Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
Add more filters

Publication year range
1.
Ecotoxicol Environ Saf ; 280: 116527, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833978

ABSTRACT

Aflatoxin B1 (AFB1) is known to inhibit growth, and inflict hepatic damage by interfering with protein synthesis. Allicin, has been acknowledged as an efficacious antioxidant capable of shielding the liver from oxidative harm. This study aimed to examine the damage caused by AFB1 on bovine hepatic cells and the protective role of allicin against AFB1-induced cytotoxicity. In this study, cells were pretreated with allicin before the addition of AFB1 for co-cultivation. Our findings indicate that AFB1 compromises cellular integrity, suppresses the expression of nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, allicin attenuates oxidative damage to bovine hepatic cells caused by AFB1 by promoting the expression of the Nrf2 pathway and reducing cell apoptosis. In conclusion, the results of this study will help advance clinical research and applications, providing new options and directions for the prevention and treatment of liver diseases.


Subject(s)
Aflatoxin B1 , Antioxidants , Apoptosis , Disulfides , Hepatocytes , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , Sulfinic Acids , Animals , Sulfinic Acids/pharmacology , Aflatoxin B1/toxicity , Cattle , Disulfides/pharmacology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Hepatocytes/drug effects , Oxidative Stress/drug effects , Apoptosis/drug effects , Antioxidants/pharmacology , Female
2.
Ecotoxicol Environ Saf ; 276: 116289, 2024 May.
Article in English | MEDLINE | ID: mdl-38570269

ABSTRACT

The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10 mg L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10 mg L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10 mg L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.


Subject(s)
Cerium , Garlic , Garlic/genetics , Garlic/drug effects , Cerium/toxicity , Plant Roots/microbiology , Plant Roots/drug effects , Drug Resistance, Microbial/genetics , Plant Leaves , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Drug Resistance, Bacterial/genetics
3.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542956

ABSTRACT

Natural products, particularly medicinal plants, are crucial in combating cancer and aiding in the discovery and development of new therapeutic agents owing to their biologically active compounds. They offer a promising avenue for developing effective anticancer medications because of their low toxicity, diverse chemical structures, and ability to target various cancers. Allicin is one of the main ingredients in garlic (Allium sativum L.). It is a bioactive sulfur compound maintained in various plant sections in a precursor state. Numerous studies have documented the positive health benefits of this natural compound on many chronic conditions, including gastric, hepatic, breast, lung, cervical, prostate, and colon cancer. Moreover, allicin may target several cancer hallmarks or fundamental biological traits and functions that influence cancer development and spread. Cancer hallmarks include sustained proliferation, evasion of growth suppressors, metastasis, replicative immortality, angiogenesis, resistance to cell death, altered cellular energetics, and immune evasion. The findings of this review should provide researchers and medical professionals with a solid basis to support fundamental and clinical investigations of allicin as a prospective anticancer drug. This review outlines the anticancer role of allicin in each hallmark of cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Garlic , Plants, Medicinal , Male , Humans , Plant Extracts/chemistry , Prospective Studies , Sulfinic Acids/chemistry , Disulfides , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Garlic/chemistry
4.
Curr Issues Mol Biol ; 45(1): 685-698, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36661532

ABSTRACT

For centuries, garlic (Allium sativum) has been used both as a traditional remedy for most health-related ailments and for culinary purposes. Current preclinical investigations have suggested that dietary garlic intake has beneficial health effects, such as antioxidant, anti-inflammatory, antitumor, antiobesity, antidiabetic, antiallergic, cardioprotective, and hepatoprotective effects. Its therapeutic potential is influenced by the methods of use, preparation, and extraction. Of particular importance is the Aged Garlic Extract (AGE). During the aging process, the odorous, sour, and irritating compounds in fresh raw garlic, such as allicin, are naturally converted into stable and safe compounds that have significantly greater therapeutic effects than fresh garlic. In AGE, S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) are the major water-soluble organosulfurized compounds (OSCs). SAC has been extensively studied, demonstrating remarkable antioxidant, anti-inflammatory, and immunomodulatory capacities. Recently, AGE has been suggested as a promising candidate for the maintenance of immune system homeostasis through modulation of cytokine secretion, promotion of phagocytosis, and activation of macrophages. Since immune dysfunction plays an important role in the development and progress of various diseases, given the therapeutic effects of AGE, it can be thought of exploiting its immunoregulatory capacity to contribute to the treatment and prevention of chronic inflammatory bowel diseases (IBD).

5.
Crit Rev Food Sci Nutr ; 63(25): 7722-7748, 2023.
Article in English | MEDLINE | ID: mdl-35293826

ABSTRACT

Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.


Subject(s)
Disulfides , Garlic , Animals , Humans , Disulfides/pharmacology , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
6.
BMC Cardiovasc Disord ; 23(1): 410, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596540

ABSTRACT

BACKGROUND: Allicin is a bioactive compound with potent antioxidative activity and plays a protective effect in myocardial damage and fibrosis. The role and mechanism of Allicin in septic cardiomyopathy are unclear. In this study, we investigated the effects and underlying mechanisms of Allicin on lipopolysaccharide (LPS) induced injury in H9c2 cardiomyocytes. METHODS: H9c2 cardiomyocyte cells were pretreated with Allicin (0, 25, 50, and 100 µM) for 2 h, followed by incubation with LPS (10 µg/mL) for 24 h at 37 °C. Cell viability (cell counting kit-8 [CCK-8]), apoptosis (TUNEL staining), oxidative stress (malondialdehyde [MDA] and superoxide dismutase [SOD]), and cytokines release (Interleukin beta [IL-ß], Interleukin 6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) were determined. The mRNA and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and NLR family pyrin domain containing 3 (NLRP3) signaling pathway molecules were quantified by real-time quantitative PCR (RT-qPCR) and western blot, respectively. RESULTS: Allicin had no effect on H9c2 cell viability but attenuated LPS-induced injury, with increased cell viability, reduction in inflammatory cytokines release, apoptosis, reduced MDA, and increased SOD (P < 0.05). Additionally, Allicin increased Nrf2 and cellular HO-1 expressions in LPS-treated H9c2 cells. Moreover, Allicin modulated the NLRP3 inflammasome, increased the cleaved caspase-1 (p10) protein, and attenuated the LPS-induced increase in NLRP3, pro-IL-1ß, and IL-1ß proteins. Silencing of Nrf2 by siRNA (siNrf2) significantly attenuated Allicin-induced increase in cell viability and HO-1 and decrease in NLRP3 protein in LPS-stimulated H9c2 cells. CONCLUSIONS: Allicin protects cardiomyocytes against LPS­induced injury through activation of Nrf2/HO-1 and inhibition of NLRP3 signaling pathways.


Subject(s)
Lipopolysaccharides , Myocytes, Cardiac , Humans , Lipopolysaccharides/toxicity , NF-E2-Related Factor 2/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Heme Oxygenase-1 , Cytokines , Interleukin-6
7.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835218

ABSTRACT

Dairy farming is the most important economic activity in animal husbandry. Mastitis is the most common disease in dairy cattle and has a significant impact on milk quality and yield. The natural extract allicin, which is the main active ingredient of the sulfur-containing organic compounds in garlic, has anti-inflammatory, anticancer, antioxidant, and antibacterial properties; however, the specific mechanism underlying its effect on mastitis in dairy cows needs to be determined. Therefore, in this study, whether allicin can reduce lipopolysaccharide (LPS)-induced inflammation in the mammary epithelium of dairy cows was investigated. A cellular model of mammary inflammation was established by pretreating bovine mammary epithelial cells (MAC-T) with 10 µg/mL LPS, and the cultures were then treated with varying concentrations of allicin (0, 1, 2.5, 5, and 7.5 µM) added to the culture medium. MAC-T cells were examined using RT-qPCR and Western blotting to determine the effect of allicin. Subsequently, the level of phosphorylated nuclear factor kappa-B (NF-κB) was measured to further explore the mechanism underlying the effect of allicin on bovine mammary epithelial cell inflammation. Treatment with 2.5 µM allicin considerably decreased the LPS-induced increase in the levels of the inflammatory cytokines interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) and inhibited activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in cow mammary epithelial cells. Further research revealed that allicin also inhibited the phosphorylation of inhibitors of nuclear factor kappa-B-α (IκB-α) and NF-κB p65. In mice, LPS-induced mastitis was also ameliorated by allicin. Therefore, we hypothesize that allicin alleviated LPS-induced inflammation in the mammary epithelial cells of cows probably by affecting the TLR4/NF-κB signaling pathway. Allicin will likely become an alternative to antibiotics for the treatment of mastitis in cows.


Subject(s)
Disulfides , Mastitis, Bovine , NF-kappa B , Sulfinic Acids , Animals , Cattle , Female , Mice , Disulfides/therapeutic use , Epithelial Cells/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Mastitis, Bovine/drug therapy , NF-kappa B/metabolism , Signal Transduction , Sulfinic Acids/therapeutic use , Toll-Like Receptor 4/metabolism
8.
Int J Mol Sci ; 24(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37629140

ABSTRACT

We assessed whether allicin, through its antihypertensive and antioxidant effects, relieves vascular remodeling, endothelial function, and oxidative stress (OS), thereby improving experimental pulmonary arterial hypertension (PAH). Allicin (16 mg/kg) was administered to rats with PAH (monocrotaline 60 mg/kg). Allicin encouraged body weight gain and survival rate, and medial wall thickness and the right ventricle (RV) hypertrophy were prevented. Also, angiotensin II concentrations in the lung (0.37 ± 0.01 vs. 0.47 ± 0.06 pmoles/mL, allicin and control, respectively) and plasma (0.57 ± 0.05 vs. 0.75 ± 0.064, allicin and control respectively) and the expressions of angiotensin-converting enzyme II and angiotensin II type 1 receptor in lung tissue were maintained at normal control levels with allicin. In PAH rats treated with allicin, nitric oxide (NO) (31.72 ± 1.22 and 51.4 ± 3.45 pmoles/mL), tetrahydrobiopterin (8.43 ± 0.33 and 10.14 ± 0.70 pmoles/mL), cyclic guanosine monophosphate (5.54 ± 0.42 and 5.64 ± 0.73 pmoles/mL), and Ang-(1-7) (0.88 ± 0.23 and 0.83 ± 0.056 pmoles/mL) concentrations increased in lung tissue and plasma, respectively. In contrast, dihydrobiopterin increase was prevented in both lung tissue and plasma (5.75 ± 0.3 and 5.64 ± 0.73 pmoles/mL); meanwhile, phosphodiesterase-5 was maintained at normal levels in lung tissue. OS in PAH was prevented with allicin through the increased expression of Nrf2 in the lung. Allicin prevented the lung response to hypoxia, preventing the overexpression of HIF-1α and VEGF. Allicin attenuated the vascular remodeling and RV hypertrophy in PAH through its effects on NO-dependent vasodilation, modulation of RAS, and amelioration of OS. Also, these effects could be associated with the modulation of HIF-1α and improved lung oxygenation. The global effects of allicin contribute to preventing endothelial dysfunction, remodeling of the pulmonary arteries, and RV hypertrophy, preventing heart failure, thus favoring survival. Although human studies are needed, the data suggest that, alone or in combination therapy, allicin may be an alternative in treating PAH if we consider that, similarly to current treatments, it improves lung vasodilation and increase survival. Allicin may be considered an option when there is a lack of efficacy, and where drug intolerance is observed, to enhance the efficacy of drugs, or when more than one pathogenic mechanism must be addressed.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Animals , Rats , Vascular Remodeling , Familial Primary Pulmonary Hypertension , Hypertrophy
9.
Int J Mol Sci ; 24(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37047205

ABSTRACT

Garlic (Allium sativum) has historically been associated with antioxidant, immunomodulatory, and microbiocidal properties, mainly due to its richness in thiosulfates and sulfur-containing phytoconstituents. Sepsis patients could benefit from these properties because it involves both inflammatory and refractory processes. We evaluated the effects of thiosulfinate-enriched Allium sativum extract (TASE) on the immune response to bacterial lipopolysaccharide (LPS) by monocytes from healthy volunteers (HVs) and patients with sepsis. We also explored the TASE effects in HIF-1α, described as the key transcription factor leading to endotoxin tolerance in sepsis monocytes through IRAK-M expression. Our results showed TASE reduced the LPS-triggered reactive oxygen species (ROS) production in monocytes from both patients with sepsis and HVs. Moreover, this extract significantly reduced tumor necrosis factor (TNF)-α, interleukin-1ß, and interleukin-6 production in LPS-stimulated monocytes from HVs. However, TASE enhanced the inflammatory response in monocytes from patients with sepsis along with increased expression of human leukocyte antigen-DR. Curiously, these dual effects of TASE on immune response were also found when the HV cohort was divided into low- and high-LPS responders. Although TASE enhanced TNFα production in the LPS-low responders, it decreased the inflammatory response in the LPS-high responders. Furthermore, TASE decreased the HIF-1α pathway-associated genes IRAK-M, VEGFA and PD-L1 in sepsis cells, suggesting HIF-1α inhibition by TASE leads to higher cytokine production in these cells as a consequence of IRAK-M downregulation. The suppression of this pathway by TASE was confirmed in vitro with the prolyl hydroxylase inhibitor dimethyloxalylglycine. Our data revealed TASE's dual effect on monocyte response according to status/phenotype and suggested the HIF-1α suppression as the possible underlying mechanism.


Subject(s)
Garlic , Sepsis , Humans , Antioxidants/pharmacology , Garlic/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Monocytes/metabolism , Sepsis/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139348

ABSTRACT

Invasive fungal (IF) diseases are a leading global cause of mortality, particularly among immunocompromised individuals. The SARS-CoV-2 pandemic further exacerbated this scenario, intensifying comorbid IF infections such as mucormycoses of the nasopharynx. In the work reported here, it is shown that zygomycetes, significant contributors to mycoses, are sensitive to the natural product allicin. Inhibition of Mucorales fungi by allicin in solution and by allicin vapor was demonstrated. Mathematical modeling showed that the efficacy of allicin vapor is comparable to direct contact with the commercially available antifungal agent amphotericin B (ampB). Furthermore, the study revealed a synergistic interaction between allicin and the non-volatile ampB. The toxicity of allicin solution to human cell lines was evaluated and it was found that the half maximal effective concentration (EC50) of allicin was 25-72 times higher in the cell lines as compared to the fungal spores. Fungal allicin sensitivity depends on the spore concentration, as demonstrated in a drop test. This study shows the potential of allicin, a sulfur-containing defense compound from garlic, to combat zygomycete fungi. The findings underscore allicin's promise for applications in infections of the nasopharynx via inhalation, suggesting a novel therapeutic avenue against challenging fungal infections.


Subject(s)
Invasive Fungal Infections , Mucorales , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mucorales/metabolism , Amphotericin B/pharmacology , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use , Disulfides/pharmacology , Mycoses/drug therapy , Invasive Fungal Infections/drug therapy
11.
Molecules ; 28(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241721

ABSTRACT

Microbial infections affect both the human population and animals. The appearance of more and more microbial strains resistant to classical treatments led to the need to develop new treatments. Allium plants are known for their antimicrobial properties due to their high content of thiosulfinates, especially allicin, polyphenols or flavonoids. The hydroalcoholic extracts of six Allium species obtained by cold percolation were analyzed regarding their phytochemical compounds and antimicrobial activity. Among the six extracts, Allium sativum L. and Allium ursinum L. have similar contents of thiosulfinates (approx. 300 µg allicin equivalents/g), and the contents of polyphenols and flavonoids were different between the tested species. The HPLC-DAD method was used to detail the phytochemical composition of species rich in thiosulfinates. A. sativum is richer in allicin (280 µg/g) than A. ursinum (130 µg/g). The antimicrobial activity of A. sativum and A. ursinum extracts against Escherichia coli, Staphylococcus aureus, Candida albicans and Candida parapsilosis can be correlated with the presence of large amounts of thiosulfinates. Both extracts have shown results against Candida species (inhibition zones of 20-35 mm) and against Gram-positive bacteria, Staphylococcus aureus (inhibition zones of 15-25 mm). These results demonstrate the antimicrobial effect of the extracts and suggest their use as an adjuvant treatment for microbial infections.


Subject(s)
Allium , Anti-Infective Agents , Garlic , Animals , Humans , Allium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Garlic/chemistry , Staphylococcus aureus , Polyphenols/pharmacology , Phytochemicals/pharmacology , Flavonoids/pharmacology
12.
Molecules ; 28(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36615563

ABSTRACT

Garlic (Allium sativum L.) is widely used in various food products and traditional medicine. Besides unique taste and flavour, it is well known for its chemical profile and bioactive potential. The aim of this study was to apply subcritical water extraction (SWE) and pressurized liquid extraction (PLE) for the extraction of bioactive compounds from the Ranco genotype of garlic. Moreover, PLE process was optimized using response surface methodology (RSM) in order to determine effects and optimize ethanol concentration (45-75%), number of cycles (1-3), extraction time (1-3 min) and temperature (70-110 °C) for maximized total phenols content (TP) and antioxidant activity evaluated by various in vitro assays. Furthermore, temperature effect in SWE process on all responses was evaluated, while allicin content (AC), as a major organosulphur compound, was determined in all samples. Results indicated that PLE provided tremendous advantage over SWE in terms of improved yield and antioxidant activity of garlic extracts. Therefore, high-pressure processes could be used as clean and green procedures for the isolation of garlic bioactives.


Subject(s)
Garlic , Water , Water/chemistry , Garlic/chemistry , Antioxidants/chemistry , Phenols/chemistry , Ethanol/chemistry , Plant Extracts/chemistry
13.
J Sci Food Agric ; 103(10): 5156-5164, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37005328

ABSTRACT

BACKGROUND: Soybean meal, a by-product of the soybean oil production industry, has a high protein content but the compact globular structure of the protein from soybean meal limits its wide application in food processing. Allicin has been found to have numerous functional properties. In this study, allicin was interacted with soy protein isolate (SPI). The functional properties of the adducts were investigated. RESULTS: Binding with allicin significantly quenched the fluorescence intensity of SPI. Static quenching was the main quenching mechanism. The stability of adducts decreased with increasing temperature. The greatest extent of binding between allicin and sulfhydryl groups (SH) of SPI was obtained at an allicin/SH molar ratio of 1:2. The amino groups of SPI did not bind with allicin covalently. Soy protein isolate was modified by allicin through covalent and non-covalent interactions. Compared with SPI, the emulsifying activity index and foaming capacity of adducts with a ratio of 3:1 were improved by 39.91% and 64.29%, respectively. Soy protein isolate-allicin adducts also exhibited obvious antibacterial effects. The minimum inhibitory concentrations (MICs) of SPI-allicin adducts on Escherichia coli and Staphylococcus aureus were 200 and 160 µg mL-1 , respectively. CONCLUSION: The interaction of allicin with SPI is beneficial for the functional properties of SPI. These adducts can be used in different food formulations as emulsifiers, foamers, and transport carriers. © 2023 Society of Chemical Industry.


Subject(s)
Glycine max , Soybean Proteins , Soybean Proteins/chemistry , Glycine max/chemistry , Emulsifying Agents/chemistry , Food Handling
14.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3409-3420, 2023 Jul.
Article in Zh | MEDLINE | ID: mdl-37474979

ABSTRACT

Cardiovascular diseases(CVD) with high morbidity and mortality pose severe threats to human life. Allicin, a main active ingredient of garlic, possesses multiple pharmaceutical activities. It not only exerts cardioprotective effects but also prevents the risk factors for CVD. Allicin exerts cardioprotective effects via a variety of mechanisms, including inhibiting oxidative stress, apoptosis, autophagy, and inflammatory responses, regulating lipid metabolism and gut microbiota, inducing hydrogen sulfide production, and dilating vessels. Despite the valuable cardioprotective effects, the instability of allicin has hindered the basic research and clinical application. This paper reviews the progress in the cardioprotective effects and mechanisms of allicin in the last decade and summarizes the methods to improve the stability of allicin. In addition, this review provides a reference for further research and development of allicin in cardiovascular protection.


Subject(s)
Cardiovascular Diseases , Disulfides , Humans , Heart , Sulfinic Acids/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Pharmaceutical Preparations
15.
Pharmacol Res ; 177: 106118, 2022 03.
Article in English | MEDLINE | ID: mdl-35134476

ABSTRACT

Phytochemicals have attracted attention in the oncological field because they are biologically friendly and have relevant pharmacological activities. Thanks to the intense and unique spicy aroma, garlic is one of the most used plants for cooking. Its consumption is correlated to health beneficial effects towards several chronic diseases, such as cancer, mainly attributable to allicin, a bioactive sulfur compound stored in different plant parts in a precursor form. The objective of this review is to present and critically discuss the chemistry and biosynthesis of allicin, its pharmacokinetic profile, its anticancer mechanisms and molecular targets, and its selectivity towards tumor cells. The research carried out so far revealed that allicin suppresses the growth of different types of tumors. In particular, it targets many signaling pathways associated with cancer development. Future research directions are also outlined to further characterize this promising natural product.


Subject(s)
Biological Products , Garlic , Neoplasms , Disulfides/therapeutic use , Garlic/chemistry , Humans , Neoplasms/drug therapy , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use
16.
Pharmacol Res ; 175: 105837, 2022 01.
Article in English | MEDLINE | ID: mdl-34450316

ABSTRACT

Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Garlic , Neoplasms/prevention & control , Phytochemicals/therapeutic use , Plant Preparations/therapeutic use , Animals , Drug Compounding , Humans , Phytochemicals/adverse effects , Phytotherapy , Plant Preparations/adverse effects , Primary Prevention
17.
Crit Rev Food Sci Nutr ; : 1-51, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503329

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia and impaired islet secretion that places a heavy burden on the global health care system due to its high incidence rate, long disease course and many complications. Fortunately, garlic (Allium sativum L.), a well-known medicinal plant and functional food without the toxicity and side effects of conventional drugs, has shown positive effects in the treatment of diabetes and its complications. With interdisciplinary development and in-depth exploration, we offer a clear and comprehensive summary of the research from the past ten years, focusing on the mechanisms and development processes of garlic in the treatment of diabetes and its complications, aiming to provide a new perspective for the treatment of diabetes and promote the efficient development of this field.

18.
Acta Pharmacol Sin ; 43(11): 2905-2916, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35459869

ABSTRACT

Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a multifunctional protein under physiological and pathological conditions. In this study we investigated the roles of AGR2 in regulating cholesterol biogenesis, lipid-lowering efficiency of lovastatin as well as in protection against hypercholesterolemia/statin-induced liver injury. We showed that AGR2 knockout significantly decreased hepatic and serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in mice with whole-body or hepatocyte-specific Agr2-null mutant, compared with the levels in their wild-type littermates fed a normal chow diet (NCD) or high-fat diet (HFD). In contrast, mice with AGR2 overexpression (Agr2/Tg) exhibited an increased cholesterol level. Mechanistic studies revealed that AGR2 affected cholesterol biogenesis via activation of AKT/sterol regulatory element-binding protein-2 (SREBP2), to some extent, in a PDI motif-dependent manner. Moreover, elevated AGR2 led to a significant decrease in the lipid-lowering efficacy of lovastatin (10 mg· kg-1· d-1, ip, for 2 weeks) in mice with hypercholesterolemia (hyperCho), which was validated by results obtained from clinical samples in statin-treated patients. We showed that lovastatin had limited effect on AGR2 expression, but AGR2 was inducible in Agr2/Tg mice fed a HFD. Further investigations demonstrated that drug-induced liver toxicity and inflammatory reactions were alleviated in hypercholesterolemic Agr2/Tg mice, suggesting the dual functions of AGR2 in lipid management and hyperCho/statin-induced liver injury. Importantly, the AGR2-reduced lipid-lowering efficacy of lovastatin was attenuated, at least partially, by co-administration of a sulfhydryl-reactive compound allicin (20 mg· kg-1· d-1, ip, for 2 weeks). These results demonstrate a novel role of AGR2 in cholesterol metabolism, drug resistance and liver protection, suggesting AGR2 as a potential predictor for selection of lipid-lowering drugs in clinic.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypercholesterolemia , Mice , Animals , Lovastatin/pharmacology , Lovastatin/therapeutic use , Lovastatin/metabolism , Hypercholesterolemia/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Cholesterol, LDL , Liver/metabolism
19.
Vascular ; 30(5): 999-1007, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34301159

ABSTRACT

OBJECTIVES: Vascular calcification (VC) is an independent predictor for cardiovascular events and mortality. However, there are currently no effective methods to reverse or prevent it. The present study aimed to determine the ameliorative effect of allicin on VC. METHODS: VC model of rats was induced by high-dose vitamin D3, which was valued by Alizarin Red staining, calcium contents, and alkaline phosphatase in the aorta. Systolic blood pressure, pulse pressure, and pulse wave velocity were measured to determine aortic stiffness. Protein levels were detected by Western blot. RESULTS: Allicin treatment rescued aortic VC and stiffness. The increased protein levels of RUNX2 and BMP2, two markers of osteoblastic phenotype of vascular smooth muscle cells, in the calcified aorta were attenuated by allicin, whereas the decreased levels of calponin and SM22α induced by calcification were improved. Allicin treatment significantly attenuated the increased protein levels of GRP78, GRP94, and CHOP, which are key markers of endoplasmic reticulum stress, in the calcified aorta. The activation of PERK/eIF2α/ATF4 cascades was also prevented by allicin. CONCLUSIONS: Allicin could ameliorate aortic VC and stiffness. The ameliorative effect of allicin on VC might be mediated by inhibiting PERK/eIF2α/ATF4 cascades. Our results might provide a new proof for VC treatment.


Subject(s)
Endoplasmic Reticulum Stress , Vascular Calcification , Alkaline Phosphatase/metabolism , Animals , Calcium/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Disulfides , Muscle, Smooth, Vascular/metabolism , Pulse Wave Analysis , Rats , Rats, Sprague-Dawley , Sulfinic Acids , Vascular Calcification/chemically induced , Vascular Calcification/drug therapy , Vascular Calcification/prevention & control , Vitamin D/adverse effects , Vitamin D/metabolism
20.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743050

ABSTRACT

Fungal infections of the lung are an increasing problem worldwide and the search for novel therapeutic agents is a current challenge due to emerging resistance to current antimycotics. The volatile defence substance allicin is formed naturally by freshly injured garlic plants and exhibits broad antimicrobial potency. Chemically synthesised allicin was active against selected fungi upon direct contact and via the gas phase at comparable concentrations to the pharmaceutically used antimycotic amphotericin B. We investigated the suppression of fungal growth by allicin vapour and aerosols in vitro in a test rig at air flow conditions mimicking the human lung. The effect of allicin via the gas phase was enhanced by ethanol. Our results suggest that allicin is a potential candidate for development for use in antifungal therapy for lung and upper respiratory tract infections.


Subject(s)
Mycoses , Sulfinic Acids , Disulfides , Humans , Lung , Mycoses/drug therapy , Sulfinic Acids/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL