ABSTRACT
Drug-protein interactions are essential since most administered drugs bind abundantly and reversibly to serum albumin and are delivered mainly as a complex with protein. The nature and strength of drug-protein interactions have a big impact on how a drug works biologically. The binding parameters are useful in studying the pharmacological response of drugs and the designing of dosage forms. Serum albumin is regarded as optimal model for in vitro research on drug-protein interaction since it is the main protein that binds medicines and other physiological components. In this perspective, binary complex have been synthesized and characterized, from vanadium metal and acetylacetone(4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione). Imidazole, 2-Methyl-imidazole, and 2-Ethyl-imidazole auxiliary ligands were employed for the synthesis of ternary complexes. Additionally, UV absorption and fluorescence emission spectroscopy were used to examine the binding interactions between vanadium complexes and Bovine Serum Albumin. The outcomes of the binding studies and spectral approaches were in strong agreement with one another. These complexes upon inoculation into diabetes-induced Wistar rats stabilized their serum glucose levels within 3 days. From various studies, it was discovered that the ordering of glucose-lowering actions of these metal complexes were equivalent. The vanadium ternary metal complex derived from (4,4,4-trifluoro-1-(2-theonyl)-1,3-butanedione) and imidazole as ligands is the best among the other metal vanadium complexes.
Subject(s)
Coordination Complexes , Diabetes Mellitus , Rats , Animals , Vanadates/chemistry , Serum Albumin, Bovine/chemistry , Vanadium/pharmacology , Vanadium/chemistry , Rats, Wistar , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Serum Albumin , Spectrometry, Fluorescence , Glucose , Imidazoles/pharmacologyABSTRACT
Phenoxy-imine and phenoxy-amine proligands, with the additional OH donor groups 2,4-tBu2-6-(2-CH2(OH)-C6H4N=CH)C6H3OH (L1H2), 6-(2-CH2(OH)-C6H4N=CH)C6H3OH (L2H2), and 2,4-tBu2-6-(2-CH2(OH)-C6H4NH-CH)C6H3OH (L3H2), were synthesized and their titanium (Ti-L1-Ti-L3) and vanadium (V-L1-V-L2) complexes were prepared in reactions with Ti(OiPr)4 and VO(OiPr)3, respectively. All new compounds were characterized with the use of FTIR, 1H, and 13C NMR spectroscopy; X-ray crystallography was also used to study proligands. All the complexes proved to be active catalysts in the ring-opening polymerization (ROP) of ε-caprolactone, rac-lactide, and L-lactide in the melt. The effects of the complex structure (transition metal type, presence of tBu substituents, and type of nitrogen donor group), as well as the polymerization time and temperature, on the monomer conversion and polymer properties were investigated in detail.
ABSTRACT
Diabetes is usually accompanied by increased production of free radicals or impaired antioxidant defenses. The brain is a target tissue of the oxidative attacks caused by diabetes, and there are observed changes in the biochemical parameters of this tissue in the hyperglycemic state. In this study, we aimed to show the effect of N(1)-2,4-dihydroxybenzylidene-N(4)-2-hydroxybenzylidene-S-methyl-thiosemicarbazidato-oxovanadium (IV) (VOL) compound on diabetic damaged brain tissue, induced by streptozotocin (STZ) on 3.0-3.5-month-old male rats. Single dose of STZ at 65 mg/kg was used to make rats diabetic. Four groups were created randomly. Group (i): control (intact) animals; Group (ii): VOL given control animals; Group (iii): STZ-induced diabetic animals; and Group (iv): orally VOL administered STZ-induced diabetic rats. VOL (0.2 mM/kg/day) administration to control and diabetic animals was performed for a period of 12 days. At the end of day 12, the brain tissues were taken and homogenized. The clear supernatants were used for the determination of glutathione (GSH), lipid peroxidation (LPO), nonenzymatic glycosylation (NEG), and protein levels. Alanine and aspartate transaminases and acetylcholinesterase (AChE), myeloperoxidase (MPO), xanthine oxidase (XO), and oxidative stress marker enzymes activities were also estimated from the homogenates. According to the obtained results, there is found significant elevation of MDA and NEG levels and activities of transaminases, MPO and XO; whereas the GSH content and the activities of AChE and antioxidant enzymes were strongly decreased in the STZ-induced diabetic brain tissues in comparison to control group animals. Twelve days of administration of VOL complex to the diabetic animals reversed all biochemical parameters significantly in diabetic brain tissues. Our findings suggest that the VOL complex may be an ideal candidate to be used as an anti diabetic agent to improve oxidative injury and protect the brain tissue against damage caused by diabetes. This healing effect of the VOL complex may be due to its antioxidant activity and the insulin-mimetic effects of vanadium.
Subject(s)
Brain Injuries , Diabetes Mellitus, Experimental , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Blood Glucose/metabolism , Brain/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glutathione/metabolism , Lipid Peroxidation , Male , Oxidative Stress , Rats , Streptozocin/pharmacology , TransaminasesABSTRACT
The search for less expensive and viable products is always one of the challenges for research development. Commonly, the synthesis of coordination compounds involves expensive ligands, through expensive and low-yield routes, in addition to generating toxic and unusable residues. In this work, the organic ligand used is derived from the resin of a reforestation tree, Pinus elliottii var. elliottii. The synthesis method used Pinus resin and an aqueous solution of vanadium(III) chloride at a temperature of 80 °C. The procedure does not involve organic solvents and does not generate toxic residues, thus imparting the complex formation reaction a green chemistry character. The synthesis resulted in an unprecedented oxovanadium(IV)-bis(abietate) complex, which was characterized by mass spectrometry (MS), chemical analysis (CHN), vibrational (FTIR) and electronic spectra (VISIBLE), X-ray diffraction (XRD), and thermal analysis (TG/DTA). Colorimetric studies were performed according to the CIELAB color space. The structural formula found, consisted of a complex containing two abietate ligands, [VO(C20H29O2)2]. The VO(IV)-bis(abietate) complex was applied against microorganisms and showed promising results in antibacterial and antifungal activity. The best result of inhibitory action was against the strains of Gram-positive bacteria S. aureus and L. monocytogenes, with minimum inhibitory concentration (MIC) values of 62.5 and 125 µmol L−1, respectively. For Gram-negative strains the results were 500 µmol L−1 for E. coli; and 1000 µmol L−1 for Salmonella enterica Typhimurium. Antifungal activity was performed against Candida albicans, where the MIC was 15.62 µmol L−1, and for C. tropicalis it was 62.5 µmol L−1. According to the MFC analysis, the complex presented, in addition to the fungistatic action, a fungicidal action, as there was no growth of fungi on the plates tested. The results found for the tests demonstrate that the VO(IV)-bis(abietate) complex has great potential as an antimicrobial and mainly antifungal agent. In this way, the pigmented ink with antimicrobial activity could be used in environments with a potential risk of contamination, preventing the spread of microorganisms harmful to health.
Subject(s)
Anti-Infective Agents , Antifungal Agents , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans , Chlorides , Escherichia coli , Ligands , Microbial Sensitivity Tests , Solvents , Staphylococcus aureus , Vanadium/pharmacologyABSTRACT
Lysine specific demethylase (LSD1) plays a pivotal role in epigenetic modulation of gene expression. Abberrant expression of LSD1 was associated with the progress and oncogenesis of multiple human cancers. Herein, we report the preliminary anti-LSD1 evaluation of the synthetic vanadium (V) complexes. Among them, complex 2 showed a moderate inhibitory effect against LSD1 with IC50 value of 19.0⯵M, as well as good selectivity over MAO-A/B. Complex 2 is the first vanadium based LSD1 inhibitor, which provides a novel scaffold for the development of LSD1 inhibitor.
Subject(s)
Histone Demethylases/antagonists & inhibitors , Schiff Bases/chemistry , Vanadium Compounds/chemistry , Humans , Ligands , Molecular Docking Simulation , Structure-Activity RelationshipABSTRACT
Pancreatic cancer is characterized by one of the lowest five-year survival rates. In search for new treatments, some studies explored several metal complexes as potential anticancer drugs. Therefore, we investigated three newly synthesized oxidovanadium(IV) complexes with 2-methylnitrilotriacetate (bcma3-), N-(2-carbamoylethyl)iminodiacetate (ceida3-) and N-(phosphonomethyl)-iminodiacetate (pmida4-) ligands as potential anticancer compounds using pancreatic cancer cell lines. We measured: Cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR) and lactate dehydrogenase (LDH) assay; antiproliferative activity by bromodeoxyuridine BrdU assay; reactive oxygen species (ROS) generation and cell cycle analysis by flow cytometry; protein level by Western blot and cellular morphology by confocal laser scanning microscopy. The results showed that these oxidovanadium(IV) complexes were cytotoxic on pancreatic cancer cells (PANC-1 and MIA PaCa2), but not on non-tumor human immortalized pancreas duct epithelial cells (hTERT-HPNE) over the concentration range of 10â»25 µM, following 48 h incubation. Furthermore, molecular mechanisms of cytotoxicity of [4-NH2-2-Me(Q)H][VO(bcma)(H2O)]2H2O (T1) were dependent on antiproliterative activity, increased ROS generation, cell cycle arrest in G2/M phase with simultaneous triggering of the p53/p21 pathway, binucleation, and induction of autophagy. Our study indicates that oxidovanadium(IV) coordination complexes containing 2-methylnitrilotriacetate ligand are good candidates for preclinical development of novel anticancer drugs targeting pancreatic cancer.
Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Carcinoma, Pancreatic Ductal/metabolism , Cell Cycle Checkpoints/drug effects , Pancreatic Neoplasms/metabolism , Vanadium Compounds/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Molecular Structure , Reactive Oxygen Species/metabolism , Vanadium Compounds/chemistry , Pancreatic NeoplasmsABSTRACT
Hepatocellular carcinoma (HCC) is a prevalent human malignancy which its drug resistance is increasing world-wide. This project was designed to assess the anti-cancer effects of 4-bromo-2-(((5-chloro-2-hydroxyphenyl) imino) methyl) phenol ([IV(L)] complex) on the HepG2 cell line and also L929 cells, as normal cells. HepG2 and L929 cells were cultured in RPMI culture medium and the survival rates of the cells were determined after 24 and 48 h using MTT assay to find IC50 concentration of vanadium m, [IV(L)] complex. The early apoptosis and necrosis/late apoptosis were determined by means of annexin V/PI apoptosis detection kit. The results revealed that vanadium m, [IV(L)] complex induce early apoptosis higher in HepG2 cell line than L929 cells. The rates of necrosis/late apoptosis were also induced in HepG2 cells more than L929 cells. Based on the results, vanadium m, [IV(L)] complex might be considered as a safe new drug for treatment of HCC with low side effects on control liver cells.
Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Organometallic Compounds/pharmacology , Vanadium/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Mice , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Structure-Activity Relationship , Vanadium/chemistryABSTRACT
Vanadium compounds are known to exert insulin-enhancing activity, normalize elevated blood glucose levels in diabetic subjects, and show significant activity in models of insulin resistance (IR). Faced with insulin resistance, the present work investigates the antidiabetic performance of a known oxidovanadium(IV)-based coordination compound-[VIVO(octd)]-and effects associated with glucocorticoid-induced insulin resistance in mice. The effects of [VIVO(octd)] were evaluated in a female Swiss mice model of insulin resistance induced by seven days of dexamethasone treatment in comparison with groups receiving metformin treatment. Biological assays such as hematological, TyG index, hepatic lipids, glycogen, oxidative stress in the liver, and oral glucose tolerance tests were evaluated. [VIVO(octd)] was characterized with 51V NMR, infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR), electronic absorption spectroscopy, and mass spectrometry (ESI-FT-MS). The [VIVO(octd)] oral treatment (50 mg/kg) had an antioxidant effect, reducing 50% of fast blood glucose (p < 0.05) and 25% of the TyG index, which is used to estimate insulin resistance (p < 0.05), compared with the non-treated group. The oxidovanadium-sulfur compound is a promising antihyperglycemic therapeutic, including in cases aggravated by insulin resistance induced by glucocorticoid treatment.
ABSTRACT
Autophagy has drawn attention from the scientific community, mainly because of its significant advantages over chemotherapeutic processes. One of these advantages is its direct action on cancer cells, avoiding possible side effects, unlike chemotherapy, which reaches tumor cells and affects healthy cells in the body, leading to a great loss in the quality of life of patients. In this way, it is known that vanadium complex (VC) [VO(oda)(phen)] has proven inhibition effect on autophagy process in pancreatic cancer cells. Keeping that in mind, molecular dynamics (MD) simulations can be considered excellent strategies to investigate the interaction of metal complexes and their biological targets. However, simulations of this type are strongly dependent on the appropriate choice of force field (FF). Therefore, this work proposes the development of AMBER FF parameters for VC, having a minimum energy structure as a starting point, obtained through DFT calculations with B3LYP/def2-TZVP level of theory plus ECP for the vanadium atom. An MD simulation in vacuum was performed to validate the developed FF. From the structural analyses, satisfying values of VC bond lengths and angles were obtained, where a good agreement with the experimental data and the quantum reference was found. The RMSD analysis showed an average of only 0.3%. Finally, we performed docking and MD (120 ns) simulations with explicit solvent between VC and PI3K. Overall, our findings encourage new parameterizations of metal complexes with significant biological applications, as well as allow to contribute to the elucidation of the complex process of autophagy.
Subject(s)
Coordination Complexes , Neoplasms , Humans , Vanadium , Coordination Complexes/pharmacology , Quality of Life , Molecular Dynamics Simulation , AutophagyABSTRACT
The modulation of autophagy has been presented as a very useful strategy in anticancer treatments. In this sense, the vanadium complex (VC) bis(2,2'-bipyridine)chlorooxovanadium(IV), [VO(bpy)2Cl], is known for its ability to induce autophagy in triple-negative breast cancer cells (TNBC). An excellent resource to investigate the role of VC in the induction of autophagy is to make use of Molecular Dynamics (MD) simulations. However, until now, the scarcity of force field parameters for the VC prevented a reliable analysis. The autophagy signaling pathway starts with the PI3K protein and ends with ULK1. Therefore, in the first stage of this work, we developed a new AMBER force field for the VC (VCFF) from a quantum structure, obtained by DFT calculations. In the second stage, the VCFF was validated through structural analyses. From this, it was possible to investigate, through docking and MD (200 ns), the performance of the PI3K-VC and ULK1-VC systems (third stage). The analyses of this last stage involved RMSD, hydrogen bonds, RMSF and two pathways for the modulation of autophagy. In general, this work fills in the absence of force field parameters (FF) for VC by proposing an efficient and new FF, in addition to investigating, at the molecular level, how VC is able to induce autophagy in TNBC cells. This study encourages new parameterizations of metallic complexes and contributes to the understanding of the duality of autophagic processes.Communicated by Ramaswamy H. Sarma.
ABSTRACT
VO(IV) complex is little toxic and highly effective than vanadium salts. A vanadyl metal complex from 8-formyl-7-hydroxy-4-methyl coumarin derivative has been synthesized and functionalized with copper nanoparticles. The Spectrochemical studies such as UV, FTIR, 1NMR and ESR spectra were recorded to characterize the ligand(CUAP), Vanadyl complex[VO(CUAP)SO4] and nano Cu-VO(IV)complex efficiently. The structural studies of vanadyl complex confirmed that the ligand coordinate with metal through nitrogen atom of azomethine, carbonyl oxygen and phenolic oxygen. ESR spectrum of vanadyl complex revealed the covalent nature. XRD pattern of nano Cu-VO(IV) complex indicated the crystalline nature and the average particle size was 20.91 nm. SEM image of nano Cu-VO(IV) complex showed that the nano particles accumulated to form spherical shaped particles. The particle size obtained from Transmission Electron Microscopy of nano functionalized metal complex is â¼ 20 nm. It is closely matched to the particle size calculated from XRD results. Fluorescence of vanadyl complex and nano Cu-VO(IV) complex exhibit the emission from 270 to 900 nm range with significant fluorescence at â¼ 750 nm. The DNA cleavage of all the compounds was evaluated using Agarose gel electrophoresis technique and showed greater cleavage of vanadyl complex. The anticancer activity of compounds was carried out against two cancer cell lines viz Human Breast Cancer Cell line (MCF-7) and Human Leukemia Cancer Cell Line(K-562). Oxovanadium complex exhibited good anticancer activities than ligand and nano-functionalized complex. The antidiabetic activities of vanadyl and nano functionalized complexes were studied against α-Amylase and ß-Glucosidase inhibition assay. In this study vanadyl complex showed higher inhibition activity on α-Amylase compared with standard Acarbose. The bioimaging of nano-functionalized metal complex showed high fluorescent properties. The molecular docking study of ligand and vanadyl complex showed greater docking results with CDK2 receptor.
Subject(s)
Coordination Complexes , Hypoglycemic Agents , Humans , DNA Cleavage , Ligands , Molecular Docking Simulation , Vanadates/pharmacology , Cell Line, Tumor , Coordination Complexes/pharmacologyABSTRACT
The scarcity of efficient force fields to describe metal complexes may be a problem for new advances in medicinal chemistry. Thus, the development of force fields for these compounds can be valuable for the scientific community, especially when it comes to molecules that show interesting outputs regarding potential treating of diseases. Vanadium complexes, for instance, have shown promising results towards therapeutics of Alzheimer's Disease, most notably the bis(maltolato)oxovanadium (IV). Therefore, the mainly goal of this work is to develop and validate a new set of parameters for this vanadium complex from a minimum energy structure, obtained by DFT calculations, where great results of the new force field are found when confronted with experimental and quantum reference values. Moreover, the new force field showed to be quite effective to describe the molecule of under study whilst GAFF could not describe it effectively. In addition, a case study points out hydrogen bonds in the vanadium complex-PTP1B system.
Subject(s)
Alzheimer Disease , Coordination Complexes , Humans , Vanadium/chemistry , Alzheimer Disease/drug therapyABSTRACT
Two new oxidovanadium(V) complexes, [VOL1(aha)]DMF (1) and [VOL2(mat)] (2), where L1 and L2 are the dianionic form of N'-(4-bromo-2-hydroxybenzylidene)-3-methyl-4-nitrobenzohydrazide and N'-(3,5-dibromo-2-hydroxybenzylidene)pivalohydrazide, respectively, and aha and mat are the monoanionic form of acetohydroxamic acid and maltol, respectively, have been synthesized and structurally characterized by physico-chemical methods and single crystal X-ray determination. X-ray analysis indicates that the V atoms in the complexes are in octahedral coordination. Crystal structures of the complexes are stabilized by hydrogen bonds. The catalytic property for epoxidation of styrene by the complexes was evaluated.
Subject(s)
Hydrazones , Catalysis , Crystallography, X-Ray , Hydrazones/chemistry , Ligands , Oxidation-ReductionABSTRACT
Three new zinc(II) and one vanadium(V) complexes, [Zn2Cl2L2] (1), [Zn2I2L2] (2), [ZnCl2(HL)] (3), and [V2O2(µ-O)2L2] (4), where L is 5-bromo-2-((2-(methylamino)ethylimino)methyl)phenolate, have been synthesized and characterized by elemental analyses, IR and UV-Vis spectra, as well as molar conductivity. Structures of the complexes were confirmed by single crystal X-ray diffraction. Complexes 1 and 2 are isostructural dinuclear zinc compounds, with the Zn atoms in square pyramidal coordination. The Zn atoms in the mononuclear complex 3 are in tetrahedral coordination. Complex 4 is a dinuclear vanadium(V) compound, with the V atoms in octahedral coordination. The complexes were assayed for antibacterial activities by MTT method.
Subject(s)
Vanadium , Zinc , Anti-Bacterial Agents , Ligands , Phenols/pharmacology , Vanadium/chemistry , Vanadium/pharmacology , X-Rays , Zinc/chemistry , Zinc/pharmacologyABSTRACT
BACKGROUND: Despite the effective maintenance of glucose homeostasis by insulin in type 1 diabetes mellitus, the drug has been implicated as one of the causes of haematological disturbances, which give rise to cardiovascular complications. As a result, research into alternative therapies for diabetes is needed. In our laboratory, an anti-hyperglycaemic novel vanadium complex has been synthesized using organic heterocyclic ligands. The complex has been shown and improve glycaemic control. The effects of this complex on haematological function, however, have not yet been established. Therefore, this study sought to investigate the haematological effects of dioxidovanadium(V) complex in (STZ)-induced diabetic rats. METHODS: Diabetic rats received vanadium complex (40 mg kg -1 p.o), diabetic untreated (H2O) and insulin treated (0.175 mg kg-1 s.c), groups acted as a negative and positive control, respectively. Vanadium complex was administered twice daily, and blood glucose concentration was monitored weekly for 5 weeks. Thereafter, the animals were sacrificed followed by blood and kidneys collection for haematological (full blood count and Annexin V), hormonal (EPO) and oxidative status (SOD and GPx) analysis. RESULTS: After 5 weeks, untreated diabetic rats presented with hyperglycaemia compared to non-diabetic rats which was attenuated by vanadium complex administration. Furthermore, vanadium treated groups presented with an augmented RBC count, haematocrit, haemoglobin concentration, MCHC, MCV, and (EPO) levels compared to diabetic control. An increase in annexin V expression hence cell survival was observed in vanadium complex treated rats. Lastly, the administration of the complex improved antioxidant status as evidenced by increases in SOD and GPx concentration in plasma and in the kidneys. CONCLUSION: The administration of the anti-hyperglycaemic dioxidovanadium(V) complex improved haematological parameters, cell survival and the antioxidant status displayed by the diabetic rats. These results give an indication that the complex might be an effective alternative therapeutic drug for the treatment of hyperglycaemia in DM.
ABSTRACT
Vanadium compounds are being investigated as potential therapeutic agents in the treatment of many health problems, primarily diabetes. We aimed to provide the effect of N(1)-4-hydroxysalicylidene-N(4)-salicylidene-S-methyl-isothiosemicarbazidato-oxovanadium(IV) (VOL) on small intestinal injury in experimental male diabetic rats. Four groups were created of 3.0-3.5-month-old rats. The rats were made diabetic by a single dose of streptozotocin (STZ) at 65 mg/kg and grouped as follows: control animals, VOL-given control animals, STZ-induced diabetic animals and STZ-induced diabetic animals given VOL. A daily dose of 0.2 mM/kg vanadium complex was administered orally for 12 days after the inducement of diabetes. On the 12th day, small intestine tissue samples were taken. According to the data obtained from the biochemical analysis, reduced glutathione (GSH) level, catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), Na+/K+-ATPase and paraoxanase (PON) activities were increased, whereas sialic acid (SA), xanthine oxidase (XO) and disaccharidases (maltase and saccharidase) activities were decreased in the small intestine tissue of VOL-treated diabetic rats. Microscopic examinations revealed a remarkable decrease in the mucosal necrotic areas, discontinuity in the brush border, deterioration of the villi integrity and oedema inside the villi, but with a mild decrease in the inflammatory cells, deterioration and loss of integrity of the gland in the small intestine of VOL-treated diabetic rats. Moreover, VOL treatment markedly decreased the proliferation of villus cells and especially inflammatory cells in the small intestine of diabetic rats. According to the obtained data, the administration of VOL is a potentially convenient strategy to reducing small intestine injury in diabetic rats.
Subject(s)
Diabetes Mellitus, Experimental , Thiosemicarbazones , Animals , Blood Glucose , Catalase/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glutathione/metabolism , Intestine, Small/metabolism , Male , Oxidative Stress , Rats , Streptozocin , Superoxide Dismutase/metabolism , Thiosemicarbazones/pharmacologyABSTRACT
BACKGROUND: At the present time, there is a growing interest in metal-based anticancer agents. Metal complexes exhibit many valuable clinical properties, however, due to toxicity, only a few clinically useful complexes have been discovered. It has been demonstrated that synthetic vanadium complexes exhibit many biological activities, including anti-cancer properties, however, cellular and molecular mechanisms still are not fully understood. OBJECTIVE: This investigation examined the potential effects of three newly synthesized oxidovanadium(IV) complexes with 2-amino-3-hydroxypyridine against pancreatic cancer cells. METHODS: We measured cytotoxicity by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, antiproliferative activity by bromodeoxyuridine assay and necrosis as well as late apoptosis by lactate dehydrogenase assay. Reactive oxygen species generation, apoptosis and mitochondrial membrane potential were determined by a flow cytometry technique. Cell morphology was evaluated by using a transmission electron microscope. RESULTS: The results showed that oxidovanadium(IV) complexes were cytotoxic on pancreatic cancer cells (PANC-1 and MIA PaCa2) over the concentration range of 12.5-200µM, following 48h incubation. Additionally, the cellular mechanism of cytotoxic activity of [2-NH2-3-OH(py)H]4[V2O2(pmida)2]·6H2O (V3) complex was dependent on ROS generation, induction apoptosis with simultaneous disruption of mitochondrial membrane potential. CONCLUSION: We have proven that oxidovanadium (IV) complexes show therapeutic potential in pancreatic cancer therapy. The results of our research will help to understand the cellular mechanisms of the cytotoxic activity of the vanadium complexes and will allow a more effective design structure of new vanadium-based compounds in the future.
Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Membrane Potential, Mitochondrial/drug effects , Pancreatic Neoplasms/drug therapy , Vanadium/chemistry , Aminopyridines/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Humans , Ligands , Oxidative Stress/drug effects , Pancreas/cytology , Structure-Activity Relationship , Tetrazolium Salts/chemistry , Thiazoles/chemistry , Pancreatic NeoplasmsABSTRACT
A class of vanadium complexes were prepared and investigated for their antiproliferative effects by MTT assay. The structure-activity relationship was extensively studied through the ligand variation. The results showed that the synthetic vanadium complexes demonstrated moderate to good antiproliferative activities against the four cancer cell lines including MGC803, EC109, MCF7 and HepG2, respectively. Of note was that most of the complexes showed preferential growth inhibitory activity to some degree toward gastric cancer line MGC803. Among them, complex 19 exhibited the most and broad-spectrum proliferative inhibition against the tested cell lines. In addition, mechanism studies illustrated that complex 19 could prevent the colony formation, migration and EMT process, as well as induce apoptosis of MGC803â¯cells. Furthermore, Western blot experiments revealed that the expression of apoptosis-related proteins changed, including up-regulation of Bax, PARP and caspase-3/9, as well as down-regulation of Bcl-2.
Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Vanadium/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Down-Regulation , Humans , Molecular Structure , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Up-Regulation , bcl-2-Associated X Protein/metabolismABSTRACT
BACKGROUND: Triple-Negative Breast Cancers (TNBC) are among the most aggressive and therapyresistant breast tumors. Development of new treatment strategies that target pathways involved in cancer cells resistance is an attractive candidate to overcome therapeutic resistance. OBJECTIVE: To clarify the antitumor activity of [VO (bpy)2 Cl] Cl complex as a new therapeutic agent through studying the interplay between apoptosis, autophagy and notch signaling pathways. METHODS: Proliferation of MDA-MB-231 cells and IC50 value of the vanadium complex were assessed by MTT assay. Flow cytometry was utilized to detect cell cycle distribution, apoptosis assay, LC3 levels and Acid Vascular Organelles (AVOs). Caspase 3 levels were detected by ELISA. Changes in Notch1 gene expression were assessed by real-time PCR. AVOs qualitative detection was assessed by a fluorescence microscope. RESULTS: The growth of MDA-MB-231 cells was suppressed after treatment with [VO (bpy)2 Cl] Cl complex, in a dose-dependent manner. The affinity for apoptotic cell death induction was shown through the increase in the sub G0 peak, the percentage of early and late apoptotic phases, and the elevation in caspase 3 levels. The affinity for autophagic cell death induction was observed through the increase in the G0/G1 phase, G2/M arrest, the increase of AVOs red fluorescence and elevated LC3 levels. The affinity for notch pathway inhibition was shown through the suppression of Notch 1 gene expression. CONCLUSION: [VO (bpy)2 Cl] Cl complex could be a promising candidate as therapeutic agent targeting different therapeutic targets including apoptosis, autophagy and notch signaling pathways.
Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/physiopathology , Organometallic Compounds/pharmacology , Vanadium/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured , Vanadium/chemistryABSTRACT
The quest for effective treatments of oxidative stress has concentrated over the years on new nanomaterials with improved antioxidant and antiradical activity, thereby attracting broad research interest. In that regard, research efforts in our lab were launched to pursue such hybrid materials involving a) synthesis of silica gel matrices, b) evaluation of the suitability of atoxic matrices as potential carriers for the controlled release of V(IV)(VOSO4), V(V)(NaVO3) compounds and a newly synthesized heterometallic lithium-vanadium(IV,V) tetranuclear compound containing vanadium-bound hydroxycarboxylic 1,3-diamine-2-propanol-N,N,N',N'-tetraacetic acid (DPOT), and c) investigation of structural and textural properties of silica nanoparticles (NPs) by different and complementary characterization techniques, inquiring into the nature of the encapsulated vanadium species and their interaction with the siloxane matrix, collectively targeting novel antioxidant and antiradical nanomaterials biotechnology. The physicochemical characterization of the vanadium-loaded SiO2 NPs led to the formulation of optimized material configuration linked to the delivery of the encapsulated antioxidant-antiradical load. Entrapment and drug release studies showed a) the competence of hybrid nanoparticles with respect to encapsulation efficiency of the vanadium compound (concentration dependence), b) congruence with the physicochemical features determined, and c) a well-defined release profile of NP load. Antioxidant properties and the free radical scavenging capacity of the new hybrid materials (containing VOSO4, NaVO3, and V-DPOT) were demonstrated through a) 2-diphenyl-1-picrylhydrazyl (DPPH) free radical, and b) intracellular-extracellular reactive oxygen species (ROS) assays, through UV-Visible spectroscopy techniques, collectively showing that the hybrid silica NPs (empty-loaded) could serve as an efficient platform for nanodrug formulations counteracting oxidative stress.