Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.879
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39317201

ABSTRACT

The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.

2.
Traffic ; 25(1): e12928, 2024 01.
Article in English | MEDLINE | ID: mdl-38272447

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder affecting 1 in 5000-8000 individuals. Hereditary hemorrhagic telangiectasia type 1 (HHT1) is the most common HHT and manifests as diverse vascular malformations ranging from mild symptoms such as epistaxis and mucosal and cutaneous telangiectases to severe arteriovenous malformations (AVMs) in the lungs, brain or liver. HHT1 is caused by heterozygous mutations in the ENG gene, which encodes endoglin, the TGFß homodimeric co-receptor. It was previously shown that some endoglin HHT1-causing variants failed to traffic to the plasma membrane due to their retention in the endoplasmic reticulum (ER) and consequent degradation by ER-associated degradation (ERAD). Endoglin is a homodimer formed in the ER, and we therefore hypothesized that mixed heterodimers might form between ER-retained variants and WT protein, thus hampering its maturation and trafficking to the plasma membrane causing dominant negative effects. Indeed, HA-tagged ER-retained mutants formed heterodimers with Myc-tagged WT endoglin. Moreover, variants L32R, V105D, P165L, I271N and C363Y adversely affected the trafficking of WT endoglin by reducing its maturation and plasma membrane localization. These results strongly suggest dominant negative effects exerted by these ER-retained variants aggravating endoglin loss of function in patients expressing them in the heterozygous state with the WT allele. Moreover, this study may help explain some of the variability observed among HHT1 patients due to the additional loss of function exerted by the dominant negative effects in addition to that due to haploinsufficiency. These findings might also have implications for some of the many conditions impacted by ERAD.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Alleles , Endoglin/genetics , Endoplasmic Reticulum/metabolism , Mutation , Receptors, Cell Surface/genetics , Receptors, Growth Factor , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/metabolism
3.
Hum Mol Genet ; 33(18): 1605-1617, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38888340

ABSTRACT

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Ataxia Telangiectasia , DNA Repair , DNA-Binding Proteins , MRE11 Homologue Protein , Mice, Transgenic , Phenotype , Animals , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Mice , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia/pathology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA Repair/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Disease Models, Animal , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , DNA Breaks, Double-Stranded
4.
Am J Hum Genet ; 110(11): 1976-1982, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37802069

ABSTRACT

Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T). We found 15 individuals carrying retroelement insertions in ATM, all but one of which integrated in noncoding regions. Systematic functional characterization via RNA sequencing, RT-PCR, and/or minigene splicing assays showed that 12 out of 14 intronic insertions led or contributed to ATM loss of function by exon skipping or activating cryptic splice sites. We also present proof-of-concept antisense oligonucleotides that suppress cryptic exonization caused by a deep intronic retroelement insertion. These results provide an initial systematic estimate of the contribution of retroelements to the genetic architecture of recessive Mendelian disorders as ∼2.1%-5.5%. Our study highlights the importance of retroelement insertions as causal variants and therapeutic targets in genetic diseases.


Subject(s)
Ataxia Telangiectasia , Humans , Ataxia Telangiectasia/genetics , Retroelements/genetics , Mutation , RNA Splicing/genetics , RNA Splice Sites , Introns
5.
Am J Hum Genet ; 110(11): 1903-1918, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37816352

ABSTRACT

Despite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants. In three unsolved cases (two related), GROFFFY identified ultra-rare deletions within the 3' untranslated region (UTR) of the tumor suppressor SMAD4, where germline loss-of-function alleles cause combined HHT and colonic polyposis (MIM: 175050). Sited >5.4 kb distal to coding DNA, the deletions did not modify or generate microRNA binding sites, but instead disrupted the sequence context of the final cleavage and polyadenylation site necessary for protein production: By iFoldRNA, an AAUAAA-adjacent 16-nucleotide deletion brought the cleavage site into inaccessible neighboring secondary structures, while a 4-nucleotide deletion unfolded the downstream RNA polymerase II roadblock. SMAD4 RNA expression differed to control-derived RNA from resting and cycloheximide-stressed peripheral blood mononuclear cells. Patterns predicted the mutational site for an unrelated HHT/polyposis-affected individual, where a complex insertion was subsequently identified. In conclusion, we describe a functional rare variant type that impacts regulatory systems based on RNA polyadenylation. Extension of coding sequence-focused gene panels is required to capture these variants.


Subject(s)
Smad4 Protein , Telangiectasia, Hereditary Hemorrhagic , Humans , Base Sequence , DNA , Leukocytes, Mononuclear/pathology , Nucleotides , Polyadenylation/genetics , RNA , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Whole Genome Sequencing
6.
Mol Cell ; 71(6): 897-910.e8, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30122534

ABSTRACT

Chromatin ubiquitination by the ubiquitin ligase RNF168 is critical to regulate the DNA damage response (DDR). DDR deficiencies lead to cancer-prone syndromes, but whether this reflects DNA repair defects is still elusive. We identified key factors of the RNF168 pathway as essential mediators of efficient DNA replication in unperturbed S phase. We found that loss of RNF168 leads to reduced replication fork progression and to reversed fork accumulation, particularly evident at repetitive sequences stalling replication. Slow fork progression depends on MRE11-dependent degradation of reversed forks, implicating RNF168 in reversed fork protection and restart. Consistent with regular nucleosomal organization of reversed forks, the replication function of RNF168 requires H2A ubiquitination. As this novel function is shared with the key DDR players ATM, γH2A.X, RNF8, and 53BP1, we propose that double-stranded ends at reversed forks engage classical DDR factors, suggesting an alternative function of this pathway in preventing genome instability and human disease.


Subject(s)
DNA Damage/physiology , DNA Repair/physiology , Histones/metabolism , Cell Line , DNA Breaks, Double-Stranded , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Humans , S Phase/physiology , Signal Transduction , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology
7.
Circulation ; 149(12): 944-962, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38126211

ABSTRACT

BACKGROUND: Distinct endothelial cell cycle states (early G1 versus late G1) provide different "windows of opportunity" to enable the differential expression of genes that regulate venous versus arterial specification, respectively. Endothelial cell cycle control and arteriovenous identities are disrupted in vascular malformations including arteriovenous shunts, the hallmark of hereditary hemorrhagic telangiectasia (HHT). To date, the mechanistic link between endothelial cell cycle regulation and the development of arteriovenous malformations (AVMs) in HHT is not known. METHODS: We used BMP (bone morphogenetic protein) 9/10 blocking antibodies and endothelial-specific deletion of activin A receptor like type 1 (Alk1) to induce HHT in Fucci (fluorescent ubiquitination-based cell cycle indicator) 2 mice to assess endothelial cell cycle states in AVMs. We also assessed the therapeutic potential of inducing endothelial cell cycle G1 state in HHT to prevent AVMs by repurposing the Food and Drug Administration-approved CDK (cyclin-dependent kinase) 4/6 inhibitor (CDK4/6i) palbociclib. RESULTS: We found that endothelial cell cycle state and associated gene expressions are dysregulated during the pathogenesis of vascular malformations in HHT. We also showed that palbociclib treatment prevented AVM development induced by BMP9/10 inhibition and Alk1 genetic deletion. Mechanistically, endothelial cell late G1 state induced by palbociclib modulates the expression of genes regulating arteriovenous identity, endothelial cell migration, metabolism, and VEGF-A (vascular endothelial growth factor A) and BMP9 signaling that collectively contribute to the prevention of vascular malformations. CONCLUSIONS: This study provides new insights into molecular mechanisms leading to HHT by defining how endothelial cell cycle is dysregulated in AVMs because of BMP9/10 and Alk1 signaling deficiencies, and how restoration of endothelial cell cycle control may be used to treat AVMs in patients with HHT.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Mice , Animals , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Vascular Endothelial Growth Factor A/metabolism , Arteriovenous Malformations/metabolism , Endothelial Cells/metabolism , Growth Differentiation Factor 2/metabolism , Cell Cycle Checkpoints
8.
EMBO J ; 40(2): e104400, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33215756

ABSTRACT

The DNA damage response (DDR) is a complex signaling network that relies on cascades of protein phosphorylation, which are initiated by three protein kinases of the family of PI3-kinase-related protein kinases (PIKKs): ATM, ATR, and DNA-PK. ATM is missing or inactivated in the genome instability syndrome, ataxia-telangiectasia (A-T). The relative shares of these PIKKs in the response to genotoxic stress and the functional relationships among them are central questions in the genome stability field. We conducted a comprehensive phosphoproteomic analysis in human wild-type and A-T cells treated with the double-strand break-inducing chemical, neocarzinostatin, and validated the results with the targeted proteomic technique, selected reaction monitoring. We also matched our results with 34 published screens for DDR factors, creating a valuable resource for identifying strong candidates for novel DDR players. We uncovered fine-tuned dynamics between the PIKKs following genotoxic stress, such as DNA-PK-dependent attenuation of ATM. In A-T cells, partial compensation for ATM absence was provided by ATR and DNA-PK, with distinct roles and kinetics. The results highlight intricate relationships between these PIKKs in the DDR.


Subject(s)
DNA Damage/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Cell Line, Tumor , DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Phosphatidylinositol 3-Kinases/genetics , Proteomics/methods , Signal Transduction/genetics
9.
EMBO Rep ; 24(5): e56112, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36943023

ABSTRACT

As stem cells divide, they acquire mutations that can be passed on to daughter cells. To mitigate potentially deleterious outcomes, cells activate the DNA damage response (DDR) network, which governs several cellular outcomes following DNA damage, including repairing DNA or undergoing apoptosis. At the helm of the DDR are three PI3-like kinases including Ataxia-Telangiectasia Mutated (ATM). We report here that knockdown of ATM in planarian flatworms enables stem cells to withstand lethal doses of radiation which would otherwise induce cell death. In this context, stem cells circumvent apoptosis, replicate their DNA, and recover function using homologous recombination-mediated DNA repair. Despite radiation exposure, atm knockdown animals survive long-term and regenerate new tissues. These effects occur independently of ATM's canonical downstream effector p53. Together, our results demonstrate that in planarians, ATM promotes radiation-induced apoptosis. This acute, ATM-dependent apoptosis is a key determinant of long-term animal survival. Our results suggest that inhibition of ATM in these organisms could, therefore, potentially favor cell survival after radiation without obvious effects on stem cell behavior.


Subject(s)
Ataxia Telangiectasia , Planarians , Animals , Planarians/genetics , Planarians/metabolism , DNA-Binding Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Repair , DNA Damage , Phosphorylation , Cell Cycle Proteins/metabolism
10.
J Allergy Clin Immunol ; 153(5): 1392-1405, 2024 May.
Article in English | MEDLINE | ID: mdl-38280573

ABSTRACT

BACKGROUND: Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE: We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS: We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS: Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION: Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Ataxia Telangiectasia , B-Lymphocytes , Immunoglobulin Class Switching , Humans , Ataxia Telangiectasia/immunology , Ataxia Telangiectasia/genetics , Adult , Adolescent , Male , Female , Middle Aged , Child , Ataxia Telangiectasia Mutated Proteins/deficiency , Ataxia Telangiectasia Mutated Proteins/genetics , B-Lymphocytes/immunology , Young Adult , Aged , Somatic Hypermutation, Immunoglobulin , Child, Preschool , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood
11.
Neurobiol Dis ; 199: 106562, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876322

ABSTRACT

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.


Subject(s)
Ataxia Telangiectasia , Brain , Induced Pluripotent Stem Cells , Mitochondria , Neurons , Organoids , Oxidative Stress , Oxidative Stress/physiology , Humans , Organoids/metabolism , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia/pathology , Ataxia Telangiectasia/genetics , Mitochondria/metabolism , Mitochondria/pathology , Neurons/metabolism , Neurons/pathology , Brain/metabolism , Brain/pathology , Induced Pluripotent Stem Cells/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Reactive Oxygen Species/metabolism
12.
Angiogenesis ; 27(3): 501-522, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38727966

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.


Subject(s)
Activin Receptors, Type II , Zebrafish , Animals , Zebrafish/embryology , Zebrafish/metabolism , Activin Receptors, Type II/metabolism , Activin Receptors, Type II/genetics , Humans , Mice , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Growth Differentiation Factor 2/metabolism , Growth Differentiation Factor 2/genetics , Telangiectasia, Hereditary Hemorrhagic/metabolism , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Transcription, Genetic , Ligands , Endothelial Cells/metabolism
13.
Clin Immunol ; 263: 110233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697554

ABSTRACT

Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , Animals , Killer Cells, Natural/immunology , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/immunology , Mice, Knockout , Mice, Inbred C57BL , Thymoma/immunology , Thymoma/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Cytotoxicity, Immunologic , Thymus Neoplasms/immunology , Thymus Neoplasms/genetics , Signal Transduction , Membrane Proteins , Histocompatibility Antigens Class I
14.
J Clin Immunol ; 44(2): 51, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231422

ABSTRACT

PURPOSE: Ataxia-telangiectasia (A-T) is a rare genetic condition with malfunctioning DNA repair processes resulting in significant clinical findings, including progressive neurologic decline, elevated malignancy risk, immunodeficiency, oculocutaneous telangiectasias, and severe pulmonary disease. Research has been limited into the quality of life of such patients and yet to be completed are studies quantitatively analyzing psychosocial, physical, and cognitive patient-reported outcomes (PROs) within the A-T population. METHODS: PRO evaluations of 90 international adult and pediatric A-T patients and their caregivers were completed via secure online administration of Patient-Reported Outcomes Measurement Information System (PROMIS) short forms evaluating anger, cognition, mood, social health, fatigue, pain, anxiety, and upper extremity function. The impact of age, gender, race/ethnicity, prior malignancy diagnosis, and current supportive treatment interventions on such PROs was additionally assessed. Finally, given the importance of medical providers in the care of A-T patients and the impact of patient satisfaction on healthcare outcomes, we further analyzed, via a novel survey, how patients and caregivers perceived their primary A-T healthcare provider's A-T expertise, trustworthiness, accessibility, and level of compassion. RESULTS/CONCLUSION: It was found that a diagnosis of A-T complexly impacts patient PROs, but such data offers the potential for preventative and therapeutic interventions to improve the care of such patients. While most A-T patients and their caregivers feel their primary A-T medical provider has expertise and compassion in addition to being accessible and trustworthy, a significant percentage of study subjects did not agree that their provider was an expert in A-T or overall trustworthy.


Subject(s)
Ataxia Telangiectasia , Neoplasms , Adult , Humans , Child , Patient Satisfaction , Ataxia Telangiectasia/diagnosis , Ataxia Telangiectasia/therapy , Quality of Life , Anxiety
15.
Biochem Biophys Res Commun ; 734: 150776, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39368367

ABSTRACT

The regulation of intracellular reactive oxygen species (ROS) levels is important for maintaining the self-renewal ability of neural stem/progenitor cells (NSCs). In this study, we demonstrate that 53BP1, a DNA damage response factor known to facilitate the repair of DNA double-strand breaks, supports the maintenance of NSC stemness. ReNcell VM human NSCs with depleted 53BP1 exhibited reduced self-renewal ability compared with control NSCs, as revealed by a decrease in neurosphere size and an increase in differentiation into neural or glial cells within an NSC culture. Furthermore, 53BP1 depletion elevated cellular ROS levels, accompanied by mitochondrial abnormalities. The reduced self-renewal ability and elevated ROS levels in 53BP1-deficient NSCs were restored with the treatment of a radical scavenger, N-acetyl-l-cysteine. In addition, we investigated the functional relationship in the NSC self-renewal ability between 53BP1 and ataxia-telangiectasia mutated (ATM) or forkhead box O3a (FOXO3a), factors required for mitochondrial homeostasis, and the maintenance of NSC stemness. We found that ATM inhibition or FOXO3a deficiency, in addition to 53BP1 deficiency, did not induce further NSC stemness impairment. Collectively, our findings show that 53BP1, by cooperatively functioning with ATM and FOXO3a, supports the maintenance of NSC stemness by modulating mitochondrial homeostasis.

16.
Genes Cells ; 28(9): 642-645, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37341149

ABSTRACT

Ataxia-telangiectasia (A-T) is a rare devastating hereditary condition, which affects multiple organ systems including cerebellar motor function as well as DNA repair, resulting in a higher incidence of cancer and immunodeficiency. The genetic defect in A-T lies in ATM kinase, which is activated by DNA damage and regulates a plethora of substrates including the p53 tumor suppressor. We have organized an international meeting "The 19th Ataxia-Telangiectasia Workshop 2023 (ATW2023)" with support from the Molecular Biology Society of Japan (MBSJ) and other funders. Here, we report that ATW2023 was successfully held in Kyoto from March 2nd to 5th, 2023 with more than 150 participants traveling from all over the world, despite the still smoldering COVID-19 pandemic. In this meeting report, we will briefly describe the highlights of the meeting and would like to express our gratitude to the MBSJ for the financial support.


Subject(s)
Ataxia Telangiectasia , COVID-19 , Humans , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/pathology , Ataxia Telangiectasia Mutated Proteins , Pandemics , DNA Damage , DNA Repair , Cell Cycle Proteins/metabolism
17.
Ophthalmology ; 131(1): 66-77, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37661066

ABSTRACT

PURPOSE: To report on macular hole repair in macular telangiectasia type 2 (MacTel2). DESIGN: Global, multicenter, retrospective case series. PARTICIPANTS: Patients undergoing surgery for MacTel2-associated full-thickness macular hole (MTMH). METHODS: Standardized data collection sheet distributed to all surgeons. MAIN OUTCOME MEASURES: Anatomic closure and visual outcomes of MTMH. RESULTS: Sixty-three surgeries in 47 patients with MTMH were included from 30 surgeons. Mean age was 68.1 years, with 62% female, 72% White, 21% East or South Asian, 2% African American, and 2% Hispanic or Latino. Procedures included 34 internal limiting membrane (ILM) peeling alone, 22 ILM flaps, 5 autologous retinal transplantations (ARTs), 1 retinotomy, and 1 subretinal bleb. For ILM peeling, preoperative visual acuity (VA) was 0.667 ± 0.423 logarithm of the minimum angle of resolution (logMAR). Minimum hole diameter (MHD) was 305.5 ± 159.4 µm (range, 34-573 µm). Sixteen of 34 ILM peels (47%) resulted in MTMH closure. At postoperative month 6, VA was stable at 0.602 ± 0.516 logMAR (P = 0.65). VA improved by at least 2 lines in 43% and at least 4 lines in 24%. For ILM flaps, preoperative VA was 0.878 ± 0.552 logMAR. MHD was 440.8 ± 175.5 µm (range, 97-697 µm), which was significantly larger than for ILM peels (P < 0.01). Twenty of 22 ILM flaps (90%) resulted in MTMH closure, which was significantly higher than for ILM peels (P < 0.01). At postoperative month 6, VA improved to 0.555 ± 0.405 logMAR (P < 0.05). VA improved by at least 2 lines in 56% and at least 4 lines in 28%. For ARTs, preoperative VA was 1.460 ± 0.391 logMAR. MHD was 390.2 ± 203.7 µm (range, 132-687 µm). All 5 ARTs (100%) resulted in MTMH closure. At postoperative month 6, VA was stable at 1.000 ± 0.246 logMAR (P = 0.08). Visual acuity improved at least 2 lines in 25%. CONCLUSIONS: Surgical closure of macular holes improved VA in 57% of MTMHs. Internal limiting membrane flaps achieved better anatomic and functional outcomes than ILM peeling alone. Autologous retinal transplantation may be an option for refractory MTMHs. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Subject(s)
Epiretinal Membrane , Retinal Perforations , Retinal Telangiectasis , Humans , Female , Aged , Male , Vitrectomy/methods , Retrospective Studies , Retina , Retinal Telangiectasis/diagnosis , Retinal Telangiectasis/surgery , Retinal Telangiectasis/complications , Basement Membrane/surgery , Tomography, Optical Coherence , Treatment Outcome , Epiretinal Membrane/surgery
18.
Clin Genet ; 105(5): 543-548, 2024 05.
Article in English | MEDLINE | ID: mdl-38225712

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant form of vascular dysplasia. Genetic diagnosis is made by identifying loss-of-function variants in genes, such as ENG and ACVRL1. However, the causal mechanisms of various variants of unknown significance remains unclear. In this study, we analyzed 12 Japanese patients from 11 families who were clinically diagnosed with HHT. Sequencing analysis identified 11 distinct variants in ACVRL1 and ENG. Three of the 11 were truncating variants, leading to a definitive diagnosis, whereas the remaining eight were splice-site and missense variants that required functional analyses. In silico splicing analyses demonstrated that three variants, c.526-3C > G and c.598C > G in ACVRL1, and c.690-1G > A in ENG, caused aberrant splicing, as confirmed by a minigene assay. The five remaining missense variants were p.Arg67Gln, p.Ile256Asn, p.Leu285Pro, and p.Pro424Leu in ACVRL and p.Pro165His in ENG. Nanoluciferase-based bioluminescence analyses demonstrated that these ACVRL1 variants impaired cell membrane trafficking, resulting in the loss of bone morphogenetic protein 9 (BMP9) signal transduction. In contrast, the ENG mutation impaired BMP9 signaling despite normal cell membrane expression. The updated functional analysis methods performed in this study will facilitate effective genetic testing and appropriate medical care for patients with HHT.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Endoglin/genetics , Japan/epidemiology , Mutation , Genetic Testing , Activin Receptors, Type II/genetics
19.
Mov Disord ; 39(2): 360-369, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37899683

ABSTRACT

BACKGROUND: Supplementation of nicotinamide riboside (NR) ameliorates neuropathology in animal models of ataxia telangiectasia (A-T). In humans, short-term NR supplementation showed benefits in neurological outcome. OBJECTIVES: The study aimed to investigate the safety and benefits of long-term NR supplementation in individuals with A-T. METHODS: A single-arm, open-label clinical trial was performed in individuals with A-T, receiving NR over a period of 2 years. Biomarkers and clinical examinations were used to assess safety parameters. Standardized and validated neuromotor tests were used to monitor changes in neurological symptoms. Using generalized mixed models, test results were compared to expected disease progression based on historical data. RESULTS: NAD+ concentrations increased rapidly in peripheral blood and stabilized at a higher level than baseline. NR supplementation was well tolerated for most participants. The total scores in the neuromotor test panels, as evaluated at the 18-month time point, improved for all but one participant, primarily driven by improvements in coordination subscores and eye movements. A comparison with historical data revealed that the progression of certain neuromotor symptoms was slower than anticipated. CONCLUSIONS: Long-term use of NR appears to be safe and well tolerated, and it improves motor coordination and eye movements in patients with A-T of all ages. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Ataxia Telangiectasia , Niacinamide , Animals , Humans , Ataxia Telangiectasia/drug therapy , Eye Movements , Niacinamide/pharmacology , Niacinamide/therapeutic use , Niacinamide/analogs & derivatives , Pyridinium Compounds/therapeutic use
20.
Trends Immunol ; 42(4): 350-365, 2021 04.
Article in English | MEDLINE | ID: mdl-33663955

ABSTRACT

ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Adaptive Immunity , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Immunoglobulin Class Switching
SELECTION OF CITATIONS
SEARCH DETAIL