Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Publication year range
1.
Plant Dis ; : PDIS03240713RE, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38902884

ABSTRACT

Heart rot disease, caused by Lasiodiplodia theobromae, is destructive for date palms and other woody plants. The disease was reported in several oases in Egypt, and the pathogen was found in association with infected trees suffering dieback and rachis blight. Seven phylogenetically distinct fungal isolates were selected, and their pathogenicity was confirmed on date palms. The isolates exhibited variable degrees of virulence on inoculated leaves, which confirms the variation. We examined the antifungal effect of microbial bioagents and plant extracts on heart rot disease. The isolates of Trichoderma spp. gave moderate reduction of the pathogen's linear growth (40 to 60%), whereas their exudates were ultimately ineffective. Bacillus spp. isolates, except for B. megaterium, were more effective against spore germination, giving 80 to 90% reduction on average. Among the examined plant extracts, garlic sap gave 98.67% reduction of linear growth followed by artemisia (15.5%) and camphor (24.8%). The extraction methods greatly influenced the antifungal efficiency of each extract because exposure to organic solvents significantly decreased the efficiency of all extracts, whereas hot water extraction negatively affected garlic sap only. Successful bioagents and plant extracts were further assayed for the suppression of heart rot disease on date palms. Both T. album and T. harzianum gave comparable degrees of suppression as by commercial fungicides. In addition, treatment before or during pathogen inoculation was the most effective because it significantly enhanced the expression of defense-related enzymes. Our findings suggest biopesticides possess a dual role in disease suppression and defense boosters for date palms suffering heart rot disease.

2.
World J Microbiol Biotechnol ; 40(11): 330, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39358481

ABSTRACT

Trichoderma spp. is primarily applied to manage biotic stresses in plants. Still, they also can mitigate abiotic stresses by the stimulation of antioxidative protective mechanisms and enhanced synthesis of secondary metabolites. The study optimized the conditions to enhance peptaibol production by novel Trichoderma spp, characterized and quantified peptaibol- alamethicin using HPLC and LC MS-MS. The present study investigated these isolates efficacy in enhancing growth and the associated physio-biochemical changes in black pepper plants under moisture stress. Under in vitro conditions, out of 51 isolates studied, six isolates viz., T. asperellum (IISR NAIMCC 0049), T. erinaceum (IISR APT1), T. harzianum (IISR APT2), T. harzianum (IISR KL3), T. lixii (IISR KA15) and T. asperellum (IISR TN3) showed tolerance to low moisture levels (5, 10 and 20%) and higher temperatures (35 and 40 °C). In vivo evaluation on black pepper plants maintained under four different moisture levels (Field capacity [FC]; 75%, 50%, and 25%) showed that the plants inoculated with Trichoderma accumulated greater quantities of secondary metabolites viz., proline, phenols, MDA and soluble proteins at low moisture levels (50% and 25% FC). In the present study, plants inoculated with T. asperellum and T. harzianum showed significantly increased growth compared to uninoculated plants. The shortlisted Trichoderma isolates exhibited differences in peptaibol production and indicated that the peptide might be the key factor for their efficiency as biocontrol agents. The present study also demonstrated that Trichoderma isolates T. harzianum and T. asperellum (IISR APT2 & NAIMCC 0049) enhanced the drought-tolerant capabilities of black pepper by improving plant growth and secondary metabolite production.


Subject(s)
Peptaibols , Piper nigrum , Stress, Physiological , Trichoderma , Piper nigrum/microbiology , Peptaibols/metabolism , Trichoderma/physiology , Trichoderma/metabolism , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Alamethicin/metabolism , Alamethicin/pharmacology , Temperature , Secondary Metabolism
3.
Biotechnol Lett ; 45(4): 479-487, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36680636

ABSTRACT

Although extensive research efforts have been dedicated to characterizing the laccase from white-rot fungus, little information is available on laccases from Trichoderma spp. A copper-tolerant strain with the ability to produce laccase was isolated and identified as Trichoderma asperellum Ts93. Under optimized conditions, the maximum laccase activity was 1.96 U/ml. The genome-wide survey of Ts93 revealed the presence of seven putative laccase genes that all contained the conserved domain and were divided into three different phylogenetic groups. Among these genes, three contained the four copper-binding conserved regions. The expression profiles acquired through real-time quantitative PCR analysis showed that five of the seven genes were significantly upregulated in response to laccase activity. Seven laccase genes in T. asperellum were identified for the first time by whole-genome sequencing followed by phylogenetic analysis. The findings of this work provide valuable information for the functional analysis of laccase genes in Trichoderma spp.


Subject(s)
Hypocreales , Trichoderma , Laccase/chemistry , Copper/metabolism , Phylogeny , Hypocreales/metabolism , Trichoderma/genetics , Trichoderma/metabolism
4.
Metabolomics ; 18(9): 74, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36104635

ABSTRACT

INTRODUCTION: Chestnut rot caused by the fungus Gnomoniopsis smithogilvyi is a disease present in the world's major chestnut growing regions. The disease is considered a significant threat to the global production of nuts from the sweet chestnut (Castanea sativa). Conventional fungicides provide some control, but little is known about the potential of biological control agents (BCAs) as alternatives to manage the disease. OBJECTIVE: Evaluate whether formulated BCAs and their secreted metabolites inhibit the in vitro growth of G. smithogilvyi. METHODS: The antifungal potential of BCAs was assessed against the pathogen through an inverted plate assay for volatile compounds (VOCs), a diffusion assay for non-volatile compounds (nVOCs) and in dual culture. Methanolic extracts of nVOCs from the solid medium were further evaluated for their effect on conidia germination and were screened through an LC-MS-based approach for antifungal metabolites. RESULTS: Isolates of Trichoderma spp., derived from the BCAs, significantly suppressed the pathogen through the production of VOCs and nVOCs. The BCA from which Bacillus subtilis was isolated was more effective in growth inhibition through the production of nVOCs. The LC-MS based metabolomics on the nVOCs derived from the BCAs showed the presence of several antifungal compounds. CONCLUSION: The results show that G. smithogilvyi can be effectively controlled by the BCAs tested and that their use may provide a more ecological alternative for managing chestnut rot. The in vitro analysis should now be expanded to the field to assess the effectiveness of these alternatives for chestnut rot management.


Subject(s)
Ascomycota , Fagaceae , Antifungal Agents/pharmacology , Ascomycota/physiology , Bacteria , Fagaceae/microbiology , Metabolomics , Nuts , Plant Diseases/microbiology , Plant Diseases/prevention & control
5.
Arch Microbiol ; 204(8): 480, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35831616

ABSTRACT

Fusarium spp. are considered as one of the most devastating plant pathogenic fungi worldwide. In this study, the effect of essential oil (EO) of Mentha longifolia, M. spicata, Achillea sp. and Foeniculum vulgare, ethanolic extract of Propolis (EEP), and Trichoderma harzianum T447 and T. hamatum T622 was investigated against five phytopathogenic Fusarium species. The results showed that the fungal species, the type of EO, and concentrations play a substantial role in inhibiting the mycelial growth of Fusarium spp. GC-MS analysis of the EOs showed that the piperitone oxide and cis-piperitone oxide were found as the main components of M. longifolia. Our results also revealed that EEP possessed the growth inhibitory effect against Fusarium spp. It was observed that the extracellular secretions of T. harzianum T447 showed very high inhibition against the fungi. Our results highlighted the need for further research to apply them as a safe alternative to the chemical pesticides.


Subject(s)
Ascomycota , Fusarium , Oils, Volatile , Propolis , Oils, Volatile/pharmacology , Oxides/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Propolis/pharmacology
6.
Int Microbiol ; 25(4): 817-829, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35854164

ABSTRACT

Trichoderma species have been widely recognized as biofertilizer fungi for their ability to produce phytohormones and enhance plant growth. In our current study, fifteen strains of Trichoderma spp. (T1-T15) were screened for their capacity to produce phytohormones and metabolites eliciting plant growth. The stains were previously isolated from olive rhizosphere soil in northern Algeria. Plant growth promoting (PGP) potential of Trichoderma spp. was evaluated in vitro through the production of phosphatases, siderophores, hydrogen cyanide (HCN), and ammonia (NH3). Besides, plant growth phytohormones such as gibberellic acid and indole-3-acetic acid (IAA) were assessed quantitatively by a colorimetric assay. Results showed an effective potential of Trichoderma spp. in plant growth-promoting biomolecule production. Importantly, qualitative estimation of phosphate solubilization indicates that T10 gave the highest phosphate solubilization on medium Pikovskaya's with a solubilization index (SI) of 3, whereas, the high capacity nitrogen-fixing was related to T8. On the other hand, quantitative analysis of indole-3-acetic acid and gibberellic acid revealed a production varying between (1.30 µg mL-1 to 21.15 µg mL-1) and (0.53 µg mL-1 to 7.87 µg mL-1), respectively; the highest amount of both phytohormones was obtained by T11 isolate. Indeed, an analysis of ethyl acetate extracts of T11 isolate by high-performance liquid chromatography (HPLC) revealed a high amount (71.19 mg L-1) of IAA. Overall, the results showed clearly that isolate T11 has promising plant growth-promoting properties. Hence, this native Trichoderma isolate (T11) identified as Trichoderma harzianum strain (OL587563) could be used later as biofertilizer for sustainable olive crop agriculture.


Subject(s)
Trichoderma , Ammonia , Gibberellins , Hydrogen Cyanide/metabolism , Nitrogen/metabolism , Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Plant Growth Regulators/metabolism , Siderophores/metabolism , Soil/chemistry , Soil Microbiology , Trichoderma/metabolism
7.
J Appl Microbiol ; 132(5): 3797-3811, 2022 May.
Article in English | MEDLINE | ID: mdl-35226387

ABSTRACT

AIMS: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence. METHODS AND RESULTS: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species. CONCLUSION: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause.


Subject(s)
Ascomycota , Fusarium , Fusarium/genetics , Rhizoctonia , Seedlings , Glycine max
8.
Plant Dis ; 106(9): 2403-2414, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35171634

ABSTRACT

Pythium spp. is one of the major groups of pathogens that cause seedling diseases on soybean, leading to both preemergence and postemergence damping-off and root rot. More than 100 species have been identified within this genus, with Pythium irregulare, P. sylvaticum, P. ultimum var ultimum, and P. torulosum being particularly important for soybean production given their aggressiveness, prevalence, and abundance in production fields. This study investigated the antagonistic activity of potential biological control agents (BCAs) native to the U.S. Midwest against Pythium spp. First, in vitro screening identified BCAs that inhibit P. ultimum var. ultimum growth. Scanning electron microscopy demonstrated evidence of mycoparasitism of all potential biocontrol isolates against P. ultimum var. ultimum and P. torulosum, with the formation of appressorium-like structures, short hyphal branches around host hyphae, hook-shaped structures, coiling, and parallel growth of the mycoparasite along the host hyphae. Based on these promising results, selected BCAs were tested under field conditions against six different Pythium spp. Trichoderma afroharzianum 26 used alone and a mix of T. hamatum 16 + T. afroharzianum 19 used as seed treatments protected soybean seedlings from Pythium spp. infection, as BCA-treated plots had on average 15 to 20% greater plant stand and vigor than control plots. Our results also indicate that some of these potential BCAs could be added with a fungicide seed treatment with minimum inhibition occurring, depending on the fungicide active ingredient. This research highlights the need to develop tools incorporating biological control as a facet of soybean seedling disease management programs. The harnessing of native BCAs could be integrated with other management strategies to provide efficient control of seedling diseases.


Subject(s)
Fungicides, Industrial , Pythium , Fungicides, Industrial/pharmacology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Pythium/physiology , Seedlings , Seeds , Glycine max
9.
Molecules ; 27(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500242

ABSTRACT

This study evaluated the ability of selected strains of Trichoderma viride, T. viridescens, and T. atroviride to inhibit mycelium growth and the biosynthesis of mycotoxins deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN), α-(α-ZOL) and ß-zearalenol (ß-ZOL) by selected strains of Fusarium culmorum and F. cerealis. For this purpose, an in vitro experiment was carried out on solid substrates (PDA and rice). After 5 days of co-culture, it was found that all Trichoderma strains used in the experiment significantly inhibited the growth of Fusarium mycelium. Qualitative assessment of pathogen-antagonist interactions showed that Trichoderma colonized 75% to 100% of the medium surface (depending on the species and strain of the antagonist and the pathogen) and was also able to grow over the mycelium of the pathogen and sporulate. The rate of inhibition of Fusarium mycelium growth by Trichoderma ranged from approximately 24% to 66%. When Fusarium and Trichoderma were co-cultured on rice, Trichoderma strains were found to inhibit DON biosynthesis by about 73% to 98%, NIV by about 87% to 100%, and ZEN by about 12% to 100%, depending on the pathogen and antagonist strain. A glycosylated form of DON was detected in the co-culture of F. culmorum and Trichoderma, whereas it was absent in cultures of the pathogen alone, thus suggesting that Trichoderma is able to glycosylate DON. The results also suggest that a strain of T. viride is able to convert ZEN into its hydroxylated derivative, ß-ZOL.


Subject(s)
Fusarium , Mycotoxins , Oryza , Trichoderma , Trichothecenes , Zearalenone , Zearalenone/pharmacology
10.
Phytopathology ; 111(10): 1720-1725, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33620234

ABSTRACT

Sclerotium rolfsii causes destructive soilborne disease in numerous plant species, and biological control may be a promising and sustainable approach for suppressing this widespread pathogen. In this study, the antagonistic effect against S. rolfsii of 10 Trichoderma strains was tested by the dual culture method, and a gliotoxin-producing strain, T. virens T23, was shown to be the most effective, inhibiting growth of S. rolfsii in vitro by 70.2%. To clarify the antagonistic mechanism and gliotoxin biosynthesis regulation of T23, a gliotoxin-deficient mutant was constructed via Agrobacterium tumefaciens-mediated gene knockout in vivo. As expected, disruption of the gene located in the putative gliotoxin biosynthesis gene cluster, gliI-T, resulted in gliotoxin deficiency and attenuation of the antagonistic effect against S. rolfsii, indicating that gliotoxin biosynthesis is regulated by gliI-T and that gliotoxin is an important antifungal metabolite of T23. Transmission electron microscopy revealed that gliotoxin treatment caused marked alterations of the hyphal cells of S. rolfsii depending on the drug concentration, whereby one of the prominent structural alterations was a reduction in the number and length of mitochondrial cristae. When S. rolfsii was exposed to 30 µg/ml of gliotoxin for 12 h, striking plasmolysis and ultrastructural changes were induced. The results demonstrated that gliotoxin is an important secondary metabolite of T. virens T23 in its antagonism against S. rolfsii.


Subject(s)
Gliotoxin , Hypocrea , Trichoderma , Basidiomycota , Plant Diseases
11.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34641569

ABSTRACT

Fighting resistance to antibiotics and chemotherapeutics has brought bioactive peptides to the fore. Peptaibols are short α-aminoisobutyric acid-containing peptides produced by Trichoderma species. Here, we studied the production of peptaibols by Trichoderma atroviride O1 and evaluated their antibacterial and anticancer activity against drug-sensitive and multidrug-resistant bacterium and cancer cell lines. This was substantiated by an analysis of the activity of the peptaibol synthetase-encoding gene. Atroviridins, 20-residue peptaibols were detected using MALDI-TOF mass spectrometry. Gram-positive bacteria were susceptible to peptaibol-containing extracts of T. atroviride O1. A synergic effect of extract constituents was possible, and the biolo-gical activity of extracts was pronounced in/after the peak of peptaibol synthetase activity. The growth of methicillin-resistant Staphylococcus aureus was reduced to just under 10% compared to the control. The effect of peptaibol-containing extracts was strongly modulated by the lipoteichoic acid and only slightly by the horse blood serum present in the cultivation medium. Peptaibol-containing extracts affected the proliferation of human breast cancer and human ovarian cancer cell lines in a 2D model, including the multidrug-resistant sublines. The peptaibols influenced the size and compactness of the cell lines in a 3D model. Our findings indicate the molecular basis of peptaibol production in T. atroviride O1 and the potential of its peptaibol-containing extracts as antimicrobial/anticancer agents.


Subject(s)
Drug Resistance, Bacterial , Hypocreales/metabolism , Ligases/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Neoplasms/drug therapy , Peptaibols/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Fungal Proteins/metabolism , Horses , Humans , Hypocreales/enzymology , MCF-7 Cells , Peptaibols/analysis , Peptaibols/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
Molecules ; 25(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443449

ABSTRACT

The health advantages of extra-virgin olive oil (EVOO) are ascribed mainly to the antioxidant ability of the phenolic compounds. Secoiridoids, hydroxytyrosol, tyrosol, phenolic acid, and flavones, are the main nutraceutical substances of EVOO. Applications of beneficial microbes and/or their metabolites impact the plant metabolome. In this study the effects of application of selected Trichoderma strains or their effectors (secondary metabolites) on the phenolic compounds content and antioxidant potential of the EVOOs have been evaluated. For this purpose, Trichoderma virens (strain GV41) and Trichoderma harzianum (strain T22), well-known biocontrol agents, and two their metabolites harzianic acid (HA) and 6-pentyl-α-pyrone (6PP) were been used to treat plants of Olea europaea var. Leccino and var. Carolea. Then the nutraceutical potential of EVOO was evaluated. Total phenolic content was estimated by Folin-Ciocalteau's assay, metabolic profile by High-Resolution Mass spectroscopy (HRMS-Orbitrap), and antioxidant activity by DPPH and ABTS assays. Our results showed that in the cultivation of the olive tree, T22 and its metabolites improve the nutraceutical value of the EVOOs modulating the phenolic profile and improving antioxidants activity.


Subject(s)
Hypocreales/metabolism , Nutritive Value , Olea/chemistry , Olive Oil/chemistry , Antioxidants/chemistry , Dietary Supplements , Olea/metabolism , Olea/microbiology , Olive Oil/metabolism , Phenols/chemistry , Polyphenols/chemistry
13.
Ecotoxicol Environ Saf ; 184: 109629, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31509783

ABSTRACT

To investigate the induction of oxidative stress and antioxidant response in the chloroacetanilides-degrading Trichoderma spp. under alachlor and metolachlor exposure, a comparative analysis using popular biomarkers was employed. An increased intracellular level of reactive oxygen species (ROS; especially superoxide anion [O2-]) as well as products of lipid and protein oxidation after 24 h incubation with the herbicides confirmed chloroacetanilide-induced oxidative stress in tested Trichoderma strains. However, the considerable decline in the ROS levels and the carbonyl group content (biomarkers of protein peroxidation) in a time-dependent manner and changes in the antioxidant enzyme activities indicated an active response against chloroacetanilide-induced oxidative stress and the mechanism of tolerance in tested fungi. Moreover, the tested herbicides clearly modified the phospholipids (PLs) content in Trichoderma spp. in the stationary phase of growth, which was manifested through the difference in phosphatidic acid (PA), phosphatidylethanolamine (PE) and phosphatidylcholines (PC) levels. Despite enhanced lipid peroxidation and changes in PLs in most tested fungi, only a slight modification in membrane integrity of Trichoderma spp. under chloroacetanilides exposure was noted. The obtained results suggest that the alterations in the antioxidant system and the PLs profile of Trichoderma spp. might be useful biomarkers of chloroacetanilide-induced oxidative stress.


Subject(s)
Herbicides/metabolism , Oxidative Stress , Phospholipids/metabolism , Trichoderma/metabolism , Acetamides/metabolism , Acetamides/toxicity , Antioxidants/metabolism , Biodegradation, Environmental , Herbicides/toxicity , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Trichoderma/drug effects
14.
J Basic Microbiol ; 59(1): 74-86, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30284310

ABSTRACT

Lignifications in secondary cell walls play a significant role in defense mechanisms of plants against the invading pathogens. In the present study, we investigated Trichoderma strain specific lignifications in chickpea plants pre-treated with 10 potential Trichoderma strains and subsequently challenged with the wilt pathogen Fusarium oxysporum f. sp. ciceris (Foc). Trichoderma-induced lignifications in chickpea were observed through histochemical staining and expression of some genes of the lignin biosynthetic pathway. Lignifications were observed in transverse sections of shoots near the soil line through histochemical staining and expression pattern of the target genes was observed in root tissues through semi quantitative RT-PCR at different time intervals after inoculation of F. oxysporum f. sp. ciceris. Lignin deposition and expression pattern of the target genes were variable in each treatment. Lignifications were enhanced in all 10 Trichoderma strain treated and F. oxysporum f. sp. ciceris challenged chickpea plants. However, four Trichoderma strains viz., T-42, MV-41, DFL, and RO, triggered significantly high lignifications compared to the other six strains. Time course studies showed that effective Trichoderma isolates induced lignifications very early compared to the other strains and the process of lignifications nearly completes within 6 days of pathogen challenge. Thus, from the results it can be concluded that effective Trichoderma strains trigger lignifications very early in chickpea under Foc challenge and provide better protection to chickpea plants.


Subject(s)
Cicer/metabolism , Cicer/microbiology , Fusarium/pathogenicity , Lignin/biosynthesis , Plant Diseases/microbiology , Trichoderma/physiology , Antibiosis , Cicer/genetics , Cicer/immunology , DNA, Plant , Gene Expression Regulation, Plant , Genes, Plant/genetics , Host-Pathogen Interactions , Lignin/genetics , Plant Diseases/genetics , Plant Diseases/prevention & control , Plant Immunity/genetics , Plant Immunity/physiology , Plant Roots/genetics , Plant Roots/metabolism , Seeds/growth & development , Seeds/microbiology , Trichoderma/isolation & purification
15.
Int J Mol Sci ; 20(15)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366159

ABSTRACT

Salt stress is one of the major abiotic stresses limiting crop growth and productivity worldwide. Species of Trichoderma are widely recognized for their bio-control abilities, but little information is regarding to the ability and mechanisms of their promoting plant growth and enhancing plant tolerance to different levels of salt stress. Hence, we determined (i) the role of Trichoderma longibrachiatum T6 (TL-6) in promoting wheat (Triticum aestivum L.) seed germination and seedling growth under different levels of salt stress, and (ii) the mechanisms responsible for the enhanced tolerance of wheat to salt stress by TL-6. Wheat seeds treated with or without TL-6 were grown under different levels of salt stress in controlled environmental conditions. As such, the TL-6 treatments promoted seed germination and increased the shoot and root weights of wheat seedlings under both non-stress and salt-stress conditions. Wheat seedlings with TL-6 treatments under different levels of NaCl stress increased proline content by an average of 11%, ascorbate 15%, and glutathione 28%; and decreased the contents of malondialdehyde (MDA) by an average of 19% and hydrogen peroxide (H2O2) 13%. The TL-6 treatments induced the transcriptional level of reactive oxygen species (ROS) scavenging enzymes, leading to the increases of glutathione s-transferase (GST) by an average of 17%, glutathione peroxidase (GPX) 16%, ascorbate peroxidase (APX) 17%, glutathione reductase (GR) 18%, dehydroascorbate reductase (DHAR) 5%. Our results indicate that the beneficial strain of TL-6 effectively scavenged ROS under NaCl stress through modulating the activity of ROS scavenging enzymes, regulating the transcriptional levels of ROS scavenging enzyme gene expression, and enhancing the nonenzymatic antioxidants in wheat seedling in response to salt stress. Our present study provides a new insight into the mechanisms of TL-6 can activate the enzymatic and nonenzymatic antioxidant defense systems and enhance wheat seedling tolerance to different levels of salt stress at physiological, biochemical and molecular levels.


Subject(s)
Germination , Salt Stress , Trichoderma/pathogenicity , Triticum/metabolism , Ascorbic Acid/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Malondialdehyde/metabolism , Oxidative Stress , Plant Proteins/genetics , Plant Proteins/metabolism , Proline/metabolism , Reactive Oxygen Species/metabolism , Triticum/growth & development , Triticum/microbiology
16.
Polim Med ; 49(2): 57-62, 2019.
Article in English | MEDLINE | ID: mdl-32484611

ABSTRACT

BACKGROUND: Green route biosynthesis of silver nanoparticles using Trichoderma viride (T. viride) filtrate (TVFSNPs) can serve as an alternative to antibiotics and as an effective drug delivery to combat cancer and act as an immune-stimulator. OBJECTIVES: To biosynthesize silver nanoparticles (SNPs) with T. viride filtrate using green route and to characterize and determine the cytotoxic and immunomodulatory potential of nanoparticles. MATERIAL AND METHODS: Trichoderma viride filtrate was used for biosynthesizing SNPs. The biosynthesized SNPs were characterized using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The cytotoxic properties against Hep­2C and rotavirus and the immunomodulatory potential were evaluated. RESULTS: Trichoderma viride filtrate was able to bio-reduce AgNO3 to SNPs. The surface plasmon resonance peak was at 450 nm. The presence of aldehydes, amino acids, ethers, esters, carboxylic acids, hydroxyl groups, and phenol among others indicates the capping and stabilization of proteins in the nanoparticles. The nanoparticles were spherical with a size of 0.1-10.0 nm. The EDX analysis revealed a strong signal of silver (Ag). The TVFSNPs had a cytotoxic effect on Hep2C and rotavirus in a dose-dependent manner and increased the production of immunoglobulin (Ig) A (IgA) and IgM. CONCLUSIONS: Trichoderma viride filtrate contained some biochemicals that can bio-reduce silver nitrate (AgNO3) for SNPs biosynthesis. The anticancer and immunostimulatory potential justifies the biomedical application and biotechnological relevance of T. viride.


Subject(s)
Adjuvants, Immunologic , Antineoplastic Agents , Metal Nanoparticles , Plant Extracts , Trichoderma , Silver , Silver Nitrate , Spectroscopy, Fourier Transform Infrared
17.
Pestic Biochem Physiol ; 147: 59-66, 2018 May.
Article in English | MEDLINE | ID: mdl-29933994

ABSTRACT

Biological control with microbial antagonists is considered an alternative approach for controlling plant diseases. Trichoderma species are one of the potential fungal biocontrol agents in suppression of soil-borne pathogens. However, the mechanism and characterization of Trichoderma spp. in inhibiting different phytopathogenic fungi are largely unknown. In this study, we investigated the antagonistic potential of the endophytic fungus Trichoderma longibrachiatum T6 as a biocontrol agent against different phytopathogenic fungi and the associated antagonistic mechanism with bioactive substances. We found that the fermentation and crude extract of T. longibrachiatum T6 had a broad spectrum and potent activity inhibiting the growth of eleven phytopathogens evaluated, and of which, the inhibitory rate against Valsa mali reached 95% at 5 days after incubation. Ten fractions and six sub-fractions of bioactive substances were obtained on silica gel G chromatography and Sephadex LH-20 columns. One of the sub-fractions (coded sub-Fr.4f) exhibited highest inhibition against the pathogen V. mail, with the inhibitory rate of 80.64% at Day 5 of the treatment. Four key chemical inhibitors were identified: (i) 1, 2-Benzenedicarboxylicacid, bis (2-methylpropyl) ester (DIBP) (C16H22O4); (ii) (Z)-octadec-9-enoic acid (C18H34O2); (iii) 1, 2-Benzenedicarboxylic acid, mono (2-ethylhexyl) ester (MEHP) (C16H22O4); and (iv) (Z)-13-Docosenamide (C22H43NO), using spectroscopic and nuclear magnetic resonance data. Two fungicidal compounds DIBP and MEHP provided significantly greater antifungal activities than the other compounds in the inhibition of the V. mail growth. There was a significant linear relationship between the monomer compounds MEPH or DIBP and the inhibitory rates of V. mail; at the concentration of 200 µg mL-1, the inhibitory rate reached over 86% or 78%. We conclude that the strain of T. longibrachiatum T6 can serve as an effective biocontrol agent against V. mali and the mechanism for this function was due to the secondary metabolites with effective bioactive substance.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/drug effects , Pest Control, Biological/methods , Phthalic Acids/pharmacology , Plant Diseases/prevention & control , Trichoderma/chemistry , Ascomycota/growth & development , Chromatography, Liquid/methods , Microbial Sensitivity Tests , Plant Diseases/microbiology , Spectrum Analysis/methods
18.
Environ Monit Assess ; 189(1): 12, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27933578

ABSTRACT

Xylotrechus arvicola is an important pest in vineyards (Vitis vinifera) in the main Iberian wine-producing regions, and Acanthoscelides obtectus causes severe post-harvest losses in the common bean (Phaseolus vulgaris). Under laboratory conditions with a spray tower, the susceptibility of the immature stages of X. arvicola and A. obtectus against the entomopathogenic fungi Beauveria bassiana and four strains of Trichoderma spp. was evaluated. Both insect pests T. harzianum and B. bassiana showed a good inhibitory activity, accumulating an inhibition on the eggs of values above 85 and 82%, respectively. T. atroviride and T. citrinoviride had a lower inhibitory activity, with inhibition values of 74.1 and 73.3% respectively. These fungi can be considered a highly effective tool for the control during the immature stages of these species.


Subject(s)
Beauveria , Pest Control, Biological/methods , Trichoderma , Animals , Coleoptera/microbiology , Phaseolus
19.
Fungal Biol ; 128(4): 1859-1867, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876538

ABSTRACT

Volatile organic compounds (VOCs) produced by yeasts can positively affect crops, acting as antifungals or biostimulants. In this study, Aureobasidium pullulans and Metschnikowia pulcherrima were evaluated as potential antagonists of Trichoderma spp., common fungal pathogen in mushroom cultivation. To assess the biocontrol ability and biostimulant properties of the selected yeast species, in vitro co-culture and VOCs exposure assays were conducted. In both assays, VOCs produced by Aureobasidium spp. showed the stronger antifungal activity with a growth inhibition up to 30 %. This result was further confirmed by the higher volatilome alcohol content revealed by solid phase microextraction-gas chromatography mass spectrometry (SPME/GC-MS). Overall, Aureobasidium strains can be potentially used as biocontrol agent in Pleorotus ostreatus and Cyclocybe cylindracea mycelial growth, without affecting their development as demonstrated by VOCs exposure assay and Fourier-transform infrared spectroscopy (FT-IR). Conversely, M. pulcherrima was characterized by a lower or absent antifungal properties and by a volatilome composition rich in isobutyl acetate, an ester often recognized as plant growth promoter. As confirmed by FT-IR, Lentinula mycelia exposed to M. pulcherrima VOCs showed a higher content of proteins and lipids, suggesting an improvement of some biochemical properties. Our study emphasizes that VOCs produced by specific yeast strains are potentially powerful alternative to synthetic fungicide in the vegetative growth of mushroom-forming fungi and also able to modify their biochemical composition.


Subject(s)
Agaricales , Gas Chromatography-Mass Spectrometry , Mycelium , Volatile Organic Compounds , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Mycelium/growth & development , Mycelium/drug effects , Mycelium/chemistry , Agaricales/chemistry , Agaricales/growth & development , Agaricales/drug effects , Agaricales/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Biological Control Agents/pharmacology , Biological Control Agents/chemistry , Metschnikowia/growth & development , Metschnikowia/drug effects , Metschnikowia/metabolism , Antibiosis , Aureobasidium , Trichoderma/growth & development , Trichoderma/chemistry , Trichoderma/metabolism , Solid Phase Microextraction
20.
Front Microbiol ; 15: 1283492, 2024.
Article in English | MEDLINE | ID: mdl-38357355

ABSTRACT

Introduction: Ginseng (Panax ginseng C.A. Meyer) has multiple effects on human health; however, soil degradation seriously affects its yield. Trichoderma spp. play an important role in improving plant biomass by influencing the soil environment. Therefore, it is necessary to screen efficient Trichoderma strains that can increase ginseng biomass and determine their mechanisms. Methods: Herein, we selected six Trichoderma species (T. brevicompactum, T. velutinum, T. viridescens, T. atroviride, T. koningiopsis, and T. saturnisporum) isolated from ginseng rhizosphere soil, and evaluated their growth promoting effects on ginseng and their influence on the microbiome and chemical attributes of the ginseng rhizosphere soil. Results: Except for T. saturnisporum (F), compared with the control, the other five species increased ginseng biomass. In terms of chemical properties, the pH value, available potassium content, and available phosphorus content in the ginseng rhizosphere soil increased by 1.16-5.85%, 0.16-14.03%, and 3.92-38.64%, respectively, after root irrigation with spores of Trichoderma species. For the soil microbiome, fungal Chao1 and Ace richness indices decreased. Application of Trichoderma enhanced the relative level of Proteobacteria, but reduced the relative level of Ascomycota. At the genus level, application of Trichoderma enhanced the relative levels of Sphingomonas, Blastomonas, and Trichoderma, but reduced the relative level of Fusarium. Available K and available P were the most important elements that affected the structure of the bacterial community, while total K was the most influential element for the structure of the fungal community structure. Conclusion: The results indicated that the application of Trichoderma spp. could increase soil nutrients and regulate the structure and composition of the soil microbial community, thereby enhancing the biomass of ginseng. The results will provide guidance for soil improvement in ginseng cultivation.

SELECTION OF CITATIONS
SEARCH DETAIL