Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 823
Filter
Add more filters

Publication year range
1.
Microbiology (Reading) ; 170(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38913407

ABSTRACT

Yeasts have established themselves as prominent microbial cell factories, and the availability of synthetic biology tools has led to breakthroughs in the rapid development of industrial chassis strains. The selection of a suitable microbial host is critical in metabolic engineering applications, but it has been largely limited to a few well-defined strains. However, there is growing consideration for evaluating strain diversity, as a wide range of specific traits and phenotypes have been reported even within a specific yeast genus or species. Moreover, with the advent of synthetic biology tools, non-type strains can now be easily and swiftly reshaped. The yeast Yarrowia lipolytica has been extensively studied for various applications such as fuels, chemicals, and food. Additionally, other members of the Yarrowia clade are currently being evaluated for their industrial potential. In this study, we demonstrate the versatility of synthetic biology tools originally developed for Y. lipolytica by repurposing them for engineering other yeasts belonging to the Yarrowia clade. Leveraging the Golden Gate Y. lipolytica tool kit, we successfully expressed fluorescent proteins as well as the carotenoid pathway in at least five members of the clade, serving as proof of concept. This research lays the foundation for conducting more comprehensive investigations into the uncharacterized strains within the Yarrowia clade and exploring their potential applications in biotechnology.


Subject(s)
Metabolic Engineering , Synthetic Biology , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Yarrowia/classification , Synthetic Biology/methods
2.
Yeast ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39262092

ABSTRACT

Engineering the glycerol-3-phosphate pathway could enhance erythritol production by accelerating glycerol uptake. However, little work has been conducted on the alternative dihydroxyacetone (DHA) pathway in Yarrowia lipolytica. Herein, this route was identified and characterized in Y. lipolytica by metabolomic and transcriptomic analysis. Moreover, the reaction catalyzed by dihydroxyacetone kinase encoded by dak2 was identified as the rate-limiting step. By combining NHEJ-mediated insertion mutagenesis with a push-and-pull strategy, Y. lipolytica strains with high-yield erythritol synthesis from glycerol were obtained. Screening of a library of insertion mutants allows the identification of a mutant with fourfold increased erythritol production. Overexpression of DAK2 and glycerol dehydrogenase GCY3 together with gene encoding transketolase and transaldolase from the nonoxidative part of the pentose phosphate pathway led to a strain with further increased productivity with a titer of 53.1 g/L and a yield 0.56 g/g glycerol, which were 8.1- and 4.2-fold of starting strain.

3.
Yeast ; 41(6): 369-378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613186

ABSTRACT

Engineering Yarrowia lipolytica to produce astaxanthin provides a promising route. Here, Y. lipolytica M2 producing a titer of 181 mg/L astaxanthin was isolated by iterative atmospheric and room-temperature plasma mutagenesis and diphenylamine-mediated screening. Interestingly, a negative correlation was observed between cell biomass and astaxanthin production. To reveal the underlying mechanism, RNA-seq analysis of transcriptional changes was performed in high producer M2 and reference strain M1, and a total of 1379 differentially expressed genes were obtained. Data analysis revealed that carbon flux was elevated through lipid metabolism, acetyl-CoA and mevalonate supply, but restrained through central carbon metabolism in strain M2. Moreover, upregulation of other pathways such as ATP-binding cassette transporter and thiamine pyrophosphate possibly provided more cofactors for carotenoid hydroxylase and relieved cell membrane stress caused by astaxanthin insertion. These results suggest that balancing cell growth and astaxanthin production may be important to promote efficient biosynthesis of astaxanthin in Y. lipolytica.


Subject(s)
Gene Expression Profiling , Xanthophylls , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Xanthophylls/metabolism , Metabolic Engineering , Transcriptome , Gene Expression Regulation, Fungal , Metabolic Networks and Pathways/genetics , Metabolic Flux Analysis , Lipid Metabolism , Biomass
4.
Metab Eng ; 82: 29-40, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224832

ABSTRACT

Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.


Subject(s)
Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Plasmids/genetics , Metabolic Engineering , Biotechnology , Recombinant Proteins/genetics
5.
Metab Eng ; 85: 1-13, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38942196

ABSTRACT

Yarrowia lipolytica is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used 13C-metabolic flux analysis (13C-MFA), genome-scale modeling, and transcriptomics analyses to investigate Y. lipolytica W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data were used to guide 13C-MFA model construction and to validate the 13C-MFA results. The 13C-MFA data were then used to constrain a genome-scale model (GSM), which predicted Y. lipolytica fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO2 compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from ß-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.


Subject(s)
Acetyl Coenzyme A , Triglycerides , Yarrowia , Yarrowia/metabolism , Yarrowia/genetics , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/genetics , Triglycerides/metabolism , Oleic Acid/metabolism , Glucose/metabolism , Oxidation-Reduction , Models, Biological
6.
Appl Environ Microbiol ; 90(8): e0054624, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39058021

ABSTRACT

The dimorphic yeast Yarrowia lipolytica possesses an excellent ability to utilize n-alkane as a sole carbon and energy source. Although there are detailed studies on the enzymes that catalyze the reactions in the metabolic processes of n-alkane in Y. lipolytica, the molecular mechanism underlying the incorporation of n-alkane into the cells remains to be elucidated. Because Y. lipolytica adsorbs n-alkane, we postulated that Y. lipolytica incorporates n-alkane through direct interaction with it. We isolated and characterized mutants defective in adsorption to n-hexadecane. One of the mutants harbored a nonsense mutation in MAR1 (Morphology and n-alkane Adsorption Regulator 1) encoding a protein containing a high mobility group box. The deletion mutant of MAR1 exhibited defects in adsorption to n-hexadecane and filamentous growth on solid media, whereas the strain that overexpressed MAR1 exhibited hyperfilamentous growth. Fluorescence microscopic observations suggested that Mar1 localizes in the nucleus. RNA-sequencing analysis revealed the alteration of the transcript levels of several genes, including those encoding transcription factors and cell surface proteins, by the deletion of MAR1. These findings suggest that MAR1 is involved in the transcriptional regulation of the genes required for n-alkane adsorption and cell morphology transition.IMPORTANCEYarrowia lipolytica, a dimorphic yeast capable of assimilating n-alkane as a carbon and energy source, has been extensively studied as a promising host for bioconversion of n-alkane into useful chemicals and bioremediation of soil and water contaminated by petroleum. While the metabolic pathway of n-alkane in this yeast and the enzymes involved in this pathway have been well characterized, the molecular mechanism to incorporate n-alkane into the cells is yet to be fully understood. Due to the ability of Y. lipolytica to adsorb n-alkane, it has been hypothesized that Y. lipolytica incorporates n-alkane through direct interaction with it. In this study, we identified a gene, MAR1, which plays a crucial role in the transcriptional regulation of the genes necessary for the adsorption to n-alkane and the transition of the cell morphology in Y. lipolytica. Our findings provide valuable insights that could lead to advanced applications of Y. lipolytica in n-alkane bioconversion and bioremediation.


Subject(s)
Alkanes , Fungal Proteins , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Yarrowia/growth & development , Alkanes/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Adsorption , Gene Expression Regulation, Fungal
7.
Crit Rev Biotechnol ; 44(3): 337-351, 2024 May.
Article in English | MEDLINE | ID: mdl-36779332

ABSTRACT

ß-Carotene is one kind of the most important carotenoids. The major functions of ß-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize ß-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for ß-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve ß-carotene production.


Subject(s)
Metabolic Engineering , Yarrowia , beta Carotene/genetics , beta Carotene/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Saccharomyces cerevisiae/genetics , Promoter Regions, Genetic
8.
FEMS Yeast Res ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39293814

ABSTRACT

The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyzes the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.

9.
Biotechnol Bioeng ; 121(6): 1937-1949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548668

ABSTRACT

This study aimed to investigate the effect of hyphal formation in Yarrowia lipolytica and biochar addition on erythritol production by submerged fermentation. Hyphal formation significantly inhibited erythritol production by Y. lipolytica. Transcriptome analysis suggested that the impaired erythritol synthesis of hyphal cells was associated with the differential expression of genes involved in amino acid metabolism, lipid metabolism, and cell wall stability. Deletion of RAS2 responsible for yeast-to-hypha transition and EYD1 included in erythritol degradation blocked hyphal formation and improved erythritol production. Biochar prepared from corncob, sugarcane bagasse (SB), corn straw, peanut shell, coconut shell, and walnut shell (WS) had a positive effect on erythritol production, of which WS pyrolyzed at 500°C (WSc) performed the best in flask fermentation. In a 3.7 L bioreactor, 220.20 ± 10 g/L erythritol with a productivity of 2.30 ± 0.10 g/L/h was obtained in the presence of 1.4% (w/v) WSc and 0.7% SBc (SB pyrolyzed at 500°C) within 96 h. These results suggest that inhibition of hyphal formation together with biochar addition is an efficient way to promote erythritol production.


Subject(s)
Charcoal , Erythritol , Hyphae , Yarrowia , Erythritol/biosynthesis , Erythritol/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Hyphae/growth & development , Hyphae/metabolism , Hyphae/genetics , Hyphae/drug effects , Charcoal/pharmacology , Charcoal/chemistry , Fermentation , Bioreactors/microbiology
10.
Arch Microbiol ; 206(10): 392, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230673

ABSTRACT

Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.


Subject(s)
Erythritol , Magnetic Fields , Yarrowia , Yarrowia/metabolism , Yarrowia/genetics , Yarrowia/growth & development , Erythritol/metabolism , Erythritol/biosynthesis , Fermentation , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL