Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters

Publication year range
1.
Appl Environ Microbiol ; 90(7): e0052824, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38916293

ABSTRACT

Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE: Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.


Subject(s)
Amides , Bacterial Proteins , Symbiosis , Transcription Factors , Xenorhabdus , Xenorhabdus/genetics , Xenorhabdus/metabolism , Xenorhabdus/physiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Amides/pharmacology , Amides/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Bacterial , Humans , Nematoda/microbiology
2.
Microb Cell Fact ; 23(1): 98, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561780

ABSTRACT

BACKGROUND: Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS: In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS: The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.


Subject(s)
Biological Products , Photorhabdus , Xenorhabdus , Xenorhabdus/genetics , Xenorhabdus/metabolism , Photorhabdus/genetics , Gene Editing , Biological Products/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats
3.
Arch Insect Biochem Physiol ; 115(1): e22081, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38288493

ABSTRACT

Phospholipase A2 (PLA2 ) catalyzes phospholipids at the sn-2 position to release free fatty acids, including arachidonic acid (AA) or its precursor. The free AA is then oxygenated into different eicosanoids, which mediate the diverse physiological processes in insects. Any inhibition of the PLA2 catalysis would give rise to serious malfunctioning in insect growth and development. An onion moth, Acrolepiopsis sapporensis, encodes four different PLA2 genes (As-PLA2 A-As-PLA2 D), in which As-PLA2 A is dominantly expressed at all developmental stages and in different larval tissues. RNA interference of the As-PLA2 A expression significantly reduced the PLA2 activity of A. sapporensis, which suffered from immunosuppression. A recombinant As-PLA2 A protein was purified from a bacterial expression system, which exhibited a typical Michaelis-Menten kinetics and hence susceptible to a specific inhibitor to sPLA2 and dithiothreitol. A total of 19 bacterial metabolites derived from Xenorhabdus and Photorhabdus were screened against the recombinant As-PLA2 A. Five potent metabolites were highly inhibitory and followed a competitive enzyme inhibition. These five inhibitors suppressed the immune responses of A. sapporensis by inhibiting hemocyte-spreading behavior and phenoloxidase activity. However, an addition of AA could significantly rescue the immunosuppression induced by the selected inhibitors. These studies suggest that the recombinant As-PLA2 A protein can be applied for high-throughput screening of insect immunosuppressive compounds.


Subject(s)
Phospholipases A2, Secretory , Animals , Spodoptera , Phospholipases A2, Secretory/genetics , Phospholipases A2, Secretory/metabolism , Eicosanoids/metabolism , Larva/metabolism , Insecta , Arachidonic Acid/metabolism
4.
J Invertebr Pathol ; 203: 108045, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38135245

ABSTRACT

Nanomaterials are successful due to their numerous applications in various domains such as cancer treatment, environmental applications, drug and gene delivery. Selenium is a metalloid element with broad biological activities and low toxicity especially at the nanoscale. Several studies have shown that nanoparticles synthesized from microbial and plant extracts are effective against important pests and pathogens. This study describes the bio fabrication of selenium nanoparticles using cell free extract of Xenorhabdus cabanillasii (XC-SeNPs) and assessed their mosquito larvicidal properties. Crystallographic structure and size of XC-SeNPs were determined with UV-a spectrophotometer, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), Energy-dispersive X-ray spectroscopy (EDAX), Zeta potential and Transmission electron microscopy (TEM). The significant surface plasmon resonance at 275 nm indicated the synthesis of XC-SeNPs from the pure cell-free extract of X. cabanillasii. The XRD result exhibits the crystalline nature of XC-SeNPs. The Zeta potential analysis confirmed that the surface charge of XC-SeNPs was -24.17 mV. TEM analysis revealed that synthesized XC-SeNPs were monodispersed, spherically shaped, and sized about 80-200 nm range. In addition, the larvicidal potentials of the bio-fabricated XC-SeNPs were assessed against the 4th-instar Ae. aegypti. XC-SeNPs displayed a dose-dependent larvicidal effect; the larval mortality was 13.3 % at the minimum evaluated concentration and increased to 72 % at higher dose treatments. The LC50 and LC90 concentration of XC-SeNPs against mosquito larvae were 79.4 and 722.4 ppm, respectively.


Subject(s)
Aedes , Insecticides , Selenium , Xenorhabdus , Yellow Fever , Animals , Insecticides/pharmacology , Insecticides/chemistry , Larva , Plant Extracts/pharmacology , Plant Extracts/chemistry , Selenium/analysis , Selenium/pharmacology
5.
J Invertebr Pathol ; 203: 108075, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350523

ABSTRACT

Colorado Potato Beetle (CPB) is one of the most destructive potato pests that can quickly develop resistance to insecticides. Therefore, new safe and effective control strategies that are less susceptible to the development of resistance by CPB are urgently needed. Due to their complex mode of action, the likelihood of resistance development by target pests is generally low with antifeedants. In the present study, we assessed the effect of secondary metabolites of various Xenorhabdus bacteria species and strains on CPB adult feeding and on larval development. The metabolites were applied in the form of cell free supernatants (CFSs) from Xenorhabdus cultures. In bioassay 1, leaves treated with ten Xenorhabdus cultures were fed to CPB adults, and their feeding was assessed daily for one week. In bioassay 2, CPB egg masses were placed on the leaves treated with five bacterial cultures, and larval development to pupae was monitored. Out of the ten Xenorhabdus cultures tested, two strains exhibited a significant reduction in the feeding behavior of Colorado Potato Beetle adults, with reductions of up to 70% compared to the control. The effect of CFSs on larval development was variable, and when treated with X. khoisanae SGI 197, over 90% of larvae died in the first few days before reaching the 2nd instar, and complete mortality was achieved on the 8th day of the experiment. Our study is the first study to demonstrate the antifeedant effect of Xenorhabdus cultures towards herbivorous beetles, and the metabolites of these bacteria may have potential for CPB control. Clearly, the metabolites produced by X. khoisanae SGI-197 may be a promising tool for CPB larvae control with the potential to significantly decrease damage to potato plants.


Subject(s)
Coleoptera , Solanum tuberosum , Xenorhabdus , Animals , Larva , Bacteria
6.
World J Microbiol Biotechnol ; 40(3): 101, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366186

ABSTRACT

Xenorhabdus, known for its symbiotic relationship with Entomopathogenic nematodes (EPNs), belongs to the Enterobacteriaceae family. This dual-host symbiotic nematode exhibits pathogenic traits, rendering it a promising biocontrol agent against insects. Our prior investigations revealed that Xenorhabdus stockiae HN_xs01, isolated in our laboratory, demonstrates exceptional potential in halting bacterial growth and displaying anti-tumor activity. Subsequently, we separated and purified the supernatant of the HN_xs01 strain and obtained a new compound with significant inhibitory activity on tumor cells, which we named XNAE. Through LC-MS analysis, the mass-to-nucleus ratio of XNAE was determined to be 254.24. Our findings indicated that XNAE exerts a time- and dose-dependent inhibition on B16 and HeLa cells. After 24 h, its IC50 for B16 and HeLa cells was 30.178 µg/mL and 33.015 µg/mL, respectively. Electron microscopy revealed conspicuous damage to subcellular structures, notably mitochondria and the cytoskeleton, resulting in a notable reduction in cell numbers among treated tumor cells. Interestingly, while XNAE exerted a more pronounced inhibitory effect on B16 cells compared to HeLa cells, it showed no discernible impact on HUVEC cells. Treatment of B16 cells with XNAE induced early apoptosis and led to cell cycle arrest in the G2 phase, as evidenced by flow cytometry analysis. The impressive capability of X. stockiae HN_xs01 in synthesizing bioactive secondary metabolites promises to significantly expand the reservoir of natural products. Further exploration to identify the bioactivity of these compounds holds the potential to shed light on their roles in bacteria-host interaction. Overall, these outcomes underscore the promising potential of XNAE as a bioactive compound for tumor treatment.


Subject(s)
Nematoda , Xenorhabdus , Animals , Humans , Xenorhabdus/metabolism , HeLa Cells , Nematoda/microbiology , Enterobacteriaceae , Symbiosis
7.
J Appl Microbiol ; 134(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37656887

ABSTRACT

AIMS: Black scurf disease, caused by Rhizoctonia solani, is a severe soil-borne and tuber-borne disease, which occurs and spreads in potato growing areas worldwide and poses a serious threat to potato production. New biofungicide is highly desirable for addressing the issue, and natural products (NPs) from Xenorhabdus spp. provide prolific resources for biofungicide development. In this study, we aim to identify antifungal NPs from Xenorhabdus spp. for the management of this disease. METHODS AND RESULTS: Out of the 22 Xenorhabdus strains investigated, Xenorhabdus budapestensis 8 (XBD8) was determined to be the most promising candidate with the measured IC50 value of its cell-free supernatant against R. solani as low as 0.19 ml l-1. The major antifungal compound in XBD8 started to be synthesized in the middle logarithmic phase and reached a stable level at stationary phase. Core gene deletion coupled with high-resolution mass spectrometry analysis determined the major antifungal NPs as fabclavine derivatives, Fcl-7 and 8, which showed broad-spectrum bioactivity against important pathogenic fungi. Impressively, the identified fabclavine derivatives effectively controlled black scurf disease in both greenhouse and field experiments, significantly improving tuber quality and increasing with marketable tuber yield from 29 300 to 35 494 kg ha-1, comparable with chemical fungicide fludioxonil. CONCLUSIONS: The fabclavine derivatives Fcl-7 and 8 were determined as the major antifungal NPs in XBD8, which demonstrated a bright prospect for the management of black scurf disease.


Subject(s)
Biological Products , Dandruff , Xenorhabdus , Humans , Antifungal Agents
8.
J Invertebr Pathol ; 198: 107925, 2023 06.
Article in English | MEDLINE | ID: mdl-37087093

ABSTRACT

Xenorhabdus, like other Gram-negative bacteria, possesses a Type 6 Secretion System (T6SS) which acts as a contact-dependent molecular syringe, delivering diverse proteins (effectors) directly into other cells. The number of T6SS loci encoded in Xenorhabdus genomes are variable both at the inter and intraspecific level. Some environmental isolates of Xenorhabdus bovienii, encode at least one T6SS locus while others possess two loci. Previous work conducted by our team demonstrated that X. bovienii [Jollieti strain SS-2004], which has two T6SSs (T6SS-1 and T6SS-2), hcp genes are required for biofilm formation. Additionally, while T6SS-1 hcp gene plays a role in the antibacterial competition, T6SS-2 hcp does not. In this study, we tested the hypothesis that vgrG genes are also involved in mutualistic and pathogenic interactions. For this purpose, targeted mutagenesis together with wet lab experiments including colonization, competition, biofilm, and virulence experiments, were carried out to assess the role of vgrG in the mutualistic and antagonistic interactions in the life cycle of XBJ. Our results revealed that vgrG genes are not required for biofilm formation but play a role in outcompeting other Xenorhabdus bacteria. Additionally, both vgrG and hcp genes are required to fully colonize the nematode host. We also demonstrated that hcp and vgrG genes in both T6SS clusters are needed to support the reproductive fitness of the nematodes. Overall, results from this study revealed that in X. bovieni jollieti strain, the twoT6SS clusters play an important role in the fitness of the nematodes in relation to colonization and reproduction. These results lay a foundation for further investigations on the functional significance of T6SSs in the mutualistic and pathogenic lifecycle of Xenorhabdus spp.


Subject(s)
Nematoda , Type VI Secretion Systems , Xenorhabdus , Animals , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Virulence/genetics , Nematoda/genetics , Nematoda/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
J Invertebr Pathol ; 198: 107911, 2023 06.
Article in English | MEDLINE | ID: mdl-36921888

ABSTRACT

The grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae), is a critical pest for vineyards and causes significant economic losses in wine-growing areas worldwide. Identifying and developing novel semiochemical cues (e.g. volatile bacterial compounds) which modify the ovipositional and trophic behaviour of L. botrana in vineyard fields could be a novel control alternative in viticulture. Xenorhabdus spp. and Photorhabdus spp. are becoming one of the best-studied bacterial species due to their potential interest in producing toxins and deterrent factors. In this study, we investigated the effect of the deterrent compounds produced by Xenorhabdus nematophila and Photorhabdus laumondii on the ovipositional moth behaviour and the larval feeding preference of L. botrana. Along with the in-vitro bioassays performed, we screened the potential use of 3 d cell-free bacterial supernatants and 3 and 5 d unfiltered bacterial ferments. In addition, we tested two application systems: (i) contact application of the bacterial compounds and (ii) volatile bacterial compounds application. Our findings indicate that the deterrent effectiveness varied with bacterial species, the use of bacterial cell-free supernatants or unfiltered fermentation product, and the culture times. Grapes soaked in the 3 d X. nematophila and P. laumondii ferments had âˆ¼ 55% and âˆ¼ 95% fewer eggs laid than the control, respectively. Likewise, the volatile compounds emitted by the 5 d P. laumondii fermentations resulted in âˆ¼ 100% avoidance of L. botrana ovipositional activity for three days. Furthermore, both bacterial fermentation products have larval feeding deterrent effects (∼65% of the larva chose the control grapes), and they significantly reduced the severity of damage caused by third instar larva in treated grapes. This study provides insightful information about a novel bacteria-based tool which can be used as an eco-friendly and economical alternative in both organic and integrated control of L. botrana in vineyard.


Subject(s)
Moths , Photorhabdus , Vitis , Xenorhabdus , Animals , Larva
10.
J Nematol ; 55(1): 20230029, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37455851

ABSTRACT

Three entomopathogenic nematode populations were isolated from agricultural fields in the Anantnag district of Jammu and Kashmir (India). Sequences of multiple gene regions and phenotypic features show that they are conspecific and represent a novel species. Molecular and morphological features provided evidence for placing the new species into the "Kushidai" clade. Within this clade, analysis of sequence data of the internal transcribed spacer (ITS) gene, the D2D3 region of the 28S rRNA gene, the mitochondrial cytochrome oxidase I (mtCOI) gene, and the mitochondrial 12S (mt12S) gene depicted the novel species as a distinctive entity closely related to Steinernema akhursti, S. kushidai, and S. populi. Phylogenetic analyses also show that the new species is a sister species to S. akhursti, and these two species are closely related to S. kushidai and S. populi. Additionally, the new species does not mate or produce fertile progeny with any of the closely related species, reinforcing its uniqueness from a biological species concept standpoint. The new species is further characterized by the third-stage infective juveniles with almost straight bodies (0.7-0.8 mm length), poorly developed stoma and pharynx, and conoid-elongate tail (49-66 µm) with hyaline posterior part. Adult females are characterized by short and conoid tails bearing a short mucron in the first generation and long conoid tails with thin mucron in the second generation. Adult males have ventrally curved spicules in both generations. Moreover, the first-generation male has rounded manubrium, fusiform gubernaculum, conoid and slightly ventrally curved tails with minute mucron, and the second generation has rhomboid manubrium anteriorly ventrad bent, and tails with long and robust mucron. The morphological, morphometrical, molecular, and phylogenetic analyses support the new species status of this nematode, which is hereby described as Steinernema anantnagense n. sp. The bacterial symbiont associated with S. anantnagense n. sp. represents a novel species, closely related to Xenorhabdus japonica. These findings shed light on the diversity of entomopathogenic nematodes and their symbiotic bacteria, providing valuable information for future studies in this field.

11.
Microb Pathog ; 162: 105309, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34839000

ABSTRACT

Xenorhabdus nematophila is an entomopathogenic bacterium that synthesizes numerous toxins and kills its larval insect host. Apart from such toxins, its genome also has a plethora of toxin-antitoxin (TA) systems. The role of TA systems in bacterial physiology is debatable; however, they are associated with maintaining bacterial genomic stability and their survival under adverse environmental conditions. Here, we explored the functionality and transcriptional regulation of the type II hipBAXn2 TA system. This TA system was identified in the genome of X. nematophila ATCC 19061, which consists of the hipAXn2 toxin gene encoding 278 amino acid residues and hipBXn2 encoding antitoxin of 135 amino acid residues. We showed that overexpression of HipAXn2 toxin reduced the growth of Escherichia coli cells in a bacteriostatic manner, and amino-acids G8, H164, N167, and S169 were key residues for this growth reduction. Promoter activity and expression profiling of the hipBAXn2 TA system was showed that transcription was induced in both E. coli as well as X. nematophila upon exposure to different stress conditions. Further, we have exhibited the binding features of HipAXn2 toxin and HipBXn2 antitoxin to their promoter. This study provides evidence for the presence of a functional and well-regulated hipBAXn2 TA system in X. nematophila.


Subject(s)
Antitoxins , Escherichia coli Proteins , Toxin-Antitoxin Systems , Xenorhabdus , Antitoxins/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins , Escherichia coli/genetics , Toxin-Antitoxin Systems/genetics , Xenorhabdus/genetics
12.
Biometals ; 35(4): 795-812, 2022 08.
Article in English | MEDLINE | ID: mdl-35715709

ABSTRACT

Spodoptera litura, one of the polyphagous pests, causes huge economical lose and use of chemical pesticide causes impact to the environmental. The present study deals with the use of cell- free supernatant of bacteria Xenorhabdus nematophila NP-1 strain for synthesizing silver nanoparticles and analyzing its larvicidal ability against Spodoptera litura. Color change from yellow to dark brown specifies the synthesis of AgNPs. UV-Vis spec indicates the presences of AgNPs at 440 nm λmax and functional groups; alcohols, carboxylic acids, aromatics, alkylhalides, ethers and phenols were confirmed by FTIR. SEM revealed the synthesized AgNPs is in spherical shape, EDaX confirms the elemental composition and the crystalline nature were observed using XRD. GC-MS analysis showed presence of Benzencepropanoic acid, 1, 3, 5 Trichloropent-2-ene, 1,1-Dichloro-2,3- dicmethycycloprone and 1,2-benzenedicarboxylic acid bioactive compounds some of which may be responsible for insecticidal and antibacterial activity. The antibacterial activity against S. aureus, B. subtilis and K. pneumoniae showed maximum zone of inhibition at 100 µL/mL. Larvicidal activity of S. litura shows highest mortality at 48 h. In potted plant experiment, AgNPs treated plants showed less damage, with less leaf consumption by S. litura larvae. Further, the synthesis of AgNPs were targeted to zebrafish embryos (non- target organism) and it didn't exhibit any toxic effect even at higher concentration. Our experiment concludes that, AgNPs synthesized using NP-1 strain has highest antimicrobial and insecticidal activity, which can be used in biomedical and biopesticides.


Subject(s)
Insecticides , Metal Nanoparticles , Xenorhabdus , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Larva , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry , Silver/pharmacology , Spodoptera , Staphylococcus aureus , Zebrafish
13.
Appl Microbiol Biotechnol ; 106(12): 4387-4399, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35723692

ABSTRACT

Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.


Subject(s)
Biological Products , Nematoda , Photorhabdus , Rhabditida , Xenorhabdus , Animals , Biological Products/metabolism , Insecta/microbiology , Nematoda/microbiology , Symbiosis
14.
Appl Microbiol Biotechnol ; 106(23): 7857-7866, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36326838

ABSTRACT

Xenorhabdus can produce a large number of secondary metabolites with insecticidal, bacteriostatic, and antitumor activities. Efficient gene editing tools will undoubtedly facilitate the functional genomics research and bioprospecting in Xenorhabdus. In this study, BlastP analysis using the amino acid sequences of Redαß or RecET recombinases as queries resulted in the identification of an operon (XBJ1_operon 0213) containing RecET-like recombinases encoding genes from the genome of Xenorhabdus bovienii strain SS-2004. Three proteins encoded by this operon was indispensable for full activity of recombineering, namely XBJ1-1173 (RecE-like protein), XBJ1-1172 (RecT-like protein), and XBJ1-1171 (single-strand annealing protein). Using this newly developed recombineering system, a gene cluster responsible for biosynthesis of a novel secondary metabolite (Min16) was identified from X. stockiae HN_xs01 strain. Min16 which exhibited antibacterial and cytotoxic activities was determined to be a cyclopeptide composed of Acyl-Phe-Thr-Phe-Pro-Pro-Leu-Val by using high-resolution mass spectrometry and nuclear magnetic resonance analysis, and was designated as changshamycin. This host-specific recombineering system was proven to be effective for gene editing in Xenorhabdus, allowing for efficient discovery of novel natural products with attractive bioactivities. KEY POINTS: • Screening and identification of efficient gene editing tools from Xenorhabdus • Optimization of the Xenorhabdus electroporation parameters • Discovery of a novel cyclopeptide compound with multiple biological activities.


Subject(s)
Biological Products , Xenorhabdus , Xenorhabdus/genetics , Recombinases/genetics , Recombinases/metabolism , Biological Products/metabolism , Operon , Peptides, Cyclic/metabolism
15.
J Nematol ; 54(1): 20220049, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36457370

ABSTRACT

Alternatives to hazardous insecticides are urgently needed for an environmentally friendly and effective management of insect pests. One such option is the use of entomopathogenic nematodes (EPN). To increase the availability of EPN with potential for biocontrol, we surveyed agricultural soils in the Republic of Rwanda and collected two Steinernema isolates. Initial molecular characterization showed that they represent a new species, for which we propose the name S. africanum n. sp. To describe this new species, we reconstructed phylogenetic relationships, calculated sequence similarity scores, characterized the nematodes at the morphological level, conducted crossing experiments, and isolated and characterized their symbiotic bacteria. At the molecular level, S. africanum n. sp. is closely related to S. litorale and S. weiseri. At the morphological level, S. africanum n. sp. differs from closely related species by the position of the nerve ring and also because the stoma and pharynx region is longer. The first-generation males have ventrally curved spicules with lanceolate manubrium and fusiform gubernaculum and the second-generation males have rounded manubrium and anteriorly hook-like gubernaculum. Steinernema africanum n. sp. does not mate or produce fertile progeny with any of the closely related species.

16.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Article in English | MEDLINE | ID: mdl-34898417

ABSTRACT

Xenorhabdus is a symbiotic group of bacteria associated with entomopathogenic nematodes of the family Steinernematidae. Although the described Steirnernema species list is extensive, not all their symbiotic bacteria have been identified. One single motile, Gram-negative and non-spore-forming rod-shaped symbiotic bacterium, strain VLST, was isolated from the entomopathogenic nematode Steinernema unicornum. Analyses of the 16S rRNA gene determined that the VLST isolate belongs to the genus Xenorhabdus, and its closest related species is Xenorhabdus szentirmaii DSM 16338T (98.2 %). Deeper analyses using the whole genome for phylogenetic reconstruction indicate that VLST exhibits a unique clade in the genus. Genomic comparisons considering digital DNA-DNA hybridization (dDDH) values confirms this result, showing that the VLST values are distant enough from the 70 % threshold suggested for new species, sharing 30.7, 30.5 and 30.3 % dDDH with Xenorhabdus khoisanae MCB, Xenorhabdus koppenhoeferi DSM 18168T and Xenorhabdus miraniensis DSM 18168T, respectively, as the closest species. Detailed physiological, biochemical and chemotaxonomic tests of the VLST isolate reveal consistent differences from previously described Xenorhabdus species. Phylogenetic, physiological, biochemical and chemotaxonomic approaches show that VLST represents a new species of the genus Xenorhabdus, for which the name Xenorhabdus lircayensis sp. nov. (type strain VLST=CCCT 20.04T=DSM 111583T) is proposed.


Subject(s)
Phylogeny , Rhabditida , Xenorhabdus , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Rhabditida/microbiology , Sequence Analysis, DNA , Xenorhabdus/classification , Xenorhabdus/isolation & purification
17.
Appl Microbiol Biotechnol ; 105(13): 5517-5528, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34250572

ABSTRACT

Xenorhabdus and Photorhabdus spp. are enteric bacterial symbionts of Steinernema and Heterorhabditis nematodes, respectively. These bacteria produce an extensive set of natural products (NPs) with antibacterial, antifungal, antiprotozoal, insecticidal, or other bioactivities when vectored into insect hemocoel by nematodes. We assessed the in vitro activity of different Xenorhabdus and Photorhabdus cell-free supernatants against important fungal phytopathogens, viz., Cryphonectria parasitica, Fusarium oxysporum, Rhizoctonia solani, and Sclerotinia sclerotiorum and identified the bioactive antifungal compound/s present in the most effective bacterial supernatant using the easyPACId (easy promoter-activated compound identification) approach against chestnut blight C. parasitica. Our data showed that supernatants from Xenorhabdus species were comparatively more effective than extracts from Photorhabdus in suppressing the fungal pathogens; among the bacteria assessed, Xenorhabdus szentirmaii was the most effective species against all tested phytopathogens especially against C. parasitica. Subsequent analysis revealed fabclavines as antifungal bioactive compounds in X. szentirmaii, generated by a polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) hybrid system. Fabclavines are broad-spectrum, heat-stable NPs that have great potential as biological control compounds against fungal plant pathogens. More studies are needed to assess the potential phytotoxicity of these compounds and their effects on non-target organisms before commercialization. KEY POINTS: • Chemical fungicides have toxic effects on humans and other non-target organisms. • Alternatives with novel modes of action to supplant current fungicide are needed. • A novel bioactive antifungal compound from Xenorhabdus szentirmaii was identified.


Subject(s)
Photorhabdus , Xenorhabdus , Animals , Antifungal Agents/pharmacology , Ascomycota , Fusarium , Humans , Plant Diseases , Rhizoctonia , Symbiosis
18.
Plant Dis ; 105(10): 3276-3278, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33970680

ABSTRACT

Xenorhabdus budapestensis strain C72 isolated from the entomopathogenic nematode of Steinernema bicornutum possesses an excellent biocontrol effect on southern corn leaf blight. However, its genomic information is lacking. Here, we report a high-quality complete and annotated genome sequence of X. budapestensis strain C72. Fifteen secondary metabolite biosynthetic gene clusters are identified in the genome, which are responsible for the production of a diverse group of antimicrobial compounds to help host plants against agricultural pathogenic diseases. This genome sequence could contribute to investigations of the molecular basis underlying the biocontrol activity of this Xenorhabdus strain.


Subject(s)
Xenorhabdus , Biological Control Agents , China , Sequence Analysis, DNA , Xenorhabdus/genetics
19.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769435

ABSTRACT

Entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) are a group of organisms capable of infecting larvae of insects living in soil, including representatives of the family Scarabaeidae. Their insecticidal activity is related to the presence of symbiotic bacteria Xenorhabdus spp. or Photorhabdus spp. in the alimentary tract, which are released into the insect body, leading to its death caused by bacterial toxins and septicemia. Although the antibacterial activities of symbionts of entomopathogenic nematodes have been well described, there is insufficient knowledge of the interactions between these bacteria and microorganisms that naturally inhabit the alimentary tract of insects infested by nematodes. In this study, 900 bacterial strains isolated from midgut samples of Amphimallon solstitiale larvae were tested for their antagonistic activity against the selected five Xenorhabdus and Photorhabdus species. Cross-streak tests showed significant antibacterial activity of 20 isolates. These bacteria were identified as Bacillus [Brevibacterium] frigoritolerans, Bacillus toyonensis, Bacillus wiedmannii, Chryseobacterium lathyri, Chryseobacterium sp., Citrobacter murliniae, Enterococcus malodoratus, Paenibacillus sp., Serratia marcescens and Serratia sp. Since some representatives of the intestinal microbiota of A. solstitiale are able to inhibit the growth of Xenorhabdus and Photorhrhabdus bacteria in vitro, it can be assumed that this type of bacterial interaction may occur at certain stages of insect infection by Steinernema or Heterorhabditis nematodes.


Subject(s)
Coleoptera/microbiology , Gastrointestinal Microbiome , Photorhabdus/isolation & purification , Xenorhabdus/isolation & purification , Animals , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacterial Toxins , Larva , Symbiosis
20.
Angew Chem Int Ed Engl ; 60(25): 14171-14178, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33876501

ABSTRACT

Non-ribosomal peptide synthetases (NRPS) produce natural products from amino acid building blocks. They often consist of multiple polypeptide chains which assemble in a specific linear order via specialized N- and C-terminal docking domains (N/C DDs). Typically, docking domains function independently from other domains in NRPS assembly. Thus, docking domain replacements enable the assembly of "designer" NRPS from proteins that normally do not interact. The multiprotein "peptide-antimicrobial-Xenorhabdus" (PAX) peptide-producing PaxS NRPS is assembled from the three proteins PaxA, PaxB and PaxC. Herein, we show that the small C DD of PaxA cooperates with its preceding thiolation (T1 ) domain to bind the N DD of PaxB with very high affinity, establishing a structural and thermodynamical basis for this unprecedented docking interaction, and we test its functional importance in vivo in a truncated PaxS assembly line. Similar docking interactions are apparently present in other NRPS systems.


Subject(s)
Molecular Docking Simulation , Peptide Synthases/chemistry , Molecular Conformation , Peptide Synthases/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL