Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.645
Filter
Add more filters

Publication year range
1.
Cell ; 183(4): 954-967.e21, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33058757

ABSTRACT

The curse of dimensionality plagues models of reinforcement learning and decision making. The process of abstraction solves this by constructing variables describing features shared by different instances, reducing dimensionality and enabling generalization in novel situations. Here, we characterized neural representations in monkeys performing a task described by different hidden and explicit variables. Abstraction was defined operationally using the generalization performance of neural decoders across task conditions not used for training, which requires a particular geometry of neural representations. Neural ensembles in prefrontal cortex, hippocampus, and simulated neural networks simultaneously represented multiple variables in a geometry reflecting abstraction but that still allowed a linear classifier to decode a large number of other variables (high shattering dimensionality). Furthermore, this geometry changed in relation to task events and performance. These findings elucidate how the brain and artificial systems represent variables in an abstract format while preserving the advantages conferred by high shattering dimensionality.


Subject(s)
Hippocampus/anatomy & histology , Prefrontal Cortex/anatomy & histology , Animals , Behavior, Animal , Brain Mapping , Computer Simulation , Hippocampus/physiology , Learning , Macaca mulatta , Male , Models, Neurological , Neural Networks, Computer , Neurons/physiology , Prefrontal Cortex/physiology , Reinforcement, Psychology , Task Performance and Analysis
2.
Cell ; 173(6): 1329-1342.e18, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29731170

ABSTRACT

Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.


Subject(s)
Basolateral Nuclear Complex/physiology , Cerebral Cortex/physiology , Learning/physiology , Amygdala/physiology , Animals , Behavior, Animal , Conditioning, Classical , Electrophysiological Phenomena , Fear , Light , Male , Memory/physiology , Mice , Neural Pathways/physiology , Neurons/physiology , Optogenetics , Prefrontal Cortex/physiology
3.
EMBO J ; 41(24): e111648, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36341708

ABSTRACT

The ability to care for the young is innate and readily displayed by postpartum females after delivery to ensure offspring survival. Upon pup exposure, rodent virgin (nulliparous) females also develop parental behavior that over time becomes displayed at levels equivalent to parenting mothers. Although maternal behavior in postpartum females and the associated neurocircuits are well characterized, the neural mechanisms underlying the acquisition of maternal behavior without prior experience remain poorly understood. Here, we show that the development of maternal care behavior in response to first-time pup exposure in virgin females is initiated by the activation of the anterior cingulate cortex (ACC). ACC activity is dependent on feedback excitation by Vglut2+ /Galanin+ neurons of the centrolateral nucleus of the thalamus (CL), with their activity sufficient to display parenting behaviors. Accordingly, acute bidirectional chemogenetic manipulation of neuronal activity in the ACC facilitates or impairs the attainment of maternal behavior, exclusively in virgin females. These results reveal an ACC-CL neurocircuit as an accessory loop in virgin females for the initiation of maternal care upon first-time exposure to pups.


Subject(s)
Maternal Behavior , Postpartum Period , Humans , Animals , Mice , Female , Postpartum Period/physiology , Neurons/physiology , Thalamus , Prefrontal Cortex , Behavior, Animal
4.
Bioessays ; 46(3): e2300160, 2024 03.
Article in English | MEDLINE | ID: mdl-38135889

ABSTRACT

The anterior cingulate cortex (ACC) is a complex and continually evolving brain region that remains a primary focus of research due to its multifaceted functions. Various studies and analyses have significantly advanced our understanding of how the ACC participates in a wide spectrum of memory and cognitive processes. However, despite its strong connections to brain areas associated with hippocampal and olfactory neurogenesis, the functions of the ACC in regulating postnatal and adult neurogenesis in these regions are still insufficiently explored. Investigating the intricate involvement of the ACC in neurogenesis could enhance our comprehension of essential aspects of brain plasticity. This involvement stems from its complex circuitry with other relevant brain regions, thereby exerting both direct and indirect impacts on the neurogenesis process. This review sheds light on the promising significance of the ACC in orchestrating postnatal and adult neurogenesis in conditions related to memory, cognitive behavior, and associated disorders.


Subject(s)
Brain , Gyrus Cinguli , Gyrus Cinguli/physiology , Hippocampus/physiology , Neurogenesis
5.
Proc Natl Acad Sci U S A ; 120(20): e2220353120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155875

ABSTRACT

Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompanied with hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.


Subject(s)
Neuropeptides , Stress, Psychological , Animals , Female , Mice , Gyrus Cinguli , Maternal Deprivation , Neuropeptides/metabolism , Orexin Receptors/genetics , Orexins/genetics , Orexins/metabolism
6.
Proc Natl Acad Sci U S A ; 120(23): e2212394120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252991

ABSTRACT

The perception of pain is a multidimensional sensory and emotional/affective experience arising from distributed brain activity. However, the involved brain regions are not specific for pain. Thus, how the cortex distinguishes nociception from other aversive and salient sensory stimuli remains elusive. Additionally, the resulting consequences of chronic neuropathic pain on sensory processing have not been characterized. Using in vivo miniscope calcium imaging with cellular resolution in freely moving mice, we elucidated the principles of nociceptive and sensory coding in the anterior cingulate cortex, a region essential for pain processing. We found that population activity, not single-cell responses, allowed discriminating noxious from other sensory stimuli, ruling out the existence of nociception-specific neurons. Additionally, single-cell stimulus selectivity was highly dynamic over time, but stimulus representation at the population level remained stable. Peripheral nerve injury-induced chronic neuropathic pain led to dysfunctional encoding of sensory events by exacerbation of responses to innocuous stimuli and impairment of pattern separation and stimulus classification, which were restored by analgesic treatment. These findings provide a novel interpretation for altered cortical sensory processing in chronic neuropathic pain and give insights into the effects of systemic analgesic treatment in the cortex.


Subject(s)
Gyrus Cinguli , Neuralgia , Humans , Mice , Animals , Gyrus Cinguli/diagnostic imaging , Nociception/physiology , Brain , Nociceptors
7.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38755005

ABSTRACT

Preclinical assessments of pain have often relied upon behavioral measurements and anesthetized neurophysiological recordings. Current technologies enabling large-scale neural recordings, however, have the potential to unveil quantifiable pain signals in conscious animals for preclinical studies. Although pain processing is distributed across many brain regions, the anterior cingulate cortex (ACC) is of particular interest in isolating these signals given its suggested role in the affective ("unpleasant") component of pain. Here, we explored the utility of the ACC toward preclinical pain research using head-mounted miniaturized microscopes to record calcium transients in freely moving male mice expressing genetically encoded calcium indicator 6f (GCaMP6f) under the Thy1 promoter. We verified the expression of GCaMP6f in excitatory neurons and found no intrinsic behavioral differences in this model. Using a multimodal stimulation paradigm across naive, pain, and analgesic conditions, we found that while ACC population activity roughly scaled with stimulus intensity, single-cell representations were highly flexible. We found only low-magnitude increases in population activity after complete Freund's adjuvant (CFA) and insufficient evidence for the existence of a robust nociceptive ensemble in the ACC. However, we found a temporal sharpening of response durations and generalized increases in pairwise neural correlations in the presence of the mechanistically distinct analgesics gabapentin or ibuprofen after (but not before) CFA-induced inflammatory pain. This increase was not explainable by changes in locomotion alone. Taken together, these results highlight challenges in isolating distinct pain signals among flexible representations in the ACC but suggest a neurophysiological hallmark of analgesia after pain that generalizes to at least two analgesics.


Subject(s)
Gyrus Cinguli , Animals , Mice , Male , Gyrus Cinguli/physiopathology , Gyrus Cinguli/drug effects , Pain/physiopathology , Inflammation , Mice, Inbred C57BL , Analgesia/methods , Analgesics/pharmacology , Freund's Adjuvant/toxicity , Ibuprofen/pharmacology
8.
J Neurosci ; 44(20)2024 May 15.
Article in English | MEDLINE | ID: mdl-38569923

ABSTRACT

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Subject(s)
Gyrus Cinguli , Optogenetics , Rats, Long-Evans , Animals , Gyrus Cinguli/physiology , Male , Rats , Female , Attention/physiology , Reward , Choice Behavior/physiology , Decision Making/physiology , Neural Inhibition/physiology
9.
J Neurosci ; 44(35)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39054067

ABSTRACT

The anterior cingulate cortex (ACC) is a key cortical region for pain perception and emotion. Different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), have been reported in the ACC. Synaptic tagging of LTP plays an important role in hippocampus-related associative memory. In this study, we demonstrate that synaptic tagging of LTD is detected in the ACC of adult male and female mice. This form of tagged LTD requires the activation of metabotropic glutamate receptor subtype 1 (mGluR1). The induction of tagged LTD is time-related with the strongest tagged LTD appearing when the interval between two independent stimuli is 30 min. Inhibitors of mGluR1 blocked the induction of tagged LTD; however, blocking N-methyl-d-aspartate receptors did not affect the induction of tagged LTD. Nimodipine, an inhibitor of L-type voltage-gated calcium channels, also blocked tagged LTD. In an animal model of amputation, we found that tagged LTD was either reduced or completely blocked. Together with our previous report of tagged LTP in the ACC, this study strongly suggests that excitatory synapses in the adult ACC are highly plastic. The biphasic tagging of synaptic transmission provides a new form of heterosynaptic plasticity in the ACC which has functional and pathophysiological significance in phantom pain.


Subject(s)
Gyrus Cinguli , Long-Term Synaptic Depression , Mice, Inbred C57BL , Animals , Gyrus Cinguli/physiology , Gyrus Cinguli/drug effects , Mice , Long-Term Synaptic Depression/physiology , Long-Term Synaptic Depression/drug effects , Male , Female , Synapses/physiology , Synapses/drug effects , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/drug effects
10.
Brain ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101587

ABSTRACT

The reward positivity (RewP) is an event-related brain potential (ERP) component that emerges approximately 250 to 350 milliseconds (ms) after receiving reward-related feedback stimuli and is believed to be important for reinforcement learning and reward processing. Although numerous localization studies have indicated that the anterior cingulate cortex (ACC) is the neural generator of this component, other studies have identified sources outside of the ACC, fuelling a debate about its origin. Because the results of EEG and MEG source localization studies are severely limited by the inverse problem, we addressed this question by leveraging the high spatial and temporal resolution of intracranial EEG. We predicted that we would identify a neural generator of the RewP in the caudal ACC. We recorded intracranial EEG in 19 refractory epilepsy patients who underwent invasive video-EEG monitoring at Ghent University Hospital, Belgium. Participants engaged in the virtual T-maze task (vTMT), a trial-and-error task known to elicit a canonical RewP, while scalp and intracranial EEG were simultaneously recorded. The RewP was identified using a difference wave approach for both scalp and intracranial EEG. The data were aggregated across participants to create a virtual "meta-participant" that contained all the recorded intracranial ERPs (iERPs) with respect to their intracranial contact locations. We used both a hypothesis-driven (focused on ACC) and exploratory (whole-brain analysis) approach to segment the brain into regions of interest (ROI). For each ROI, we evaluated the degree to which the time course of the absolute current density (ACD) activity mirrored the time course of the RewP, and confirmed the statistical significance of the results using permutation analysis. The grand average waveform of the scalp data revealed a RewP at 309 ms after reward feedback with a frontocentral scalp distribution, consistent with the identification of this component as the RewP. The meta-participant contained iERPs recorded from 582 intracranial contacts in total. The ACD activity of the aggregated iERPs were most similar to the RewP in left caudal ACC, left dorsolateral prefrontal cortex, left frontomedial cortex, and left white matter, with the highest score attributed to caudal ACC, as predicted. To our knowledge, this is the first study that uses intracranial EEG aggregated across multiple human epilepsy patients and current source density analysis to identify the neural generator(s) of the RewP. These results provide direct evidence that the ACC is a neural generator of the RewP.

11.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38342690

ABSTRACT

Migraine without aura is a multidimensional neurological disorder characterized by sensory, emotional, and cognitive symptoms linked to structural and functional abnormalities in the anterior cingulate cortex. Anterior cingulate cortex subregions play differential roles in the clinical symptoms of migraine without aura; however, the specific patterns and mechanisms remain unclear. In this study, voxel-based morphometry and seed-based functional connectivity were used to investigate structural and functional alterations in the anterior cingulate cortex subdivisions in 50 patients with migraine without aura and 50 matched healthy controls. Compared with healthy controls, patients exhibited (1) decreased gray matter volume in the subgenual anterior cingulate cortex, (2) increased functional connectivity between the bilateral subgenual anterior cingulate cortex and right middle frontal gyrus, and between the posterior part of anterior cingulate cortex and right middle frontal gyrus, orbital part, and (3) decreased functional connectivity between the anterior cingulate cortex and left anterior cingulate and paracingulate gyri. Notably, left subgenual anterior cingulate cortex was correlated with the duration of each attack, whereas the right subgenual anterior cingulate cortex was associated with migraine-specific quality-of-life questionnaire (emotion) and self-rating anxiety scale scores. Our findings provide new evidence supporting the hypothesis of abnormal anterior cingulate cortex subcircuitry, revealing structural and functional abnormalities in its subregions and emphasizing the potential involvement of the left subgenual anterior cingulate cortex-related pain sensation subcircuit and right subgenual anterior cingulate cortex -related pain emotion subcircuit in migraine.


Subject(s)
Gyrus Cinguli , Migraine without Aura , Humans , Gyrus Cinguli/diagnostic imaging , Migraine without Aura/diagnostic imaging , Cerebral Cortex , Pain/diagnostic imaging , Emotions , Magnetic Resonance Imaging/methods
12.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39128939

ABSTRACT

The anterior cingulate cortex (ACC) has been implicated across multiple highly specialized cognitive functions-including task engagement, motivation, error detection, attention allocation, value processing, and action selection. Here, we ask if ACC lesions disrupt task performance and firing in dorsomedial striatum (DMS) during the performance of a reward-guided decision-making task that engages many of these cognitive functions. We found that ACC lesions impacted several facets of task performance-including decreasing the initiation and completion of trials, slowing reaction times, and resulting in suboptimal and inaccurate action selection. Reductions in movement times towards the end of behavioral sessions further suggested attenuations in motivation, which paralleled reductions in directional action selection signals in the DMS that were observed later in recording sessions. Surprisingly, however, beyond altered action signals late in sessions-neural correlates in the DMS were largely unaffected, even though behavior was disrupted at multiple levels. We conclude that ACC lesions result in overall deficits in task engagement that impact multiple facets of task performance during our reward-guided decision-making task, which-beyond impacting motivated action signals-arise from dysregulated attentional signals in the ACC and are mediated via downstream targets other than DMS.


Subject(s)
Corpus Striatum , Decision Making , Gyrus Cinguli , Neurons , Reward , Gyrus Cinguli/physiology , Gyrus Cinguli/physiopathology , Animals , Male , Decision Making/physiology , Neurons/physiology , Corpus Striatum/physiology , Corpus Striatum/physiopathology , Action Potentials/physiology , Reaction Time/physiology , Motivation/physiology , Psychomotor Performance/physiology
13.
Proc Natl Acad Sci U S A ; 119(33): e2123146119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35947618

ABSTRACT

Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.


Subject(s)
Neuropeptides , Prefrontal Cortex , Receptors, Neuropeptide , Female , Gene Expression Profiling , Humans , Male , Neuropeptides/genetics , Neuropeptides/metabolism , Prefrontal Cortex/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism
14.
Proc Natl Acad Sci U S A ; 119(30): e2114094119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858441

ABSTRACT

Clinical evidence suggests that pain hypersensitivity develops in patients with attention-deficit/hyperactivity disorder (ADHD). However, the mechanisms and neural circuits involved in these interactions remain unknown because of the paucity of studies in animal models. We previously validated a mouse model of ADHD obtained by neonatal 6-hydroxydopamine (6-OHDA) injection. Here, we have demonstrated that 6-OHDA mice exhibit a marked sensitization to thermal and mechanical stimuli, suggesting that phenotypes associated with ADHD include increased nociception. Moreover, sensitization to pathological inflammatory stimulus is amplified in 6-OHDA mice as compared to shams. In this ADHD model, spinal dorsal horn neuron hyperexcitability was observed. Furthermore, ADHD-related hyperactivity and anxiety, but not inattention and impulsivity, are worsened in persistent inflammatory conditions. By combining in vivo electrophysiology, optogenetics, and behavioral analyses, we demonstrated that anterior cingulate cortex (ACC) hyperactivity alters the ACC-posterior insula circuit and triggers changes in spinal networks that underlie nociceptive sensitization. Altogether, our results point to shared mechanisms underlying the comorbidity between ADHD and nociceptive sensitization. This interaction reinforces nociceptive sensitization and hyperactivity, suggesting that overlapping ACC circuits may be targeted to develop better treatments.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Hyperalgesia , Pain , Animals , Attention Deficit Disorder with Hyperactivity/physiopathology , Disease Models, Animal , Gyrus Cinguli/physiopathology , Hyperalgesia/chemically induced , Hyperalgesia/physiopathology , Impulsive Behavior , Mice , Optogenetics , Oxidopamine/pharmacology , Pain/chemically induced , Pain/physiopathology , Sympatholytics/pharmacology
15.
J Neurosci ; 43(40): 6807-6815, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37643862

ABSTRACT

Mind-blanking (MB) is termed as the inability to report our immediate-past mental content. In contrast to mental states with reportable content, such as mind-wandering or sensory perceptions, the neural correlates of MB started getting elucidated only recently. A notable particularity that pertains to MB studies is the way MB is instructed for reporting, like by deliberately asking participants to "empty their minds." Such instructions were shown to induce fMRI activations in frontal brain regions, typically associated with metacognition and self-evaluative processes, suggesting that MB may be a result of intentional mental content suppression. Here, we aim at examining this hypothesis by determining the neural correlates of MB without induction. Using fMRI combined with experience-sampling in 31 participants (22 female), univariate analysis of MB reports revealed deactivations in occipital, frontal, parietal, and thalamic areas, but no activations in prefrontal regions. These findings were confirmed using Bayesian region-of-interest analysis on areas previously shown to be implicated in induced MB, where we report evidence for frontal deactivations during MB reports compared with other mental states. Contrast analysis between reports of MB and content-oriented mental states also revealed deactivations in the left angular gyrus. We propose that these effects characterize a neuronal profile of MB, where key thalamocortical nodes are unable to communicate and formulate reportable content. Collectively, we show that study instructions for MB lead to differential neural activation. These results provide mechanistic insights linked to the phenomenology of MB and point to the possibility of MB being expressed in different forms.SIGNIFICANCE STATEMENT This study explores how brain activity changes when individuals report unidentifiable thoughts, a phenomenon known as mind-blanking (MB). It aims to detect changes in brain activations and deactivations when MB is reported spontaneously, as opposed to the neural responses that have been previously reported when MB is induced. By means of brain imaging and experience-sampling, the study points to reduced brain activity in a wide number of regions, including those mesio-frontally which were previously detected as activated during induced MB. These results enhance our understanding of the complexity of spontaneous thinking and contribute to broader discussions on consciousness and reportable experience.


Subject(s)
Brain Mapping , Brain , Humans , Female , Bayes Theorem , Brain/diagnostic imaging , Brain/physiology , Consciousness/physiology , Parietal Lobe/physiology , Magnetic Resonance Imaging
16.
J Neurosci ; 43(48): 8201-8218, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37845036

ABSTRACT

It is known that humans and rodents are capable of transmitting stress to their naive partners via social interaction. However, a comprehensive understanding of transmitted stress, which may differ from authentic stress, thus revealing unique neural mechanisms of social interaction resulting from transmitted stress and the associated anxiety, is missing. We used, in the present study, maternal separation (MS) as a stress model to investigate whether MS causes abnormal behavior in adolescence. A key concern in the analysis of stress transmission is whether the littermates of MS mice who only witness MS stress ("Partners") exhibit behavioral abnormalities similar to those of MS mice themselves. Of special interest is the establishment of the neural mechanisms underlying transmitted stress and authentic stress. The results show that Partners, similar to MS mice, exhibit anxiety-like behavior and hyperalgesia after witnessing littermates being subjected to early-life repetitive MS. Electrophysiological analysis revealed that mice subjected to MS demonstrate a reduction in both the excitatory and inhibitory synaptic activities of parvalbumin interneurons (PVINs) in the anterior cingulate cortex (ACC). However, Partners differed from MS mice in showing an increase in the number and excitability of GABAergic PVINs in the ACC and in the ability of chemogenetic PVIN inactivation to eliminate abnormal behavior. Furthermore, the social transfer of anxiety-like behavior required intact olfactory, but not visual, perception. This study suggests a functional involvement of ACC PVINs in mediating the distinct neural basis of transmitted anxiety.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) is a critical brain area in physical and social pain and contributes to the exhibition of abnormal behavior. ACC glutamatergic neurons have been shown to encode transmitted stress, but it remains unclear whether inhibitory ACC neurons also play a role. We evaluate, in this study, ACC neuronal, synaptic and network activities and uncover a critical role of parvalbumin interneurons (PVINs) in the expression of transmitted stress in adolescent mice who had witnessed MS of littermates in infancy. Furthermore, inactivation of ACC PVINs blocks transmitted stress. The results suggest that emotional contagion has a severe effect on brain function, and identify a potential target for the treatment of transmitted anxiety.


Subject(s)
Gyrus Cinguli , Parvalbumins , Humans , Mice , Animals , Gyrus Cinguli/physiology , Parvalbumins/metabolism , Maternal Deprivation , Neurons/metabolism , Anxiety
17.
J Neurosci ; 43(23): 4262-4278, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37160368

ABSTRACT

Sensory cortical areas are robustly modulated by higher-order cortices. Our previous study shows that the anterior cingulate cortex (ACC) can immediately and transiently enhance responses in the mouse auditory cortex (ACx). Here, we further examined whether strong activation of ACC neurons can induce long-term effects in mice of both sexes. To our surprise, only stimulation of cell bodies in the ACC, but not ACC-to-ACx terminal activation, induced long-term enhancement of auditory responses in the ACx. Anatomical examination showed that the ACC indirectly projects to the ACx via the rhinal cortex (RCx). High-frequency stimulation of ACC-projecting terminals to the RCx or RCx-projecting terminals to the ACx induced a similar effect as the cell body activation of ACC neurons, whereas silencing the RCx blocked this long-term enhancement. High-frequency stimulation of ACC projections to the RCx also induced long-term augmentation of sound-evoked flight behavior in male mice. These results show that the ACC promotes the long-term enhancement of auditory responses in the ACx through an indirect pathway via the RCx.SIGNIFICANCE STATEMENT In this study, we demonstrate that the anterior part of the anterior cingulate cortex (ACC) evokes long-term enhancement of auditory responses in the auditory cortex (ACx) when it is strongly activated. Importantly, instead of a direct projection, we show that the ACC implements this effect via an indirect pathway through the lateral rhinal cortex using a series of physiological, optogenetic, anatomic, and behavioral experiments. Along with a short-term effect, this long-term enhancement induced by an indirect ACC-to-ACx projection could increase the odds of survival when animals are faced with threats after a significant event.


Subject(s)
Auditory Cortex , Gyrus Cinguli , Female , Animals , Mice , Male , Gyrus Cinguli/physiology , Auditory Cortex/physiology , Neurons/physiology , Sound
18.
Neuroimage ; 297: 120713, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38944171

ABSTRACT

Research indicates that hearing loss significantly contributes to tinnitus, but it alone does not fully explain its occurrence, as many people with hearing loss do not experience tinnitus. To identify a secondary factor for tinnitus generation, we examined a unique dataset of individuals with intermittent chronic tinnitus, who experience fluctuating periods of tinnitus. EEGs of healthy controls were compared to EEGs of participants who reported perceiving tinnitus on certain days, but no tinnitus on other days.. The EEG data revealed that tinnitus onset is associated with increased theta activity in the pregenual anterior cingulate cortex and decreased theta functional connectivity between the pregenual anterior cingulate cortex and the auditory cortex. Additionally, there is increased alpha effective connectivity from the dorsal anterior cingulate cortex to the pregenual anterior cingulate cortex. When tinnitus is not perceived, differences from healthy controls include increased alpha activity in the pregenual anterior cingulate cortex and heightened alpha connectivity between the pregenual anterior cingulate cortex and auditory cortex. This suggests that tinnitus is triggered by a switch involving increased theta activity in the pregenual anterior cingulate cortex and decreased theta connectivity between the pregenual anterior cingulate cortex and auditory cortex, leading to increased theta-gamma cross-frequency coupling, which correlates with tinnitus loudness. Increased alpha activity in the dorsal anterior cingulate cortex correlates with distress. Conversely, increased alpha activity in the pregenual anterior cingulate cortex can transiently suppress the phantom sound by enhancing theta connectivity to the auditory cortex. This mechanism parallels chronic neuropathic pain and suggests potential treatments for tinnitus by promoting alpha activity in the pregenual anterior cingulate cortex and reducing alpha activity in the dorsal anterior cingulate cortex through pharmacological or neuromodulatory approaches.


Subject(s)
Auditory Cortex , Electroencephalography , Gyrus Cinguli , Tinnitus , Humans , Tinnitus/physiopathology , Tinnitus/diagnostic imaging , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Male , Female , Adult , Middle Aged , Auditory Cortex/physiopathology , Auditory Cortex/diagnostic imaging , Theta Rhythm/physiology , Alpha Rhythm/physiology , Aged
19.
Neuroimage ; 293: 120634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705431

ABSTRACT

Spatial image transformation of the self-body is a fundamental function of visual perspective-taking. Recent research underscores the significance of intero-exteroceptive information integration to construct representations of our embodied self. This raises the intriguing hypothesis that interoceptive processing might be involved in the spatial image transformation of the self-body. To test this hypothesis, the present study used functional magnetic resonance imaging to measure brain activity during an arm laterality judgment (ALJ) task. In this task, participants were tasked with discerning whether the outstretched arm of a human figure, viewed from the front or back, was the right or left hand. The reaction times for the ALJ task proved longer when the stimulus presented orientations of 0°, 90°, and 270° relative to the upright orientation, and when the front view was presented rather than the back view. Reflecting the increased reaction time, increased brain activity was manifested in a cluster centered on the dorsal anterior cingulate cortex (ACC), suggesting that the activation reflects the involvement of an embodied simulation in ALJ. Furthermore, this cluster of brain activity exhibited overlap with regions where the difference in activation between the front and back views positively correlated with the participants' interoceptive sensitivity, as assessed through the heartbeat discrimination task, within the pregenual ACC. These results suggest that the ACC plays an important role in integrating intero-exteroceptive cues to spatially transform the image of our self-body.


Subject(s)
Brain Mapping , Gyrus Cinguli , Magnetic Resonance Imaging , Humans , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Female , Male , Young Adult , Adult , Brain Mapping/methods , Interoception/physiology , Body Image , Functional Laterality/physiology , Reaction Time/physiology , Space Perception/physiology , Arm/physiology
20.
J Neurophysiol ; 132(3): 968-978, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39110512

ABSTRACT

How cellular adaptations give rise to opioid analgesic tolerance to opioids like morphine is not well understood. For one, pain is a complex phenomenon comprising both sensory and affective components, largely mediated through separate circuits. Glutamatergic projections from the medial thalamus (MThal) to the anterior cingulate cortex (ACC) are implicated in processing of affective pain, a relatively understudied component of the pain experience. The goal of this study was to determine the effects of chronic morphine exposure on mu-opioid receptor (MOR) signaling on MThal-ACC synaptic transmission within the excitatory and feedforward inhibitory pathways. Using whole cell patch-clamp electrophysiology and optogenetics to selectively target these projections, we measured morphine-mediated inhibition of optically evoked postsynaptic currents in ACC layer V pyramidal neurons in drug-naïve and chronically morphine-treated mice. We found that morphine perfusion inhibited the excitatory and feedforward inhibitory pathways similarly in females but caused greater inhibition of the inhibitory pathway in males. Chronic morphine treatment robustly attenuated morphine presynaptic inhibition within the inhibitory pathway in males, but not females, and mildly attenuated presynaptic inhibition within the excitatory pathway in both sexes. These effects were not observed in MOR phosphorylation-deficient mice. This study indicates that chronic morphine treatment induces cellular tolerance to morphine within a thalamo-cortical circuit relevant to pain and opioid analgesia. Furthermore, it suggests this tolerance may be driven by MOR phosphorylation. Overall, these findings improve our understanding of how chronic opioid exposure alters cellular signaling in ways that may contribute to opioid analgesic tolerance.NEW & NOTEWORTHY Opioid signaling within the anterior cingulate cortex (ACC) is important for opioid modulation of affective pain. Glutamatergic medial thalamus (MThal) neurons synapse in the ACC and opioids, acting through mu opioid receptors (MORs), acutely inhibit synaptic transmission from MThal synapses. However, the effect of chronic opioid exposure on MThal-ACC synaptic transmission is not known. Here, we demonstrate that chronic morphine treatment induces cellular tolerance at these synapses in a sex-specific and phosphorylation-dependent manner.


Subject(s)
Analgesics, Opioid , Morphine , Receptors, Opioid, mu , Thalamus , Animals , Receptors, Opioid, mu/metabolism , Morphine/pharmacology , Morphine/administration & dosage , Male , Female , Mice , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Thalamus/drug effects , Thalamus/physiology , Thalamus/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/physiology , Gyrus Cinguli/metabolism , Synapses/drug effects , Synapses/physiology , Drug Tolerance/physiology , Mice, Inbred C57BL , Sex Characteristics , Signal Transduction/drug effects , Pyramidal Cells/drug effects , Pyramidal Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL