Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Am J Physiol Cell Physiol ; 325(1): C42-C51, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37212545

ABSTRACT

Transient receptor potential channels canonical 1 and 4 (TRPC1 and TRPC4) are proteins belonging to the same TRPC channel family, and the two are known to form a heterotetrameric channel. TRPC4 can form a homotetrameric, nonselective cation channel by itself, but the involvement of the TRPC1 subunit changes several major characteristics of the channel. In this study, we focused on the pore region (selectivity filter, pore helix, and S6 helix) of TRPC1 and TRPC4 as a determinant of the identity and characteristics of a heteromeric TRPC1/4 channel: decreased calcium permeability of the channel and outward-rectifying current-voltage (I-V) curve. Mutants and chimeras of the pore residues were created, and their currents were recorded using whole cell patch clamp. The lower gate mutants of TRPC4 exhibited diminished calcium permeability as measured by GCaMP6 fluorescence. Also, chimeric channels substituting the pore region of TRPC1 to TRPC4 were made to locate the pore region that is critical in the production of an outward-rectifying I-V curve characteristic of TRPC1/4 heteromeric channels.NEW & NOTEWORTHY Heteromer research has been a challenging field due to lack of structural studies. Using chimeras and single mutants, we present evidence that the pore region of TRPC1/4 heteromer contributes to determining the channel's characteristics such as calcium permeability, I-V curve, and conductance.


Subject(s)
Protein Multimerization , Humans , HEK293 Cells , Models, Molecular , Protein Structure, Tertiary , Calcium/metabolism , TRPC Cation Channels/chemistry , Protein Structure, Quaternary , Ion Channel Gating , Cell Membrane/chemistry
2.
Am J Physiol Cell Physiol ; 324(6): C1295-C1306, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37154492

ABSTRACT

Traditionally prescribed for mood disorders, tricyclic antidepressants (TCAs) have shown promising therapeutic effects on chronic neuralgia and irritable bowel syndrome. However, the mechanism by which these atypical effects manifest is unclear. Among the proposed mechanisms is the well-known pain-related inhibitory G-protein coupled receptor, namely the opioid receptor (OR). Here, we confirmed that TCA indeed stimulates OR and regulates the gating of TRPC4, a downstream signaling of the Gi-pathway. In an ELISA to quantify the amount of intracellular cAMP, a downstream product of OR/Gi-pathway, treatment with amitriptyline (AMI) showed a decrease in [cAMP]i similar to that of the µOR agonist. Next, we explored the binding site of TCA by modeling the previously revealed ligand-bound structure of µOR. A conserved aspartate residue of ORs was predicted to participate in salt bridge interaction with the amine group of TCAs, and in aspartate-to-arginine mutation, AMI did not decrease the FRET-based binding efficiency between the ORs and Gαi2. As an alternative way to monitor the downstream signaling of Gi-pathway, we evaluated the functional activity of TRPC4 channel, as it is well known to be activated by Gαi. TCAs increased the TRPC4 current through ORs, and TCA-evoked TRPC4 activation was abolished by an inhibitor of Gαi2 or its dominant-negative mutant. As expected, TCA-evoked activation of TRPC4 was not observed in the aspartate mutants of OR. Taken together, OR could be proclaimed as a promising target among numerous binding partners of TCA, and TCA-evoked TRPC4 activation may help to explain the nonopioid analgesic effect of TCA.NEW & NOTEWORTHY Endogenous opioid systems modulate pain perception, but concerns about opioid-related substance misuse limit their use. This study has raised TRPC4 channel as a candidate target for alternative analgesics, tricyclic antidepressants (TCAs). TCAs have been shown to bind to and activate opioid receptors (ORs), leading to downstream signaling pathways involving TRPC4. The functional selectivity and biased agonism of TCA towards TRPC4 in dependence on OR may provide a better understanding of its efficacy or side effects.


Subject(s)
Analgesics, Opioid , Antidepressive Agents, Tricyclic , Antidepressive Agents, Tricyclic/pharmacology , Antidepressive Agents, Tricyclic/therapeutic use , Aspartic Acid , Ligands , Carrier Proteins , Amitriptyline/pharmacology , Amitriptyline/therapeutic use , Receptors, Opioid
3.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674553

ABSTRACT

TRPCs (transient receptor potential classical or cation channels) play a crucial role in tumor biology, especially in the Ca2+ homeostasis in cancer cells. TRPC4 is a pH-sensitive member of this family of proteins. As solid tumors exhibit an inversed pH-gradient with lowered extracellular and increased intracellular pH, both contributing to tumor progression, TRPC4 might be a signaling molecule in the altered tumor microenvironment. This is the first study to investigate the expression profiles of TRPC4 in common skin cancers such as basal cell carcinoma (BCC), squamous cell carcinoma (SCC), malignant melanoma (MM) and nevus cell nevi (NCN). We found that all SCCs, NCNs, and MMs show positive TRPC4-expression, while BCCs do only in about half of the analyzed samples. These data render TRPC4 an immunohistochemical marker to distinguish SCC and BCC, and this also gives rise to future studies investigating the role of TRPC4 in tumor progression, and especially metastasis as BCCs very rarely spread and are mostly negative for TRPC4.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Melanoma , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Melanoma/genetics , Melanoma/pathology , Carcinoma, Squamous Cell/pathology , Hydrogen-Ion Concentration , Tumor Microenvironment/genetics
4.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175602

ABSTRACT

Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.


Subject(s)
Migraine Disorders , Transient Receptor Potential Channels , Humans , Nociceptors/metabolism , Transient Receptor Potential Channels/metabolism , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Trigeminal Ganglion/metabolism , Pain/metabolism
5.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834672

ABSTRACT

Store-operated Ca2+ entry (SOCE) is activated in response to the inositol-1,4,5-trisphosphate (InsP3)-dependent depletion of the endoplasmic reticulum (ER) Ca2+ store and represents a ubiquitous mode of Ca2+ influx. In vascular endothelial cells, SOCE regulates a plethora of functions that maintain cardiovascular homeostasis, such as angiogenesis, vascular tone, vascular permeability, platelet aggregation, and monocyte adhesion. The molecular mechanisms responsible for SOCE activation in vascular endothelial cells have engendered a long-lasting controversy. Traditionally, it has been assumed that the endothelial SOCE is mediated by two distinct ion channel signalplexes, i.e., STIM1/Orai1 and STIM1/Transient Receptor Potential Canonical 1(TRPC1)/TRPC4. However, recent evidence has shown that Orai1 can assemble with TRPC1 and TRPC4 to form a non-selective cation channel with intermediate electrophysiological features. Herein, we aim at bringing order to the distinct mechanisms that mediate endothelial SOCE in the vascular tree from multiple species (e.g., human, mouse, rat, and bovine). We propose that three distinct currents can mediate SOCE in vascular endothelial cells: (1) the Ca2+-selective Ca2+-release activated Ca2+ current (ICRAC), which is mediated by STIM1 and Orai1; (2) the store-operated non-selective current (ISOC), which is mediated by STIM1, TRPC1, and TRPC4; and (3) the moderately Ca2+-selective, ICRAC-like current, which is mediated by STIM1, TRPC1, TRPC4, and Orai1.


Subject(s)
Calcium Channels , Endothelial Cells , Animals , Cattle , Mice , Rats , Humans , Calcium Channels/metabolism , Endothelial Cells/metabolism , TRPC Cation Channels/metabolism , Stromal Interaction Molecule 1/metabolism , Calcium/metabolism , ORAI1 Protein/metabolism , Calcium Signaling/physiology
6.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36834762

ABSTRACT

Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp technique. Visceral pain sensitivity was assessed by the colonic distension test after intra-colonic trinitrobenzene sulfonic acid injection and partial restraint stress. Mechanical pain sensitivity was assessed by the paw pressure test in the chronic constriction injury (CCI) neuropathic pain model. We confirm that HC-070 is a low nanomolar antagonist. Following single oral doses (3-30 mg/kg in male or female rats), colonic hypersensitivity was significantly and dose-dependently attenuated, even fully reversed to baseline. HC-070 also had a significant anti-hypersensitivity effect in the established phase of the CCI model. HC-070 did not have an effect on the mechanical withdrawal threshold of the non-injured paw, whereas the reference compound morphine significantly increased it. Analgesic effects are observed at unbound brain concentrations near the 50% inhibitory concentration (IC50) recorded in vitro. This suggests that analgesic effects reported here are brought about by TRPC4/C5 blocking in vivo. The results strengthen the idea that TRPC4/C5 antagonism is a novel, safe non-opioid treatment for chronic pain.


Subject(s)
Neuralgia , Transient Receptor Potential Channels , Rats , Male , Female , Humans , Animals , Neuralgia/metabolism , Pain Threshold , Analgesics/pharmacology , Disease Models, Animal , Hyperalgesia/drug therapy
7.
J Cell Mol Med ; 26(19): 4911-4923, 2022 10.
Article in English | MEDLINE | ID: mdl-35560982

ABSTRACT

Tricyclic antidepressants (TCAs) have been used to treat depression and were recently approved for treating irritable bowel syndrome (IBS) patients with severe or refractory IBS symptoms. However, the molecular mechanism of TCA action in the gastrointestinal (GI) tract remains poorly understood. Transient receptor potential channel canonical type 4 (TRPC4), which is a Ca2+ -permeable nonselective cation channel, is a critical regulator of GI excitability. Herein, we investigated whether TCA modulates TRPC4 channel activity and which mechanism in colonic myocytes consequently causes constipation. To prove the clinical benefit in patients with diarrhoea caused by TCA treatment, we performed mechanical tension recording of repetitive motor pattern (RMP) in segment, electric field stimulation (EFS)-induced and spontaneous contractions in isolated muscle strips. From these recordings, we observed that all TCA compounds significantly inhibited contractions of colonic motility in human. To determine the contribution of TRPC4 to colonic motility, we measured the electrical activity of heterologous or endogenous TRPC4 by TCAs using the patch clamp technique in HEK293 cells and murine colonic myocytes. In TRPC4-overexpressed HEK cells, we observed TCA-evoked direct inhibition of TRPC4. Compared with TRPC4-knockout mice, we identified that muscarinic cationic current (mIcat ) was suppressed through TRPC4 inhibition by TCA in isolated murine colonic myocytes. Collectively, we suggest that TCA action is responsible for the inhibition of TRPC4 channels in colonic myocytes, ultimately causing constipation. These findings provide clinical insights into abnormal intestinal motility and medical interventions aimed at IBS therapy.


Subject(s)
Irritable Bowel Syndrome , TRPC Cation Channels , Animals , Antidepressive Agents, Tricyclic/pharmacology , Cations/metabolism , Cholinergic Agents , Constipation/chemically induced , Constipation/drug therapy , HEK293 Cells , Humans , Mice , Mice, Knockout , Muscle Cells/metabolism , Receptors, Muscarinic/metabolism , TRPC Cation Channels/genetics
8.
Arch Toxicol ; 96(4): 1055-1063, 2022 04.
Article in English | MEDLINE | ID: mdl-35165752

ABSTRACT

(-)-Englerin A (EA), a potential novel anti-cancer drug, is a potent selective activator of classical transient receptor potential 4 and 5 (TRPC4, TRPC5) channels. As TRPC4 channels are expressed and functional in the lung endothelium, possible side effects such as lung edema formation may arise during its administration. Well-established in vivo rodent models for toxicological testing, however, rapidly degrade this compound to its inactive derivative, englerin B. Therefore, we chose an ex vivo isolated perfused and ventilated murine lung (IPVML) model to detect edema formation due to toxicants, which also reduces the number of incriminating animal experiments required. To evaluate the sensitivity of the IPVML model, short-time (10 min) drops of the pH from 7.4 down to 4.0 were applied, which resulted in linear changes of tidal volumes, wet-to-dry weight ratios and incorporation of FITC-coupled dextran particles from the perfusate. As expected, biological activity of EA was preserved after perfusion in the IPVML model. Concentrations of 50-100 nM EA continuously perfused through the IPVML model did not change tidal volumes and lung weights significantly. Wet-to-dry weight ratios were increased after perfusion of 100 nM EA but permeation of FITC-coupled dextran particles from the perfusate to the lung tissues was not significantly different. Therefore, EA shows little or no significant acute pulmonary toxicity after application of doses expected to activate target ion channels and the IPVML is a sensitive powerful ex vivo model for evaluating acute lung toxicity in accordance with the 3R rules for animal experimentation.


Subject(s)
Antineoplastic Agents , TRPC Cation Channels , Animals , Antineoplastic Agents/toxicity , Dextrans/metabolism , Edema , Fluorescein-5-isothiocyanate , Lung/metabolism , Mice , Perfusion , Sesquiterpenes, Guaiane , TRPC Cation Channels/metabolism
9.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077460

ABSTRACT

The neural cell adhesion molecule (NCAM) plays important functional roles in the developing and mature nervous systems. Here, we show that the transient receptor potential canonical (TRPC) ion channels TRPC1, -4, and -5 not only interact with the intracellular domains of the transmembrane isoforms NCAM140 and NCAM180, but also with the glycan polysialic acid (PSA) covalently attached to the NCAM protein backbone. NCAM antibody treatment leads to the opening of TRPC1, -4, and -5 hetero- or homomers at the plasma membrane and to the influx of Ca2+ into cultured cortical neurons and CHO cells expressing NCAM, PSA, and TRPC1 and -4 or TRPC1 and -5. NCAM-stimulated Ca2+ entry was blocked by the TRPC inhibitor Pico145 or the bacterial PSA homolog colominic acid. NCAM-stimulated Ca2+ influx was detectable neither in NCAM-deficient cortical neurons nor in TRPC1/4- or TRPC1/5-expressing CHO cells that express NCAM, but not PSA. NCAM-induced neurite outgrowth was reduced by TRPC inhibitors and a function-blocking TRPC1 antibody. A characteristic signaling feature was that extracellular signal-regulated kinase 1/2 phosphorylation was also reduced by TRPC inhibitors. Our findings indicate that the interaction of NCAM with TRPC1, -4, and -5 contributes to the NCAM-stimulated and PSA-dependent Ca2+ entry into neurons thereby influencing essential neural functions.


Subject(s)
Neural Cell Adhesion Molecules , TRPC Cation Channels , Animals , CHO Cells , Cricetinae , Cricetulus , Neural Cell Adhesion Molecules/metabolism , Neurons/metabolism , TRPC Cation Channels/metabolism
10.
J Cell Sci ; 132(11)2019 05 31.
Article in English | MEDLINE | ID: mdl-31036675

ABSTRACT

Muscarinic receptor stimulation results in activation of nonselective cation (NSC) channels in guinea pig adrenal medullary (AM) cells. The biophysical and pharmacological properties of the NSC channel suggest the involvement of heteromeric channels of TRPC1 with TRPC4 or TRPC5. This possibility was explored in PC12 cells and guinea pig AM cells. Proximity ligation assay (PLA) revealed that when exogenously expressed in PC12 cells, TRPC1 forms a heteromeric channel with TRPC4, but not with TRPC5, in a STIM1-dependent manner. The heteromeric TRPC1-TRPC4 channel was also observed in AM cells and trafficked to the cell periphery in response to muscarine stimulation. To explore whether heteromeric channels are inserted into the cell membrane, tags were attached to the extracellular domains of TRPC1 and TRPC4. PLA products developed between the tags in cells stimulated by muscarine, but not in resting cells, indicating that muscarinic stimulation results in the membrane insertion of channels. This membrane insertion required expression of full-length STIM1. We conclude that muscarinic receptor stimulation results in the insertion of heteromeric TRPC1-TRPC4 channels into the cell membrane in PC12 cells and guinea pig AM cells.


Subject(s)
Cell Membrane/metabolism , Receptors, Muscarinic/metabolism , Stromal Interaction Molecule 1/metabolism , TRPC Cation Channels/metabolism , Adrenal Medulla/cytology , Adrenal Medulla/metabolism , Animals , Cell Line , Guinea Pigs , Male , PC12 Cells , Protein Domains , Rats
11.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203675

ABSTRACT

Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Sesquiterpenes, Guaiane/pharmacology , TRPC Cation Channels/metabolism , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Behavior, Animal/drug effects , Carrageenan , Cells, Cultured , Cobalt/metabolism , Disease Models, Animal , Edema/pathology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hyperalgesia/drug therapy , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Male , Mice, Knockout , Pain/complications , Pain/drug therapy , Pain/pathology , Phenotype , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Sesquiterpenes, Guaiane/therapeutic use
12.
Pflugers Arch ; 471(8): 1045-1053, 2019 08.
Article in English | MEDLINE | ID: mdl-31222490

ABSTRACT

Transient receptor potential canonical (TRPC) channels are calcium permeable, non-selective cation channels with wide tissue-specific distribution. Among 7 TRPC channels, TRPC 1/4/5 and TRPC3/6/7 are subdivided based on amino acid sequence homology. TRPC4 and TRPC5 channels exhibit cationic current with homotetrameric form, but they also form heterotetrameric channel such as TRPC1/4 or TRPC1/5 once TRPC1 is incorporated. The expression of TRPC1 is ubiquitous whereas the expressions of TRPC4 and TRPC5 are rather focused in nervous system. With the help of conditional knock-out of TPRC1, 4 and/or 5 genes, TRPC channels made of these constituents are reported to be involved in various pathophysiological functions such as seizure, anxiety-like behaviour, fear, Huntington's disease, Parkinson's disease and many others. In heterologous expression system, many issues such as activation mechanism, stoichiometry and relative cation permeabilites of homomeric or heteromeric channels have been addressed. In this review, we discussed the role of TRPC1 channel per se in plasma membrane, role of TRPC1 in heterotetrameric conformation (TRPC1/4 or TRPC1/5) and relationship between TRPC1/4/5 channels, calcium influx and voltage-gated calcium channels.


Subject(s)
Neurons/metabolism , TRPC Cation Channels/metabolism , Animals , Brain/cytology , Brain/metabolism , Humans , Membrane Potentials , Neurons/physiology , Protein Multimerization , TRPC Cation Channels/chemistry , TRPC Cation Channels/genetics
13.
J Physiol ; 595(16): 5525-5544, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28627017

ABSTRACT

KEY POINTS: The proton sensing ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) promotes expression of the canonical transient receptor potential channel subunit TRPC4 in normal and transformed cerebellar granule precursor (DAOY) cells. OGR1 and TRPC4 are prominently expressed in healthy cerebellar tissue throughout postnatal development and in primary cerebellar medulloblastoma tissues. Activation of TRPC4-containing channels in DAOY cells, but not non-transformed granule precursor cells, results in prominent increases in [Ca2+ ]i and promotes cell motility in wound healing and transwell migration assays. Medulloblastoma cells not arising from granule precursor cells show neither prominent rises in [Ca2+ ]i nor enhanced motility in response to TRPC4 activation unless they overexpressTRPC4. Our results suggest that OGR1 enhances expression of TRPC4-containing channels that contribute to enhanced invasion and metastasis of granule precursor-derived human medulloblastoma. ABSTRACT: Aberrant intracellular Ca2+ signalling contributes to the formation and progression of a range of distinct pathologies including cancers. Rises in intracellular Ca2+ concentration occur in response to Ca2+ influx through plasma membrane channels and Ca2+ release from intracellular Ca2+ stores, which can be mobilized in response to activation of cell surface receptors. Ovarian cancer G protein coupled receptor 1 (OGR1, aka GPR68) is a proton-sensing Gq -coupled receptor that is most highly expressed in cerebellum. Medulloblastoma (MB) is the most common paediatric brain tumour that arises from cerebellar precursor cells. We found that nine distinct human MB samples all expressed OGR1. In both normal granule cells and the transformed human cerebellar granule cell line DAOY, OGR1 promoted expression of the proton-potentiated member of the canonical transient receptor potential (TRPC) channel family, TRPC4. Consistent with a role for TRPC4 in MB, we found that all MB samples also expressed TRPC4. In DAOY cells, activation of TRPC4-containing channels resulted in large Ca2+ influx and enhanced migration, while in normal cerebellar granule (precursor) cells and MB cells not derived from granule precursors, only small levels of Ca2+ influx and no enhanced migration were observed. Our results suggest that OGR1-dependent increases in TRPC4 expression may favour formation of highly Ca2+ -permeable TRPC4-containing channels that promote transformed granule cell migration. Increased motility of cancer cells is a prerequisite for cancer invasion and metastasis, and our findings may point towards a key role for TRPC4 in progression of certain types of MB.


Subject(s)
Calcium/metabolism , Medulloblastoma/metabolism , Receptors, G-Protein-Coupled/metabolism , TRPC Cation Channels/metabolism , Animals , Calcium Signaling , Cell Line, Tumor , Cell Movement , Cells, Cultured , Cerebellum/cytology , Humans , Mice, Inbred C57BL , Neurons/metabolism , Permeability , TRPC Cation Channels/genetics
14.
Pflugers Arch ; 469(5-6): 693-702, 2017 06.
Article in English | MEDLINE | ID: mdl-28124739

ABSTRACT

The transient receptor potential (TRP) protein superfamily consists of a diverse group of cation channels that bear structural similarities to the fruit fly Drosophila TRP. The TRP superfamily is distinct from other groups of ion channels in displaying a large diversity in ion selectivity, modes of activation, and physiological functions. Classical TRP (transient receptor potential canonical (TRPC)) channels are activated by stimulation of Gq-PLC-coupled receptors and modulated by phosphorylation. The cyclic guanosine monophosphate (cGMP)-PKG pathway is involved in the regulation of TRPC3 and TRPC6 channels. Phosphodiesterase (PDE) 5 inhibitor induced muscle relaxation in corporal smooth muscle cells and was used to treat erectile dysfunction by inhibiting cGMP degradation. Here, we report the functional relationship between TRPC4 and cGMP. In human embryonic kidney (HEK) 293 cells overexpressing TRPC4, cGMP selectively activated TRPC4 channels and increased cytosolic calcium level through TRPC4 channel. We investigated phosphorylation sites in TRPC4 channels and identified S688 as an important phosphorylation site for the cGMP-PKG pathway. Cyclic GMP also activated TRPC4-like current with doubly rectifying current-voltage relationship in prostate smooth muscle cell lines. Taken together, these results show that TRPC4 is phosphorylated by the cGMP-PKG pathway and might be an important target for modulating prostate function by PDE5 inhibitors.


Subject(s)
Cyclic GMP/metabolism , Phosphodiesterase 5 Inhibitors/pharmacology , TRPC Cation Channels/metabolism , Animals , Calcium/metabolism , HEK293 Cells , Humans , Mice , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Phosphorylation , Protein Processing, Post-Translational , TRPC Cation Channels/chemistry , TRPC Cation Channels/genetics
15.
Korean J Physiol Pharmacol ; 21(1): 133-140, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28066150

ABSTRACT

Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (-)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels.

16.
Pflugers Arch ; 468(4): 551-61, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26631167

ABSTRACT

Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.


Subject(s)
Spermine/metabolism , TRPC Cation Channels/metabolism , Action Potentials , Animals , Binding Sites , Glutamic Acid/chemistry , Glutamic Acid/metabolism , HEK293 Cells , Humans , Mice , Potassium Channels, Inwardly Rectifying/metabolism , Protein Binding , Static Electricity , TRPC Cation Channels/chemistry
17.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L560-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27422996

ABSTRACT

Here, we tested the hypothesis that animals with severe pulmonary arterial hypertension (PAH) display increased sensitivity to vascular permeability induced by activation of store-operated calcium entry. To test this hypothesis, wild-type and transient receptor potential channel 4 (TRPC4) knockout Fischer 344 rats were given a single injection of Semaxanib (SU5416; 20 mg/kg) followed by 3 wk of exposure to hypoxia (10% oxygen) and a return to normoxia (21% oxygen) for an additional 2-3 wk. This Semaxanib/hypoxia/normoxia (i.e., SU5416/hypoxia/normoxia) treatment caused PAH, as evidenced by development of right ventricular hypertrophy, pulmonary artery medial hypertrophy, and occlusive lesions within precapillary arterioles. Pulmonary artery pressure was increased fivefold in Semaxanib/hypoxia/normoxia-treated animals compared with untreated, Semaxanib-treated, and hypoxia-treated controls, determined by isolated perfused lung studies. Thapsigargin induced a dose-dependent increase in permeability that was dependent on TRPC4 in the normotensive perfused lung. This increase in permeability was accentuated in PAH lungs but not in Semaxanib- or hypoxia-treated lungs. Fluid accumulated in large perivascular cuffs, and although alveolar fluid accumulation was not seen in histological sections, Evans blue dye conjugated to albumin was present in bronchoalveolar lavage fluid of hypertensive but not normotensive lungs. Thus PAH is accompanied by a TRPC4-dependent increase in the sensitivity to edemagenic agents that activate store-operated calcium entry.


Subject(s)
Calcium Signaling , Endothelium, Vascular/metabolism , Hypertension, Pulmonary/metabolism , Animals , Arterial Pressure/drug effects , Cell Hypoxia , Endothelium, Vascular/pathology , Hypertension, Pulmonary/pathology , Indoles/pharmacology , Male , Permeability/drug effects , Pyrroles/pharmacology , Rats, Inbred F344 , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Thapsigargin/pharmacology
18.
Mol Cell Biochem ; 411(1-2): 43-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26463992

ABSTRACT

This study aims to investigate the relationship between prostaglandin E2 E-prostanoid 2 receptor (EP2) and Endoplasmic reticulum (ER) stress in transforming growth factor-ß1 (TGF-ß1)-induced mouse glomerular mesangial cells (MCs) injury. We cultured primary WT, EP2(-/-) MCs (EP2 deleted), and adenovirus-EP2-infected WT MCs (EP2 overexpressed). PCR, Western blot, flow cytometry, and immunohistochemical technique were used in in vitro and in vivo experiments. We found that TGF-ß1-induced PGE2 synthesis decreased in EP2-deleted MCs and increased in EP2-overexpressed MCs. EP2 deficiency in these MCs augmented the coupling of TGF-ß1 to ER stress-associated proteins [chaperone glucose-regulated protein 78 (GRP78), transient receptor potential channel 1 (TRPC1), and transient receptor potential channel 4 (TRPC4)], and upregulation of EP2 showed no significant change of GRP78, but augmented the expression of TRPC1, while TRPC4 expression was downregulated in comparison to normal MCs. In addition, EP2 deficiency in MCs augmented TGF-ß1-induced fibronectin (FN), cyclooxygenase-2 (COX2), and CyclinD1 expression. Silencing of EP2 also strengthened TGF-ß1-induced extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Flow Cytometry showed that silencing of EP2 significantly promoted the apoptosis of MCs. In contrast, EP2 overexpression reversed the effects of EP2 deficiency. 8 weeks after 5/6 nephrectomy (Nx), blood urea nitrogen and creatinine concentrations were significantly increased in EP2(-/-) 5/6Nx mice as compared to those of WT 5/6Nx mice. The pathological changes in kidney of EP2(-/-) mice were markedly aggravated compared with WT mice. Immunohistochemical analysis showed significant augment of TRPC4 and ORP150 in the kidney of EP2(-/-) mice compared with WT mice. Considering all the findings, it is suggested that increased expression of EP2 may prevent TGF-ß1-induced MCs damage through ER stress regulatory pathway.


Subject(s)
Endoplasmic Reticulum Stress , Glomerular Mesangium/physiopathology , Receptors, Prostaglandin E, EP2 Subtype/physiology , Transforming Growth Factor beta1/physiology , Animals , Apoptosis/physiology , Endoplasmic Reticulum Chaperone BiP , Glomerular Mesangium/pathology , Male , Mice , Mice, Knockout , Receptors, Prostaglandin E, EP2 Subtype/genetics
19.
Eur Heart J ; 36(33): 2257-66, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26069213

ABSTRACT

AIMS: Pathological cardiac hypertrophy is a major predictor for the development of cardiac diseases. It is associated with chronic neurohumoral stimulation and with altered cardiac Ca(2+) signalling in cardiomyocytes. TRPC proteins form agonist-induced cation channels, but their functional role for Ca(2+) homeostasis in cardiomyocytes during fast cytosolic Ca(2+) cycling and neurohumoral stimulation leading to hypertrophy is unknown. METHODS AND RESULTS: In a systematic analysis of multiple knockout mice using fluorescence imaging of electrically paced adult ventricular cardiomyocytes and Mn(2+)-quench microfluorimetry, we identified a background Ca(2+) entry (BGCE) pathway that critically depends on TRPC1/C4 proteins but not others such as TRPC3/C6. Reduction of BGCE in TRPC1/C4-deficient cardiomyocytes lowers diastolic and systolic Ca(2+) concentrations both, under basal conditions and under neurohumoral stimulation without affecting cardiac contractility measured in isolated hearts and in vivo. Neurohumoral-induced cardiac hypertrophy as well as the expression of foetal genes (ANP, BNP) and genes regulated by Ca(2+)-dependent signalling (RCAN1-4, myomaxin) was reduced in TRPC1/C4 knockout (DKO), but not in TRPC1- or TRPC4-single knockout mice. Pressure overload-induced hypertrophy and interstitial fibrosis were both ameliorated in TRPC1/C4-DKO mice, whereas they did not show alterations in other cardiovascular parameters contributing to systemic neurohumoral-induced hypertrophy such as renin secretion and blood pressure. CONCLUSIONS: The constitutively active TRPC1/C4-dependent BGCE fine-tunes Ca(2+) cycling in beating adult cardiomyocytes. TRPC1/C4-gene inactivation protects against development of maladaptive cardiac remodelling without altering cardiac or extracardiac functions contributing to this pathogenesis.


Subject(s)
Calcium Channels/physiology , Calcium Signaling/physiology , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , TRPC Cation Channels/physiology , Angiotensin II/metabolism , Angiotensinogen/metabolism , Animals , Calcium/metabolism , Cardiomegaly/physiopathology , Hemodynamics/physiology , Homeostasis/physiology , Mice, Knockout , Ventricular Remodeling
20.
J Neurosci ; 34(10): 3653-67, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24599464

ABSTRACT

Transient receptor potential (TRP) channels are abundant in the brain where they regulate transmission of sensory signals. The expression patterns of different TRPC subunits (TRPC1, 4, and 5) are consistent with their potential role in fear-related behaviors. Accordingly, we found recently that mutant mice lacking a specific TRP channel subunit, TRPC5, exhibited decreased innate fear responses. Both TRPC5 and another member of the same subfamily, TRPC4, form heteromeric complexes with the TRPC1 subunit (TRPC1/5 and TRPC1/4, respectively). As TRP channels with specific subunit compositions may have different functional properties, we hypothesized that fear-related behaviors could be differentially controlled by TRPCs with distinct subunit arrangements. In this study, we focused on the analysis of mutant mice lacking the TRPC4 subunit, which, as we confirmed in experiments on control mice, is expressed in brain areas implicated in the control of fear and anxiety. In behavioral experiments, we found that constitutive ablation of TRPC4 was associated with diminished anxiety levels (innate fear). Furthermore, knockdown of TRPC4 protein in the lateral amygdala via lentiviral-mediated gene delivery of RNAi mimicked the behavioral phenotype of constitutive TRPC4-null (TRPC4(-/-)) mouse. Recordings in brain slices demonstrated that these behavioral modifications could stem from the lack of TRPC4 potentiation in neurons in the lateral nucleus of the amygdala through two Gαq/11 protein-coupled signaling pathways, activated via Group I metabotropic glutamate receptors and cholecystokinin 2 receptors, respectively. Thus, TRPC4 and the structurally and functionally related subunit, TRPC5, may both contribute to the mechanisms underlying regulation of innate fear responses.


Subject(s)
Amygdala/metabolism , Anxiety/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , TRPC Cation Channels/deficiency , Animals , Anxiety/genetics , Anxiety/psychology , Down-Regulation/genetics , Evoked Potentials, Somatosensory/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , TRPC Cation Channels/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL