reward than blockade of MORs in the VTA. Furthermore, optogenetic activation of VTA GABA neurons inhibited cocaine, but not heroin, self-administration, whereas activation of SNr GABA neurons inhibited heroin reward and relapse. These findings suggest that opioid reward is more likely mediated by stimulation of MORs in GABA afferents from other brain regions than in VTA GABA neurons.


Subject(s)
GABAergic Neurons/physiology , Heroin/pharmacology , Narcotics/pharmacology , Reward , Substantia Nigra/physiology , Ventral Tegmental Area/physiology , Animals , Cues , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Extinction, Psychological , Female , Male , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Rats , Rats, Long-Evans , Receptors, Opioid, mu/biosynthesis , Receptors, Opioid, mu/genetics , Self Administration
10.
J Neurophysiol ; 126(4): 1248-1264, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34406873

ABSTRACT

Parkinsonian motor deficits are associated with elevated inhibitory output from the basal ganglia (BG). However, several features of Parkinson's disease (PD) have not been accounted for by this simple "classical rate model" framework, including the observation in patients with PD that movements guided by external stimuli are less impaired than otherwise identical movements generated based on internal goals. Is this difference due to divergent processing within the BG itself or due to the recruitment of extra-BG pathways by sensory processing? In addition, surprisingly little is known about precisely when, in the sequence from selecting to executing movements, BG output is altered by PD. Here, we address these questions by recording activity in the substantia nigra pars reticulata (SNr), a key BG output nucleus, in hemiparkinsonian mice performing a well-controlled behavioral task requiring stimulus-guided and internally specified directional movements. We found that hemiparkinsonian mice exhibited a bias ipsilateral to the side of dopaminergic cell loss that was stronger when movements were internally specified rather than stimulus guided, consistent with clinical observations in patients with Parkinson's disease. We further found that changes in parkinsonian SNr activity during movement preparation were consistent with the ipsilateral behavioral bias, as well as its greater magnitude for internally specified movements. Although these findings are inconsistent with some aspects of the classical rate model, they are accounted for by a related "directional rate model" positing that SNr output phasically overinhibits motor output in a direction-specific manner. These results suggest that parkinsonian changes in BG output underlying movement preparation contribute to the greater deficit in internally specified than stimulus-guided movements.NEW & NOTEWORTHY Movements of patients with Parkinson's disease are often less impaired when guided by external stimuli than when generated based on internal goals. Whether this effect is due to distinct processing in the basal ganglia (BG) or due to compensation from other motor pathways is an open question with therapeutic implications. We recorded BG output in behaving parkinsonian mice and found that BG activity during movement preparation was consistent with the differences between these forms of movement.


Subject(s)
Behavior, Animal/physiology , Motor Activity/physiology , Parkinson Disease/physiopathology , Pars Reticulata/physiopathology , Adrenergic Agents/pharmacology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Oxidopamine/pharmacology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology
11.
Neurobiol Dis ; 148: 105214, 2021 01.
Article in English | MEDLINE | ID: mdl-33278598

ABSTRACT

The basal ganglia (BG) are involved in cognitive/motivational functions in addition to movement control. Thus, BG segregated circuits, the sensorimotor (SM) and medial prefrontal (mPF) circuits, process different functional domains, such as motor and cognitive/motivational behaviours, respectively. With a high presence in the BG, the CB1 cannabinoid receptor modulates BG circuits. Furthermore, dopamine (DA), one of the principal neurotransmitters in the BG, also plays a key role in circuit functionality. Taking into account the interaction between DA and the endocannabinoid system at the BG level, we investigated the functioning of BG circuits and their modulation by the CB1 receptor under DA-depleted conditions. We performed single-unit extracellular recordings of substantia nigra pars reticulata (SNr) neurons with simultaneous cortical stimulation in sham and 6-hydroxydopamine (6-OHDA)-lesioned rats, together with immunohistochemical assays. We showed that DA loss alters cortico-nigral information processing in both circuits, with a predominant transmission through the hyperdirect pathway in the SM circuit and an increased transmission through the direct pathway in the mPF circuit. Moreover, although DA denervation does not change CB1 receptor density, it impairs its functionality, leading to a lack of modulation. These data highlight an abnormal transfer of information through the associative/limbic domains after DA denervation that may be related to the non-motor symptoms manifested by Parkinson's disease patients.


Subject(s)
Basal Ganglia/metabolism , Dopamine/metabolism , Limbic System/metabolism , Motor Cortex/metabolism , Neurons/metabolism , Pars Reticulata/metabolism , Receptor, Cannabinoid, CB1/metabolism , Action Potentials/physiology , Animals , Basal Ganglia/drug effects , Disease Models, Animal , Electrodes , Immunohistochemistry , Limbic System/drug effects , Male , Motor Cortex/drug effects , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/drug effects , Oxidopamine/toxicity , Parkinson Disease/metabolism , Pars Reticulata/cytology , Pars Reticulata/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Receptor, Cannabinoid, CB1/physiology , Sympathectomy, Chemical , Sympatholytics/toxicity
12.
Neurobiol Dis ; 155: 105393, 2021 07.
Article in English | MEDLINE | ID: mdl-34000417

ABSTRACT

Evidence suggests that exaggerated beta range local field potentials (LFP) in basal ganglia-thalamocortical circuits constitute an important biomarker for feedback for deep brain stimulation in Parkinson's disease patients, although the role of this phenomenon in triggering parkinsonian motor symptoms remains unclear. A useful model for probing the causal role of motor circuit LFP synchronization in motor dysfunction is the unilateral dopamine cell-lesioned rat, which shows dramatic motor deficits walking contralaterally to the lesion but can walk steadily ipsilaterally on a circular treadmill. Within hours after 6-OHDA injection, rats show marked deficits in ipsilateral walking with early loss of significant motor cortex (MCx) LFP peaks in the mid-gamma 41-45 Hz range in the lesioned hemisphere; both effects were reversed by dopamine agonist administration. Increases in MCx and substantia nigra pars reticulata (SNpr) coherence and LFP power in the 29-40 Hz range emerged more gradually over 7 days, although without further progression of walking deficits. Twice-daily chronic dopamine antagonist treatment induced rapid onset of catalepsy and also reduced MCx 41-45 Hz LFP activity at 1 h, with increases in MCx and SNpr 29-40 Hz power/coherence emerging over 7 days, as assessed during periods of walking before the morning treatments. Thus, increases in high beta power in these parkinsonian models emerge gradually and are not linearly correlated with motor deficits. Earlier changes in cortical circuits, reflected in the rapid decreases in MCx LFP mid-gamma LFP activity, may contribute to evolving plasticity supporting increased beta range synchronized activity in basal ganglia-thalamocortical circuits after loss of dopamine receptor stimulation.


Subject(s)
Beta Rhythm/physiology , Gamma Rhythm/physiology , Motor Cortex/physiopathology , Motor Disorders/physiopathology , Oxidopamine/toxicity , Parkinsonian Disorders/physiopathology , Animals , Beta Rhythm/drug effects , Dopamine D2 Receptor Antagonists/administration & dosage , Exercise Test/methods , Gamma Rhythm/drug effects , Male , Motor Cortex/drug effects , Motor Disorders/chemically induced , Parkinsonian Disorders/chemically induced , Rats , Rats, Long-Evans , Receptors, Dopamine D1/antagonists & inhibitors
13.
Int J Mol Sci ; 21(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198169

ABSTRACT

Dopaminergic medication for Parkinson's disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03-0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2-0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the "hyperdirect" (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.


Subject(s)
Dopamine Agonists/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin/metabolism , Subthalamic Nucleus/drug effects , Aminopyridines/pharmacology , Animals , Apomorphine/pharmacology , Basal Ganglia/drug effects , Basal Ganglia/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Indoles/pharmacology , Male , Motor Cortex/drug effects , Motor Cortex/metabolism , Neural Pathways/drug effects , Neural Pathways/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pyridines/pharmacology , Quinpirole/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Subthalamic Nucleus/metabolism
14.
Mov Disord ; 33(9): 1423-1431, 2018 09.
Article in English | MEDLINE | ID: mdl-29756399

ABSTRACT

BACKGROUND: Susceptibility MRI may capture Parkinson's disease-related pathology. This study delineated longitudinal changes in different substantia nigra regions. METHODS: Seventy-two PD patients and 62 controls were studied at both baseline and after 18 months with MRI. R2* and quantitative susceptibility mapping values from the substantia nigra pars compacta and substantia nigra pars reticulata were calculated. Mixed-effects models compared controls with PD or PD subgroups having different disease durations: early (<1 year), middle (<5 years, middle-stage PD), and late (>5 years, late-stage PD). Pearson's correlation assessed associations between imaging and clinical measures. RESULTS: At baseline, R2* and quantitative susceptibility mapping were higher in both the substantia nigra pars compacta and substantia nigra pars reticulata in all PD patients (group effect, P ≤ 0.003). Longitudinally, the substantia nigra pars compacta R2* showed a faster increase in PD compared with controls (time × group, P = 0.002), whereas quantitative susceptibility mapping did not (P = 0.668). The substantia nigra pars reticulata R2* and quantitative susceptibility mapping did not differ between PD and controls (time × group, P ≥ 0.084), although both decreased longitudinally (time effect, P ≤ 0.004). Baseline substantia nigra pars compacta R2* was higher in all PD subgroups (group, P ≤ 0.006), but showed a significantly faster increase only in later-stage PD (time × group, P < 0.0001) that correlated with changes in nonmotor symptoms (r = 0.746, P = 0.002). Baseline substantia nigra pars reticulata quantitative susceptibility mapping was higher in middle-stage PD and later-stage PD (group, P ≤ 0.002), but showed a longitudinal decrease (time × group, P = 0.004) only in later-stage PD that correlated with changes in motor signs (r = 0.837, P < 0.001). CONCLUSION: Susceptibility MRI revealed distinct patterns of PD progression in the substantia nigra pars compacta and substantia nigra pars reticulata. The different patterns are particularly clear in later-stage patients. These findings may resolve past controversies and have implications in the pathophysiological processes during PD progression. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Substantia Nigra/diagnostic imaging , Aged , Correlation of Data , Disease Progression , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Middle Aged
15.
Neuroimage ; 146: 1050-1061, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27825979

ABSTRACT

The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei. In the present study, we employed simultaneous deep brain stimulation and functional magnetic resonance imaging (DBS-fMRI) with cerebral blood volume (CBV) measurements to functionally and unbiasedly map the circuit- and network level connectivity of the SNr and GPe. Sprague-Dawley rats were implanted with a custom-made MR-compatible stimulating electrode in the right SNr (n=6) or GPe (n=7). SNr- and GPe-DBS, conducted across a wide range of stimulation frequencies, revealed a number of surprising evoked responses, including unexpected CBV decreases within the striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal cortex. Functional connectivity MRI revealed global modulation of neural networks during DBS at either target, sensitive to stimulation frequency and readily reversed following cessation of stimulation. This work thus contributes to a growing literature demonstrating extensive and unanticipated functional connectivity among basal ganglia nuclei.


Subject(s)
Globus Pallidus/physiology , Pars Reticulata/physiology , Animals , Brain/physiology , Brain Mapping/methods , Electric Stimulation , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Rats, Sprague-Dawley
16.
J Neurophysiol ; 115(6): 2791-802, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26961105

ABSTRACT

Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia.


Subject(s)
Deep Brain Stimulation , Globus Pallidus/physiopathology , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/therapy , Pars Reticulata/physiopathology , Subthalamic Nucleus/physiopathology , Action Potentials/drug effects , Action Potentials/physiology , Animals , Central Nervous System Stimulants/pharmacology , Dopamine D2 Receptor Antagonists/adverse effects , Dopamine D2 Receptor Antagonists/pharmacology , Dyskinesia, Drug-Induced/physiopathology , Female , Globus Pallidus/drug effects , Globus Pallidus/pathology , Haloperidol/adverse effects , Haloperidol/pharmacology , Implantable Neurostimulators , Methamphetamine/pharmacology , Microelectrodes , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Oxidopamine , Parkinsonian Disorders/pathology , Pars Reticulata/drug effects , Pars Reticulata/pathology , Rats, Long-Evans , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/pathology
17.
J Neurophysiol ; 113(9): 3397-409, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25787955

ABSTRACT

The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT(1B)Rs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT(1B)Rs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT(1B)R agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT(1B)R-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT(1B)Rs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT(1B)R-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment.


Subject(s)
Corpus Striatum/cytology , Fluoxetine/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Presynaptic Terminals/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Substantia Nigra/cytology , Animals , Animals, Newborn , Corpus Striatum/drug effects , Female , GABAergic Neurons/drug effects , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Receptor, Serotonin, 5-HT1B/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Serotonin Agents/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Substantia Nigra/drug effects , Time Factors , Up-Regulation/drug effects
18.
Neurobiol Dis ; 75: 177-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25576395

ABSTRACT

Electrophysiological changes in basal ganglia neurons are hypothesized to underlie motor dysfunction in Parkinson's disease (PD). Previous results in head-restrained MPTP-treated non-human primates have suggested that increased bursting within the basal ganglia and related thalamic and cortical areas may be a hallmark of pathophysiological activity. In this study, we investigated whether there is increased bursting in substantia nigra pars reticulata (SNpr) output neurons in anesthetized and awake, head-restrained unilaterally lesioned 6-OHDA mice when compared to control mice. Confirming previous studies, we show that there are significant changes in the firing rate and pattern in SNpr neuron activity under urethane anesthesia. The regular firing pattern of control urethane-anesthetized SNpr neurons was not present in the 6-OHDA-lesioned group, as the latter neurons instead became phase locked with cortical slow wave activity (SWA). Next, we examined whether such robust electrophysiological changes between groups carried over to the awake state. SNpr neurons from both groups fired at much higher frequencies in the awake state than in the anesthetized state and surprisingly showed only modest changes between awake control and 6-OHDA groups. While there were no differences in firing rate between groups in the awake state, an increase in the coefficient of variation (CV) was observed in the 6-OHDA group. Contrary to the bursting hypothesis, this increased CV was not due to changes in bursting but was instead due to a mild increase in pausing. Together, these results suggest that differences in SNpr activity between control and 6-OHDA lesioned mice may be strongly influenced by changes in network activity during different arousal and behavioral states.


Subject(s)
Action Potentials/physiology , Anesthetics/pharmacology , Neurons/physiology , Parkinsonian Disorders/physiopathology , Pars Reticulata/physiopathology , Wakefulness/physiology , Action Potentials/drug effects , Animals , Beta Rhythm/drug effects , Dopamine/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Microelectrodes , Motor Activity/physiology , Motor Cortex/drug effects , Motor Cortex/physiopathology , Neurons/drug effects , Oxidopamine , Parkinsonian Disorders/pathology , Pars Reticulata/drug effects , Pars Reticulata/pathology , Restraint, Physical , Urethane/pharmacology , Wakefulness/drug effects
19.
Epilepsia ; 56(11): 1793-802, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26471261

ABSTRACT

OBJECTIVE: Genetic Absence Epilepsy Rats from Strasbourg (GAERS) show a resistance to secondary generalization of focal limbic seizures evoked by kindling. The substantia nigra pars reticulata (SNR) is involved in the propagation and modulation of seizures in kindling. We first examined the role of the SNRanterior and SNRposterior subregions in the resistance to the development of kindling in GAERS. Subsequently, to determine whether kindling resistance relates to differential sensitivity of γ-aminobutyric acid γ-aminobutyric acid (GABA)ergic or dopaminergic SNR neurons to kindling, we studied the effects of kindling-inducing stimulations on parvalbumin (PRV; GABAergic neuron marker) or tyrosine hydroxylase (TH; dopaminergic neuron marker) immunoreactivity (ir), respectively, in GAERS and in nonepileptic control (NEC) Wistar rats that lack kindling resistance. METHODS: Adult male GAERS were implanted with a stimulation electrode in the amygdala, and bilateral injection cannulas for lidocaine or saline injection (30 min before each kindling stimulation until the animals reached three stage 5 seizures or the 22 stimulations) into the SNRanterior or SNRposterior . In another experiment, PRV-ir in SNRanterior and SNRposterior and TH-ir in SNRposterior only were densitometrically compared in GAERS-SHAM, NEC-SHAM GAERS-STIM, and NEC-STIM animals (6 kindling stimulations). RESULTS: Bilateral SNRposterior infusions of lidocaine eliminated the kindling resistance and resulted in stage 5 generalized motor seizures in all kindled rats. Bilateral lidocaine infusions in the SNRanterior failed to alter the kindling resistance in GAERS. PRV-ir in the SNRposterior was unaltered in GAERS-STIM but increased in NEC-STIM group. Cellular TH-ir in the SNRposterior significantly increased by kindling stimulations in both NEC-STIM and GAERS-STIM groups. SIGNIFICANCE: The kindling resistance in GAERS is mediated by the SNRposterior in a lidocaine-sensitive manner. The insensitivity to kindling stimulation of PRV-ir in SNRposterior of GAERS but not NEC rats, implicate GABAergic SNRposterior neurons in kindling resistance. In contrast, the observed stimulation-specific increase in TH-ir in the SNRposterior is unrelated to kindling resistance.


Subject(s)
Epilepsy, Absence/genetics , Epilepsy, Absence/pathology , Kindling, Neurologic/physiology , Pars Reticulata/pathology , Animals , Electric Stimulation/adverse effects , Epilepsy, Absence/etiology , Male , Pars Reticulata/physiology , Rats , Rats, Wistar
20.
Neurobiol Dis ; 72 Pt B: 144-52, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24851800

ABSTRACT

Males and females show a different predisposition to certain types of seizures in clinical studies. Animal studies have provided growing evidence for sexual dimorphism of certain brain regions, including those that control seizures. Seizures are modulated by networks involving subcortical structures, including thalamus, reticular formation nuclei, and structures belonging to the basal ganglia. In animal models, the substantia nigra pars reticulata (SNR) is the best studied of these areas, given its relevant role in the expression and control of seizures throughout development in the rat. Studies with bilateral infusions of the GABA(A) receptor agonist muscimol have identified distinct roles of the anterior or posterior rat SNR in flurothyl seizure control, that follow sex-specific maturational patterns during development. These studies indicate that (a) the regional functional compartmentalization of the SNR appears only after the third week of life, (b) only the male SNR exhibits muscimol-sensitive proconvulsant effects which, in older animals, is confined to the posterior SNR, and (c) the expression of the muscimol-sensitive anticonvulsant effects become apparent earlier in females than in males. The first three postnatal days are crucial in determining the expression of the muscimol-sensitive proconvulsant effects of the immature male SNR, depending on the gonadal hormone setting. Activation of the androgen receptors during this early period seems to be important for the formation of this proconvulsant SNR region. We describe molecular/anatomical candidates underlying these age- and sex-related differences, as derived from in vitro and in vivo experiments, as well as by [(14)C]2-deoxyglucose autoradiography. These involve sex-specific patterns in the developmental changes in the structure or physiology or GABA(A) receptors or of other subcortical structures (e.g., locus coeruleus, hippocampus) that may affect the function of seizure-controlling networks.


Subject(s)
Brain/pathology , Seizures/pathology , Sex Characteristics , Age Factors , Animals , Brain/metabolism , Causality , Female , Humans , Male , Receptors, GABA-B/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL