Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 885: 163655, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37094677

ABSTRACT

The objective of this study was to develop a novel copula-based time series (CTS) model to forecast COVID-19 cases and trends based on wastewater SARS-CoV-2 viral load and clinical variables. Wastewater samples were collected from wastewater pumping stations in five sewersheds in the City of Chesapeake VA. Wastewater SARS-CoV-2 viral load was measured using reverse transcription droplet digital PCR (RT-ddPCR). The clinical dataset included daily COVID-19 reported cases, hospitalization cases, and death cases. The CTS model development included two steps: an autoregressive moving average (ARMA) model for time series analysis (step I), and an integration of ARMA and a copula function for marginal regression analysis (step II). Poisson and negative binomial marginal probability densities for copula functions were used to determine the forecasting capacity of the CTS model for COVID-19 forecasts in the same geographical area. The dynamic trends predicted by the CTS model were well suited to the trend of the reported cases as the forecasted cases from the CTS model fell within the 99 % confidence interval of the reported cases. Wastewater SARS CoV-2 viral load served as a reliable predictor for forecasting COVID-19 cases. The CTS model provided robust modeling to predict COVID-19 cases.


Subject(s)
COVID-19 , Cubozoa , Animals , COVID-19/epidemiology , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Time Factors , Wastewater
2.
Sci Total Environ ; 876: 162572, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36871720

ABSTRACT

Wastewater SARS-CoV-2 surveillance has been deployed since the beginning of the COVID-19 pandemic to monitor the dynamics in virus burden in local communities. Genomic surveillance of SARS-CoV-2 in wastewater, particularly efforts aimed at whole genome sequencing for variant tracking and identification, are still challenging due to low target concentration, complex microbial and chemical background, and lack of robust nucleic acid recovery experimental procedures. The intrinsic sample limitations are inherent to wastewater and are thus unavoidable. Here, we use a statistical approach that couples correlation analyses to a random forest-based machine learning algorithm to evaluate potentially important factors associated with wastewater SARS-CoV-2 whole genome amplicon sequencing outcomes, with a specific focus on the breadth of genome coverage. We collected 182 composite and grab wastewater samples from the Chicago area between November 2020 to October 2021. Samples were processed using a mixture of processing methods reflecting different homogenization intensities (HA + Zymo beads, HA + glass beads, and Nanotrap), and were sequenced using one of the two library preparation kits (the Illumina COVIDseq kit and the QIAseq DIRECT kit). Technical factors evaluated using statistical and machine learning approaches include sample types, certain sample intrinsic features, and processing and sequencing methods. The results suggested that sample processing methods could be a predominant factor affecting sequencing outcomes, and library preparation kits was considered a minor factor. A synthetic SARS-CoV-2 RNA spike-in experiment was performed to validate the impact from processing methods and suggested that the intensity of the processing methods could lead to different RNA fragmentation patterns, which could also explain the observed inconsistency between qPCR quantification and sequencing outcomes. Overall, extra attention should be paid to wastewater sample processing (i.e., concentration and homogenization) for sufficient and good quality SARS-CoV-2 RNA for downstream sequencing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , RNA, Viral , Wastewater , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL