Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Plant Mol Biol ; 114(3): 48, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632151

ABSTRACT

KEY MESSAGE: This study identified an R2R3-MYB from Zinnia elegans, ZeMYB32, which negatively regulates anthocyanin biosynthesis.


Subject(s)
Anthocyanins , Transcription Factors , Transcription Factors/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Phylogeny
2.
Plant Dis ; 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33074074

ABSTRACT

Zinnia elegans (syn. Zinnia violacea), known as common zinnia, is one of the most spectacular ornamental plants in the family Asteraceae. Zinnia plants are widely cultivated in China for their impressive range in flower colours and profuse bloom over a long period. In April 2019, Zinnia plants grown in Ningbo Botanical Garden (29°56'57″N, 121°36'20″E) were found to have many circular necrotic lesions. In the early infection stage, the lesions appeared as small circular specks which developed later into large spots (15 to 32 mm diameter). Typical symptoms appeared to be grayish white centers with a chlorotic edges and disease incidence reached approximately 80% of plants in the affected field. Moreover, the growth of Zinnia plants was seriously affected by the disease. To identify the causative pathogen associated with the disease, 10 symptomatic leaves were collected from ten different Zinnia plants. Leaf tissues were cut from the lesion margins, surface sterilized with 75% ethanol for 30 seconds and rinsed three times in sterile distilled water. The leaf tissues were then dipped into 10% sodium hypochlorite for 2-3 minutes, washed three times in distilled water and dried on a sterile filter paper. After drying, the surface-sterilized leaf discs were transferred to potato dextrose agar (PDA) plates and incubated at 28°C for 2 to 3 days under the 12 h photoperiod. A total of ten pure fungal isolates were obtained and all the isolates displayed the same colony structure. Afterwards, three pure strains were randomly selected (F1, F3 and F5) for further study. The fungal colonies showed gray to brownish aerial mycelia with pink-colored masses of conidia. Conidia were one-celled, hyaline, cylindrical to subcylindrical, spindle-shaped with obtuse ends, measuring from 15.6 to 17.3 × 4.6 to 5.1 µm with both ends rounded. These morphological characteristics were consistent with the description of Colletotrichum gloeosporioides complex (Weir et al. 2012). The identity of a representative isolate, F3, was confirmed by a multilocus approach. Genomic DAN of isolate F3 was extracted and partial sequences of actin (ACT), chitin synthase (CHS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal internal transcribed spacer (ITS), manganese-superoxide dismutase (SOD2) , glutamine synthatase (GS), beta-tubulin (TUB2) and calmodulin (CAL) were amplified and sequenced as previously described (Weir et al. 2012). These nucleotide sequences were deposited in GenBank (accession MN972436 to MN972440, and MT266559 to MT266561; all sequences in FASTA format are shown (Supplementary S1). BLAST analysis of ITS, ACT, CHS, GAPDH and GS sequences from the F3 isolate revealed similarity to C. gloeosporioides voucher strain ZH01 with 100%, 100%,99%, 99% and 99% identity, respectively. SOD, TUB2 and CAL sequences showed similarity to C. siamense with 100%, 100% and 100% identity, respectively. The phylogenetic trees were constructed by Maximum Likelihood method (ML) using JTT model implemented in the MEGA 7. Results inferred from the concatenated sequences (ACT, CHS, GAPDH, ITS, SOD, GS, TUB2 and CAL) placed the isolate F3 within the C. siamense cluster (Supplementary S2). To confirm pathogenicity of the fungus, Koch's postulates were conducted by spraying 20 Zinnia plants (60-day-old) with a 1 × 106 conidia/ml suspension. Plants were maintained in the growth chamber at 25°C and 85% relative humidity. After 10 to 15 days, symptoms were observed on all inoculated leaves and resembled those observed in the field, whereas the control plants remained asymptomatic. Here, C. siamense was isolated only from the infected Zinnia leaves and identified by morphological and gene sequencing analyses. C. siamense has been reported in many crops in China (Yang et al. 2019; Chen et al. 2019; Wang et al. 2019). However, to our knowledge, this is the first report of anthracnose caused by C. siamense on Zinnia elegans in China. References Chen, X., Wang, T., Guo, H., Zhu, P. K., and Xu, L. 2019. First report of anthracnose of Camellia sasanqua caused by Colletotrichum siamense in China. Plant Dis. 103:1423-1423. Wang, Y., Qin, H. Y., Liu, Y. X., Fan, S. T., Sun, D., Yang, Y. M., Li, C. Y., and Ai, J. 2019. First report of anthracnose caused by Colletotrichum siamense on Actinidia arguta in China. Plant Dis. 103:372-373. Weir, B. S., Johnston, P. R., and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73: 115-180. Yang, S., Wang, H. X., Yi, Y. J., and Tan, L. L. 2019. First report that Colletotrichum siamense causes leaf spots on Camellia japonica in China. Plant Dis. 103:2127-2127.

3.
Molecules ; 24(16)2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31412649

ABSTRACT

Zinnia elegans (syn. Zinnia violacea) is a common ornamental plant of the Asteraceae family, widely cultivated for the impressive range of flower colors and persistent bloom. Given its uncomplicated cultivation and high adaptability to harsh landscape conditions, we investigated the potential use of Z. elegans as a source of valuable secondary metabolites. Preliminary classification of compounds found in a methanolic extract obtained from inflorescences of Z. elegans cv. Caroussel was accomplished using HR LC-MS techniques. The extract was then subjected to solid-phase extraction and separation using Sephadex LH-20 column chromatography, which resulted in several fractions further investigated for their antioxidant properties through lipoxygenase inhibition and metal chelating activity assays. Moreover, following additional purification procedures, structures of some active ingredients were established by NMR spectroscopy. The investigated fractions contained polyphenolic compounds such as chlorogenic acids and apigenin, kaempferol, and quercetin glycosides. Antioxidant assays showed that certain fractions exhibit moderate 15-LOX inhibition (Fr 2, IC50 = 18.98 µg/mL) and metal chelation (e.g., Fr 1-2, EC50 = 0.714-1.037 mg/mL) activities as compared to positive controls (20.25 µg/mL for kaempferol and 0.068 mg/mL for EDTA, respectively). For Fr 2, the 15-LOX inhibition activity seems to be related to the abundance of kaempferol glycosides. The NMR analyses revealed the presence of a kaempferol 3-O-glycoside, and a guanidine alkaloid previously not described in this species.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Asteraceae/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/isolation & purification , Chemical Fractionation , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Molecular Structure , Phytochemicals/chemistry , Plant Extracts/isolation & purification
4.
Planta ; 245(4): 681-705, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28194564

ABSTRACT

MAIN CONCLUSION: Physiological and molecular studies support the view that xylogenesis can largely be determined as a specific form of vacuolar programmed cell death (PCD). The studies in xylogenic zinnia cell culture have led to many breakthroughs in xylogenesis research and provided a background for investigations in other experimental models in vitro and in planta . This review discusses the most essential earlier and recent findings on the regulation of xylem elements differentiation and PCD in zinnia and other xylogenic systems. Xylogenesis (the formation of water conducting vascular tissue) is a paradigm of plant developmental PCD. The xylem vessels are composed of fused tracheary elements (TEs)-dead, hollow cells with patterned lignified secondary cell walls. They result from the differentiation of the procambium and cambium cells and undergo cell death to become functional post-mortem. The TE differentiation proceeds through a well-coordinated sequence of events in which differentiation and the programmed cellular demise are intimately connected. For years a classical experimental model for studies on xylogenesis was the xylogenic zinnia (Zinnia elegans) cell culture derived from leaf mesophyll cells that, upon induction by cytokinin and auxin, transdifferentiate into TEs. This cell system has been proven very efficient for investigations on the regulatory components of xylem differentiation which has led to many discoveries on the mechanisms of xylogenesis. The knowledge gained from this system has potentiated studies in other xylogenic cultures in vitro and in planta. The present review summarises the previous and latest findings on the hormonal and biochemical signalling, metabolic pathways and molecular and gene determinants underlying the regulation of xylem vessels differentiation in zinnia cell culture. Highlighted are breakthroughs achieved through the use of xylogenic systems from other species and newly introduced tools and analytical approaches to study the processes. The mutual dependence between PCD signalling and the differentiation cascade in the program of TE development is discussed.


Subject(s)
Asteraceae/growth & development , Cell Death/physiology , Xylem/growth & development , Asteraceae/physiology , Cells, Cultured , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology
6.
PeerJ ; 12: e17114, 2024.
Article in English | MEDLINE | ID: mdl-38529303

ABSTRACT

Specialty cut flowers are in demand, especially in the domestic market as they can be grown with low production costs without the need for specially equipped greenhouses and offer diversity in terms of form, texture, and colour. These products, which are widely cultivated in the USA, are not well known in Türkiye. One of the main problems of the Turkish cut flower sector is its dependence on foreign inputs and the lack of product diversity. Therefore, specialty cut flower production can be an alternative crop for Türkiye, which has climatic advantages. The cut flower potential of plants such as Zinnia elegans, Tagates erecta, Helianthus annuus, Gomphrena globosa, Centaurea cyanus, and Cleome spinosa that are commonly grown in gardens has been evaluated. After harvesting these flowers grown in an open field in June-October 2020, the stem length (cm), stem thickness (mm), flower length (cm), flower diameter (cm), flower weight (g), and vase life (days) were measured. As a result of the evaluations, considering the phenological findings such as flowering and harvesting period, Zinnia elegans, Tagates erecta, Helianthus annuus, Gomphrena globosa, and Centaurea cyanus were found to be suitable for Eskisehir climatic conditions due to their long flowering periods. On the other hand, if the stem length value, which is one of the most important parameters for cut flowers, is taken as a reference, the minimum stem length value of 30 cm and above is met by Zinnia elegans, Tagates erecta, Helianthus annuus, and Cleome spinosa while the vase life value of 6 days and above is met by Zinnia elegans, Tagates erecta, Helianthus annuus, Gomphrena globosa, and Cleome spinosa. However, Cleome spinosa was not found to be suitable for the region due to its low yield value and short flowering period, while Zinnia elegans, Helianthus annuus, Tagates erecta, and Gomphrena globosa were found to be plants that could be evaluated for the region. In addition, it is believed that the cultivation of specialty cut flowers, with the selection of suitable species, will be an alternative production in regions without climatic advantages.


Subject(s)
Centaurea , Helianthus , Gardens , Turkey , Flowers
7.
J Exp Bot ; 64(12): 3499-518, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23956408

ABSTRACT

Zinnia elegans constitutes one of the most useful model systems for studying xylem differentiation, which simultaneously involves secondary cell wall synthesis, cell wall lignification, and programmed cell death. Likewise, the in vitro culture system of Z. elegans has been the best characterized as the differentiation of mesophyll cells into tracheary elements allows study of the biochemistry and physiology of xylogenesis free from the complexity that heterogeneous plant tissues impose. Moreover, Z. elegans has emerged as an excellent plant model to study the involvement of peroxidases in cell wall lignification. This is due to the simplicity and duality of the lignification pattern shown by the stems and hypocotyls, and to the basic nature of the peroxidase isoenzyme. This protein is expressed not only in hypocotyls and stems but also in mesophyll cells transdifferentiating into tracheary elements. Therefore, not only does this peroxidase fulfil all the catalytic requirements to be involved in lignification overcoming all restrictions imposed by the polymerization step, but also its expression is inherent in lignification. In fact, its basic nature is not exceptional since basic peroxidases are differentially expressed during lignification in other model systems, showing unusual and unique biochemical properties such as oxidation of syringyl moieties. This review focuses on the experiments which led to a better understanding of the lignification process in Zinnia, starting with the basic knowledge about the lignin pattern in this plant, how lignification takes place, and how a sole basic peroxidase with unusual catalytic properties is involved and regulated by hormones, H2O2, and nitric oxide.


Subject(s)
Asteraceae/enzymology , Asteraceae/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Peroxidases/genetics , Arabidopsis/cytology , Arabidopsis/enzymology , Arabidopsis/genetics , Asteraceae/cytology , Cell Differentiation , Hydrogen Peroxide/metabolism , Nitric Oxide/metabolism , Peroxidases/metabolism , Plant Growth Regulators/metabolism
8.
Pathogens ; 11(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36558787

ABSTRACT

Zinnia elegans Jacq. is an important, globally cultivated ornamental plant. In August 2021, a leaf spot disease was observed in zinnia in Shibing County, Guizhou, China, with an incidence of approximately 60%. Pathogens were isolated and purified from the infected leaves by tissue isolation, and pathogen strain BRJ2 was confirmed as the pathogen causing the leaf spot. Based on morphology and ITS, TEF-1α, and TUB2 sequence analyses, the pathogen was identified as Nigrospora musae (McLennan and Hoëtte). The mycelial growth rate method was used to determine the in vitro toxicity of five fungicides to the pathogen. The results showed that 10% difenoconazole provided the strongest inhibitory effect on N. musae, with a concentration for 50% of maximal effect (EC50) of 0.0658 mg/L; 75% trifloxystrobin·tebuconazole had the second greatest effect, with an EC50 of 0.1802 mg/L. This study provides the first report that N. musae caused leaf spot disease in Z. elegans and provides important guidance for the effective prevention and control of this disease in Guizhou.

9.
Front Plant Sci ; 13: 981086, 2022.
Article in English | MEDLINE | ID: mdl-36330274

ABSTRACT

Petal color in Zinnia elegans is characterized mainly by anthocyanin accumulation. The difference in the content of anthocyanins, especially cyanidins, affects petal coloration in Z. elegans, but the underlying regulatory mechanism remains elusive. Here, we report one R2R3-MYB transcription factor from subgroup 6, ZeMYB9, acting as a positive regulator of anthocyanin accumulation in Z. elegans. Up-regulated expression of ZeMYB9 and flavonoid 3'-hydroxylase gene (ZeF3'H) was detected in the cultivar with higher cyanidin content. ZeMYB9 could specifically activate the promoter of ZeF3'H, and over-expression of ZeMYB9 induces much greater anthocyanin accumulation and higher expression level of anthocyanin biosynthetic genes in both petunia and tobacco. And then, ZeMYB9 was demonstrated to interact with ZeGL3, a bHLH transcription factor belonging to IIIf subgroup. Promoter activity of ZeF3'H was significantly promoted by co-expressing ZeMYB9 and ZeGL3 compared with expressing ZeMYB9 alone. Moreover, transient co-expression of ZeMYB9 and ZeGL3 induced anthocyanin accumulation in tobacco leaves. Our results suggest that ZeMYB9 could enhance cyanidin synthesis and regulate petal color in Z. elegans though activating the expression of ZeF3'H, by itself or interacting with ZeGL3.

10.
New Phytol ; 190(1): 138-149, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21219334

ABSTRACT

The exact role of ethylene in xylogenesis remains unclear, but the Zinnia elegans cell culture system provides an excellent model with which to study its role during the differentiation of tracheary elements (TEs) in vitro. Here, we analysed ethylene homeostasis and function during Z. elegans TE differentiation using biochemical, molecular and pharmacological methods. Ethylene evolution was confined to specific stages of TE differentiation. It was found to peak at the time of TE maturation and to correlate with the activity of the ethylene biosynthetic 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The ethylene precursor ACC was exported and accumulated to high concentrations in the extracellular medium, which also displayed a high capacity to convert ACC into ethylene. The effects of adding inhibitors of the ethylene biosynthetic ACC synthase and ACC oxidase enzymes to the TE cultures demonstrated for the first time strict dependence of TE differentiation on ethylene biosynthesis and a stimulatory effect of ethylene on the rate of TE differentiation. In a whole-plant context, our results suggest that ethylene synthesis occurs in the apoplast of the xylem elements and that ethylene participates, in a paracrine manner, in the control of the cambial stem cell pool size during secondary xylem formation.


Subject(s)
Asteraceae/cytology , Cell Culture Techniques , Cell Differentiation/drug effects , Ethylenes/pharmacology , Xylem/cytology , Amino Acid Oxidoreductases/metabolism , Amino Acids, Cyclic/metabolism , Asteraceae/drug effects , Asteraceae/enzymology , Ethylenes/biosynthesis , Xylem/drug effects , Xylem/enzymology
11.
Cancers (Basel) ; 13(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34885224

ABSTRACT

In the current communication, a simple, environmentally compatible, non-toxic green chemistry process is used for the development of silver nanoparticles (AgZE) by the reaction between silver nitrate (AgNO3) and the ethanolic leaf extract of Zinnia elegans (ZE). The optimization of AgZE is carried out using a series of experiments. Various physico-chemical techniques are utilized to characterize the nanomaterials. The cell viability assay of AgZE in normal cells (CHO, HEK-293T, EA.hy926, and H9c2) shows their biocompatible nature, which is supported by hemolytic assay using mouse RBC. Interestingly, the nanoparticles exhibited cytotoxicity towards different cancer cell lines (U-87, MCF-7, HeLa, PANC-1 and B16F10). The detailed anticancer activity of AgZE on human glioblastoma cell line (U-87) is exhibited through various in vitro assays. In vivo the AgZE illustrates anticancer activity by inhibiting blood vessel formation through CAM assay. Furthermore, the AgZE nanoparticles when intraperitoneally injected in C57BL6/J mice (with and without tumor) exhibit fluorescence properties in the NIR region (excitation: 710 nm, emission: 820 nm) evidenced by bioimaging studies. The AgZE biodistribution through ICPOES analysis illustrates the presence of silver in different vital organs. Considering all the results, AgZE could be useful as a potential cancer therapeutic agent, as well as an NIR based non-invasive imaging tool in near future.

12.
Nat Prod Res ; 34(18): 2612-2615, 2020 Sep.
Article in English | MEDLINE | ID: mdl-30580583

ABSTRACT

The present study evaluates the chemical composition of Zinnia elegans and Gazania rigens based on their metabolomic profiles using liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS), alongside with the anti-infective activities of their ethanol extracts, as well as, different fractions. A significant difference was observed between the LC-MS profiles of the two plants such as, coumarins, sesquiterpene lactones and phenylethanoids which were characteristic for Z. elegans, while amides and phenolic acid derivatives were characteristic for G. rigens. These results highlight the chemical potential of Z. elegans and G. rigens. Furthermore, the ethyl acetate fraction of Z. elegans showed a significant antimalarial activity with IC50 values of 21.03 and 13.72 µg/mL against Plasmodium falciparum D6 and P. falciparum W2, respectively.


Subject(s)
Anti-Infective Agents/isolation & purification , Antimalarials/isolation & purification , Asteraceae/chemistry , Metabolomics/methods , Anti-Infective Agents/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Chromatography, Liquid/methods , Coumarins/analysis , Inhibitory Concentration 50 , Mass Spectrometry/methods , Plant Extracts/chemistry , Plasmodium falciparum/drug effects , Sesquiterpenes/analysis
13.
J Nematol ; 26(4 Suppl): 773-7, 1994 Dec.
Article in English | MEDLINE | ID: mdl-19279963

ABSTRACT

Twelve ornamental bedding plant cultivars were grown in soil infested with isolates of Meloidogyne incognita race 1, M. javanica, or M. arenaria race 1 in a series of tests in containers in a growth room. Root galling (0-5 scale) and eggs/plant were evaluated 8-10 weeks after soil infestation and seedling transplantation. Snapdragon, Antirrhinum majus cv. First Ladies, was extensively galled and highly susceptible (mean gall rating >/=4.2 and >/=14,500 eggs/plant), and Celosia argentea cv. Century Mix and Coleus blumei cv. Rainbow were susceptible (>1,500 eggs/plant) to all three Meloidogyne isolates. Response of Petunia x hybrida varied with cultivar and nematode isolate. Little or no galling or egg production from any Meloidogyne isolate was observed on Ageratum houstonianum cv. Blue Mink, Lobularia maritima cv. Rosie O'Day, or Tagetes patula cv. Dwarf Primrose. Galling was slight (mean rating 4.0 and >/=7,900 eggs/plant) by M. javanica and M. arenaria but was nearly free of galling from M. incognita. Zinna elegans cv. Scarlet was nearly free of galling from M. incognita and M. arenaria but was susceptible (mean gall rating = 2.9; 3,400 eggs/plant) to M. javanica.

14.
Plant Physiol Biochem ; 80: 192-202, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24792389

ABSTRACT

Phytohormones such as auxins, cytokinins, and brassinosteroids, act by means of a signaling cascade of transcription factors of the families NAC, MYB, AP2 (APETALA2), MADS and class III HD (homeodomain) Zip, regulating secondary growth. When the hormonal regulation of Zinnia elegans peroxidase (ZePrx), an enzyme involved in lignin biosynthesis, was studied, it was found that this peroxidase is sensitive to a plethora of hormones which control xylem lignification. In a previous study we sought Arabidopsis thaliana homologues to ZePrx. Peroxidases 4, 52, 49 and 72 are the four peroxidases that fulfill the restrictive conditions that a peroxidase involved in lignification must have. In the present study, we focus our attention on hormonal regulation in order to establish the minimal structural and regulatory elements contained in the promoter region which an AtPrx involved in lignification must have. The results indicate that of the four peroxidases selected in our previous study, the one most likely to be homologous to ZePrx is AtPrx52. The results suggest that hormones such as auxins, cytokinins and BRs directly regulate AtPrx52, and that the AtPrx52 promoter may be the target of the set of transcription factors (NAC, MYB, AP2 and class I and III HD Zip) which are up-regulated by these hormones during secondary growth. In addition, the AtPrx52 promoter contains multiple copies of all the putative cis-elements (the ACGT box, the OCS box, the OPAQ box, the L1BX, the MYCL box and the W box) known to confer regulation by NO and H2O2.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/metabolism , Lignin/metabolism , Peroxidases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Peroxidases/genetics , Promoter Regions, Genetic/genetics
15.
Plant Physiol Biochem ; 67: 77-86, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23545205

ABSTRACT

Monolignol polymerization into lignin is catalyzed by peroxidases or laccases. Recently, a Zinnia elegans peroxidase (ZePrx) that is considered responsible for monolignol polymerization in this plant has been molecularly and functionally characterized. Nevertheless, Arabidopsis thaliana has become an alternative model plant for studies of lignification, filling the gaps that may occur with Z. elegans. The arabidopsis genome offers the possibility of performing bioinformatic analyses and data mining that are not yet feasible with other plant species, in order to obtain preliminary evidence on the role of genes and proteins. In our search for arabidopsis homologs to the ZePrx, we performed an exhaustive in silico characterization of everything from the protein to the transcript of Arabidopsis thaliana peroxidases (AtPrxs) homologous to ZePrx, with the aim of identifying one or more peroxidases that may be involved in monolignol polymerization. Nine peroxidases (AtPrx 4, 5, 52, 68, 67, 36, 14, 49 and 72) with an E-value greater than 1e-80 with ZePrx were selected for this study. The results demonstrate that a high level of 1D, 2D and 3D homology between these AtPrxs and ZePrx are not always accompanied by the presence of the same electrostatic and mRNA properties that indicate a peroxidase is involved in lignin biosynthesis. In summary, we can confirm that the peroxidases involved in lignification are among AtPrx 4, 52, 49 and 72. Their structural and mRNA features indicate that exert their action in the cell wall similar to ZePrx.


Subject(s)
Arabidopsis/enzymology , Arabidopsis/metabolism , Lignin/biosynthesis , Peroxidases/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Computational Biology , Gene Expression Regulation, Plant , Peroxidase/genetics , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL