Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Magn Reson Med ; 90(6): 2608-2626, 2023 12.
Article in English | MEDLINE | ID: mdl-37533167

ABSTRACT

PURPOSE: To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS: The implant, consisting of a generator case and a lead, measures RF-induced E $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS: The implant successfully measured RF-induced E $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION: Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.


Subject(s)
Deep Brain Stimulation , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Prostheses and Implants , Phantoms, Imaging , Hot Temperature , Radio Waves
2.
Magn Reson Med ; 90(2): 686-698, 2023 08.
Article in English | MEDLINE | ID: mdl-37036364

ABSTRACT

PURPOSE: The Radiofrequency (RF)-induced heating for an active implantable medical device (AIMD) with dual parallel leads is evaluated in this paper. The coupling effects between dual parallel leads are studied via simulations and experiments methods. The global transfer function technique is used to assess the RF-induced heating for dual-lead AIMDs inside four human body models. METHODS: RF-induced heating for spinal cord stimulator systems with 60 and 90 cm length leads are studied at three parallel dual-lead configurations (closely spaced, 8 mm spaced, and 40 mm spaced) and a single-lead configuration. The global transfer function method is used to develop the AIMD models of different configurations and is used for lead-tip heating assessments inside human body models. RESULTS: In simulation studies, the peak 1g specific absorption rate/temperatrue rises of dual parallel leads systems is lower than those from the single-lead system. In experimental American Society for Testing and Materials phantom studies, the temperature rises for the single-lead AIMD system can be 2.4 times higher than that from dual-lead AIMD systems. For the spinal cord stimulator systems used in the study, the statistical analysis shows the RF-induced heating of dual-lead configurations are also lower than those from the single-lead configuration inside all four human body models. CONCLUSION: For the AIMD system in this study, it shows that the coupling effects between the dual parallel leads of AIMD systems can reduce RF-induced heating. The global transfer function for different spatial distance dual-lead configurations can potentially provide a method for the RF-induced heating evaluation for dual-lead AIMD systems.


Subject(s)
Heating , Prostheses and Implants , Humans , Computer Simulation , Temperature , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Radio Waves , Hot Temperature
3.
NMR Biomed ; 36(7): e4900, 2023 07.
Article in English | MEDLINE | ID: mdl-36624556

ABSTRACT

To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.


Subject(s)
Hot Temperature , Radio Waves , Humans , Computer Simulation , Phantoms, Imaging , Magnetic Resonance Imaging/methods
4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(3): 304-308, 2023 May 30.
Article in Zh | MEDLINE | ID: mdl-37288633

ABSTRACT

Implanted brain-computer interface (iBCI) is a system that establishes a direct communication channel between human brain and computer or an external devices by implanted neural electrode. Because of the good functional extensibility, iBCI devices as a platform technology have the potential to bring benefit to people with nervous system disease and progress rapidly from fundamental neuroscience discoveries to translational applications and market access. In this report, the industrialization process of implanted neural regulation medical devices is reviewed, and the translational pathway of iBCI in clinical application is proposed. However, the Food and Drug Administration (FDA) regulations and guidances for iBCI were expounded as a breakthrough medical device. Furthermore, several iBCI products in the process of applying for medical device registration certificate were briefly introduced and compared recently. Due to the complexity of iBCI in clinical application, the translational applications and industrialization of iBCI as a medical device need the closely cooperation between regulatory departments, companies, universities, institutes and hospitals in the future.


Subject(s)
Brain-Computer Interfaces , Humans , Brain/physiology , Electrodes, Implanted
5.
Magn Reson Med ; 87(1): 349-364, 2022 01.
Article in English | MEDLINE | ID: mdl-34374457

ABSTRACT

PURPOSE: The paper presents a novel method to reduce the RF-induced heating of active implantable medical devices during MRI. METHODS: With the addition of an energy decoying and dissipating structure, RF energy can be redirected toward the dissipating rings through the decoying conductor. Three lead groups (45 cm-50 cm) and 4 (50 cm-100 cm) were studied in 1.5 Tesla MR systems by simulation and measurement, respectively. In vivo modeling was performed using human models to estimate the RF-induced heating of an active implantable medical device for spinal cord treatment. RESULT: In the simulation study, it was shown that the peak 1g-averaged specific absorption rate near the lead-tips can be reduced by 70% to 80% compared to those from the control leads. In the experimental measurements during a 2-min exposure test in a 1.5 Telsa MR system, the temperature rises dropped from the original 18.3℃, 25.8℃, 8.1℃, and 16.1℃ (control leads 1-4) to 5.4℃, 6.9℃, 1.6℃, and 3.3℃ (leads 1-4 with the energy decoying and dissipation structure). The in vivo calculation results show that the maximum induced temperature rise among all cases can be substantially reduced (up to 80%) when the energy decoying and dissipating structures were used. CONCLUSION: Our studies confirm the effectiveness of the novel technique for a variety of scanning scenarios. The results also indicate that the decoying conductor length, number of rings, and ring area must be carefully chosen and validated.


Subject(s)
Heating , Radio Waves , Computer Simulation , Hot Temperature , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Prostheses and Implants
6.
Magn Reson Med ; 87(1): 394-408, 2022 01.
Article in English | MEDLINE | ID: mdl-34378816

ABSTRACT

PURPOSE: During MR scans, abandoned leads from active implantable medical devices (AIMDs) can experience excessive heating at the lead tip, depending on the type of termination applied to the proximal contacts (proximal end treatment). The influence of different proximal end treatments (ie, [1] freely exposed in the tissue, [2] terminated with metal in contact with the tissue, or [3] capped with plastic, and thereby fully insulated, on the RF-induced lead-tip heating) are studied. A technique to ensure that MR Conditional AIMD leads remain MR Conditional even when abandoned is recommended. METHODS: Abandoned leads from three MR Conditional AIMDs ([1] a sacral neuromodulation system, [2] a cardiac rhythm management pacemaker system, and [3] a deep brain stimulator system) were investigated in this study. The computational lead models (ie, the transfer functions) for different proximal end treatments were measured and used to assess the in vivo lead-tip heating for four virtual human models (FATS, Duke, Ella, and Billie) and compared with the lead-tip heating of the complete MR Conditional AIMD system. RESULT: The average and maximum lead-tip heating for abandoned leads proximally capped with metal is always lower than that from the complete AIMD system. Abandoned leads proximally insulated could lead to an average in vivo temperature rise up to 3.5 times higher than that from the complete AIMD system. CONCLUSION: For the three investigated AIMDs under 1.5T MR scanning, our results indicate that RF-induced lead-tip heating of abandoned leads strongly depends on the proximal lead termination. A metallic cap applied to the proximal termination of the tested leads could significantly reduce the RF-induced lead-tip heating.


Subject(s)
Magnetic Resonance Imaging , Prostheses and Implants , Heating , Humans , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Prostheses and Implants/adverse effects , Radio Waves
7.
Magn Reson Med ; 87(1): 509-527, 2022 01.
Article in English | MEDLINE | ID: mdl-34397114

ABSTRACT

PURPOSE: Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS: A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS: QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION: Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.


Subject(s)
Heating , Hot Temperature , Magnetic Resonance Imaging , Phantoms, Imaging , Prostheses and Implants , Radio Waves
8.
Magn Reson Med ; 83(6): 2370-2381, 2020 06.
Article in English | MEDLINE | ID: mdl-31763729

ABSTRACT

PURPOSE: To introduce a prototype active implantable medical device (AIMD) for which the induced radiofrequency currents can be controlled wirelessly. METHODS: The modified transmission line method is used to formulate how the lead-case impedance of an AIMD affects the temperature rise around the electrode. A prototype AIMD is designed with the aim of controlling the unwanted temperature rise around its electrode during an MRI examination by altering the impedance between the lead and the case of the implant. MRI experiments were conducted with this prototype implant, which also has a built-in temperature sensor at its electrode. During the experiment, the implant's lead-case impedance was controlled using Bluetooth communication with a remote computer, and the lead tip temperature was recorded. RESULTS: Ten different lead-case impedance values and their corresponding tip temperature rises were examined during MRI experiments. The experimental results confirmed that the tip temperature rise can be controlled by varying the lead-case impedance wirelessly. CONCLUSION: The feedback from the temperature at the AIMD tip, together with variable lead-case impedance, enables control of the safety profile of the AIMD during an MRI examination.


Subject(s)
Prostheses and Implants , Radio Waves , Electric Impedance , Electrodes , Magnetic Resonance Imaging
9.
Magn Reson Med ; 84(2): 1035-1047, 2020 08.
Article in English | MEDLINE | ID: mdl-31883207

ABSTRACT

PURPOSE: We explore the use of thermo-acoustic ultrasound (TAUS) to monitor temperature at the tips of conductive device leads during MRI. THEORY: In TAUS, rapid radiofrequency (RF) power deposition excites an acoustic signal via thermoelastic expansion. Coupling of the MRI RF transmit to device leads causes SAR amplification at lead tips, allowing MRI RF transmitters to excite significant lead tip TAUS signals. Because the amplitude of the TAUS signal depends on temperature, it becomes feasible to monitor the lead tip temperature during MRI by tracking the TAUS amplitude. METHODS: The TAUS temperature dependence was characterized in a phantom and in tissue. To perform TAUS acquisitions in an MRI scanner, amplitude modulated RF chirps were transmitted by the body coil, and the lead tip TAUS signal was detected by an ultrasonic transducer. The TAUS signal level was correlated with the RF current induced on the lead and the associated B1 artifacts in MRI. TAUS signals acquired during RF-induced heating were used to estimate the lead tip temperature. RESULTS: The TAUS signal exhibited strong dependence on temperature, increasing over 30% with 10∘ C of heating both in the phantom and in tissue. A lead tip TAUS signal was observed for a 100 mA rms current induced on a lead. During RF-induced heating, the TAUS signal appeared to accurately approximate the peak lead tip temperature. CONCLUSIONS: TAUS allows for noninvasive monitoring of lead tip temperature in an MRI environment. With further development, TAUS opens new avenues to improve RF device safety during MRI scans.


Subject(s)
Hot Temperature , Radio Waves , Acoustics , Magnetic Resonance Imaging , Phantoms, Imaging , Temperature
10.
Magn Reson Med ; 84(2): 1048-1060, 2020 08.
Article in English | MEDLINE | ID: mdl-31961965

ABSTRACT

PURPOSE: To dynamically minimize radiofrequency (RF)-induced heating of an active catheter through an automatic change of the termination impedance. METHODS: A prototype wireless module was designed that modifies the input impedance of an active catheter to keep the temperature rise during MRI below a threshold, ΔTmax . The wireless module (MR safety watchdog; MRsWD) measures the local temperature at the catheter tip using either a built-in thermistor or external data from a fiber-optical thermometer. It automatically changes the catheter input impedance until the temperature rise during MRI is minimized. If ΔTmax is exceeded, RF transmission is blocked by a feedback system. RESULTS: The thermistor and fiber-optical thermometer provided consistent temperature data in a phantom experiment. During MRI, the MRsWD was able to reduce the maximum temperature rise by 25% when operated in real-time feedback mode. CONCLUSION: This study demonstrates the technical feasibility of an MRsWD as an alternative or complementary approach to reduce RF-induced heating of active interventional devices. The automatic MRsWD can reduce heating using direct temperature measurements at the tip of the catheter. Given that temperature measurements are intrinsically slow, for a clinical implementation, a faster feedback parameter would be required such as the RF currents along the catheter or scattered electric fields at the tip.


Subject(s)
Catheters , Radio Waves , Electric Impedance , Feedback , Magnetic Resonance Imaging , Phantoms, Imaging
11.
J Magn Reson Imaging ; 52(1): 91-102, 2020 07.
Article in English | MEDLINE | ID: mdl-31922311

ABSTRACT

BACKGROUND: MRI exams for patients with MR-conditional active implantable medical devices (AIMDs) are contraindicated unless specific conditions are met. This limits the maximum specific absorption rate (SAR, W/kg). Currently, there is no general framework to guide meeting a lower SAR limit. PURPOSE: To design and evaluate a workflow for modifying MRI protocols to whole-body SAR (WB-SAR ≤0.1 W/kg) and local-head SAR (LH-SAR ≤0.3 W/kg) limits while mitigating the impact on image quality and exam time. STUDY TYPE: Prospective. POPULATION: Twenty healthy volunteers on head (n = 5), C-spine (n = 5), T-spine (n = 5), and L-spine (n = 5) with IRB consent. ASSESSMENT: Vendor-provided head, C-spine, T-spine, and L-spine protocols (SARRT ) were modified to meet both low SAR targets (SARLOW ) using the proposed workflow. in vitro SNR and CNR were evaluated with a T1 -T2 phantom. in vivo image quality and clinical acceptability were scored using a 5-point Likert scale for two blinded readers. FIELD STRENGTH/SEQUENCES: 1.5T/spin-echoes, gradient-echoes. STATISTICAL ANALYSIS: In vitro SNR and CNR values were evaluated with a repeated measures general linear model. in vivo image quality and clinical acceptability were evaluated using a generalized estimating equation analysis (GEE). The two reader's level of agreement was analyzed using Cohen's kappa statistical analysis. RESULTS: Using the workflow, SAR limits were met. LH-SAR: 0.12 ± 0.02 W/kg, median (SD) values for LH-SAR were 0.12 (0.02) W/kg and WB-SAR: 0.09 (0.01) W/kg. Examination time did not increase ≤2x the initial time. SARRT SNR values were higher and significantly different than SARLOW (P < 0.05). However, no significant difference was observed between the CNR values (value = 0.21). Median (IQR) CNR values were 14.2 (25.0) vs. 15.1 (9.2) for head, 12.1 (16.9) vs. 25.3 (14.2) for C-spine, 81.6 (70.1) vs. 71.0 (26.6) for T-spine, and 51.4 (52.6) vs. 37.7 (27.3) for L-spine. Image quality scores were not significantly different between SARRT and SARLOW (median [SD] scores were 4.0 [0.01] vs. 4.3 [0.2], P > 0.05). DATA CONCLUSION: The proposed workflow provides guidance for modifying routine MRI exams to achieve low SAR limits. This can benefit patients referred for an MRI exam with low SAR MR-conditional AIMDs. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2020;52:91-102.


Subject(s)
Magnetic Resonance Imaging , Prostheses and Implants , Humans , Phantoms, Imaging , Prospective Studies , Workflow
12.
G Ital Med Lav Ergon ; 41(4): 280-284, 2019 12.
Article in Italian | MEDLINE | ID: mdl-32126594

ABSTRACT

SUMMARY: Purpose. The work illustrates useful elements for the risk assessment for workers exposed to electromagnetic fields, also in reference to sensitive subjects such as those with active implantable medical devices (AIMD). Methods. The approach introduced by Legislative Decree 81/08 for risk assessment does not explicitly include operational criteria and specific measures for the protection of sensitive subjects. In the case of workers with DMIA, the employer may refer to relevant harmonized technical standards. Results. They are shown the results of in vitro tests performed on pacemakers following the indications of the technical reference standard and employing sources of electromagnetic fields that, due to the type of signal emitted, do not allow to exclude an a priori influence on the operation of the device. Conclusions. Workers at particular risk are generally protected if the requirements established for the population are respected. This measure may, under certain conditions, not be sufficient,making it necessary to carry out more in-depth and individual assessments. However, the cases illustrated here for AIMD showed interference phenomena only in limited experimental configurations despite the levels of the electric and magnetic fields generated by the sources exceeding the limits for the general population.


Subject(s)
Electromagnetic Fields/adverse effects , Occupational Exposure/prevention & control , Risk Assessment/methods , Equipment Failure , Humans , Occupational Health , Pacemaker, Artificial , Prostheses and Implants
13.
Zhongguo Yi Liao Qi Xie Za Zhi ; 43(2): 94-98, 2019 Mar 30.
Article in Zh | MEDLINE | ID: mdl-30977603

ABSTRACT

In the electromagnetic compatibility standards of active implantable medical devices such as ISO 14117,radiated immunity test above 450 MHz frequency is recommended to be carried out in the electromagnetic shielding room.However,different test locations and the shape/size of the shielding room may lead to very different electromagnetic field distribution in the radiation exposure area of the sample,thus affecting the consistency of the test.With the model built by COMSOL software,this paper analyzes the impact of different parameters,such as size of the room and position of torso simulator on the distribution of field intensity,and reaches results about the distribution of field intensity on the torso simulator area under tow sizes of shielding rooms and two typical test positions.The results show that the experimental consistency of the electric field intensity on the surface directly below the center of the antenna is not good enough,which may affect the repeatability of the test.


Subject(s)
Electromagnetic Fields , Prostheses and Implants
14.
Magn Reson Med ; 79(5): 2824-2832, 2018 05.
Article in English | MEDLINE | ID: mdl-28913978

ABSTRACT

PURPOSE: To introduce a temperature sensor implant (TSI) that mimics an active implantable medical device (AIMD) for animal testing of MRI heating. Computer simulations and phantom experiments poorly represent potential temperature increases. Animal experiments could be a better model, but heating experiments conducted immediately after the surgery suffer from alterations of the thermoregulatory and tissue properties during acute testing conditions. Therefore, the aim of this study was to introduce a temperature sensor implant that mimics an AIMD and capable of measuring the electrode temperature after implantation of the device without any further intervention at any time after the surgery in an animal model. METHODS: A battery-operated TSI, which resembled an AIMD, was used to measure the lead temperature and impedance and the case temperature. The measured values were transmitted to an external computer via a low-power Bluetooth communication protocol. In addition to validation experiments on the phantom, a sheep experiment was conducted to test the feasibility of the system in subacute conditions. RESULTS: The measurements had a maximum of 0.5°C difference compared to fiber-optic temperature probes. In vivo animal experiments demonstrated feasibility of the system. CONCLUSION: An active implant, which can measure its own temperature, was proposed to investigate implant heating during MRI examinations. Magn Reson Med 79:2824-2832, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Hot Temperature/adverse effects , Magnetic Resonance Imaging/adverse effects , Prostheses and Implants , Thermometry/instrumentation , Animals , Equipment Design , Female , Patient Safety , Phantoms, Imaging , Sheep
15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 42(3): 170-172, 2018 May 30.
Article in Zh | MEDLINE | ID: mdl-29885120

ABSTRACT

In order to compare the radiation immunity test level of ISO 14708 series standards and the domestic and international environmental radiation standards and then to ascertain whether the radiated immunity test level has reached the limit of the radiation strength in the relevant radiation environmental standards, this paper calculated the radiation field intensity and power density according to the radiated immunity test of ISO 14708 standards, and compared with the limit of ICNIRP 1998 and GB 8702-2014.


Subject(s)
Electromagnetic Radiation , Prostheses and Implants , Electromagnetic Fields , Immunity , Radiation Dosage
16.
Bioengineering (Basel) ; 10(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37237696

ABSTRACT

Delamination at heterogeneous material interfaces is one of the most prominent failure modes in active implantable medical devices (AIMDs). A well-known example of an AIMD is the cochlear implant (CI). In mechanical engineering, a multitude of testing procedures are known whose data can be used for detailed modeling with respect to digital twins. Detailed, complex models for digital twins are still lacking in bioengineering since body fluid infiltration occurs both into the polymer substrate and along the metal-polymer interfaces. For a newly developed test for an AIMD or CI composed of silicone rubber and metal wiring or electrodes, a mathematical model of these mechanisms is presented. It provides a better understanding of the failure mechanisms in such devices and their validation against real-life data. The implementation utilizes COMSOL Multiphysics®, consisting of a volume diffusion part and models for interface diffusion (and delamination). For a set of experimental data, the necessary diffusion coefficient could be derived. A subsequent comparison of experimental and modeling results showed a good qualitative and functional match. The delamination model follows a mechanical approach. The results of the interface diffusion model, which follows a substance transport-based approach, show a very good approximation to the results of previous experiments.

17.
Materials (Basel) ; 11(11)2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30366401

ABSTRACT

The growing demand for active medical implantable devices requires data and or power links between the implant and the outside world. Every implant has to be encapsulated from the body by a specific housing and one of the most common materials used is titanium or titanium alloy. Titanium thas the necessary properties in terms of mechanical and chemical stability and biocompatibility. However, its electrical conductivity presents a challenge for the electromagnetic transmission of data and power. The proposed paper presents a fast and practical method to determine the necessary transmission parameters for titanium encapsulated implants. Therefore, the basic transformer-transmission-model is used with measured or calculated key values for the inductances. Those are then expanded with correction factors to determine the behavior with the encapsulation. The correction factors are extracted from finite element method simulations. These also enable the analysis of the magnetic field distribution inside of the housing. The simulated transmission properties are very close to the measured values. Additionally, based on lumped elements and magnetic field distribution, the influential parameters are discussed in the paper. The parameter discussion describes how to enhance the transmitted power, data-rate or distance, or to reduce the size of the necessary coils. Finally, an example application demonstrates the usage of the methods.

18.
Bioengineering (Basel) ; 4(1)2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28952498

ABSTRACT

Thisstudy aims to compute 50 Hz electric field interferences on pacemakers for diverse lead configurations and implantation positions. Induced phenomena in a surface-based virtual human model (standing male grounded with arms closed, 2 mm resolution) are computed for vertical exposure using CST EM® 3D software, with and without an implanted pacemaker. Induced interference voltages occurring on the pacemaker during exposure are computed and the results are discussed. The bipolar mode covers 99% of the implanted pacing leads in the USA and Europe, according to statistics. The tip-to-ring distance of a lead may influence up to 46% of the induced voltage. In bipolar sensing mode, right ventricle implantation has a 41% higher induced voltage than right atrium implantation. The induced voltage is in average 10 times greater in unipolar mode than in bipolar mode, when implanted in the right atrium or right ventricle. The electric field threshold of interference for a bipolar sensing mode in the worst case setting is 7.24 kV·m-1, and 10 times higher for nominal settings. These calculations will be completed by an in vitro study.

SELECTION OF CITATIONS
SEARCH DETAIL