Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Cell ; 184(21): 5419-5431.e16, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34597582

ABSTRACT

Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.


Subject(s)
Cytokinesis , Endosomal Sorting Complexes Required for Transport/metabolism , HIV-1/physiology , Viral Envelope Proteins/metabolism , Virus Release , Animals , Cell Death , Cell Survival , Endosomal Sorting Complexes Required for Transport/ultrastructure , HEK293 Cells , HeLa Cells , Humans , Interferons/metabolism , Mammals/genetics , Mice, Inbred C57BL , RNA/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/metabolism
2.
Proc Natl Acad Sci U S A ; 119(31): e2121453119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881805

ABSTRACT

Human ZAP inhibits many viruses, including HIV and coronaviruses, by binding to viral RNAs to promote their degradation and/or translation suppression. However, the regulatory role of ZAP in host mRNAs is largely unknown. Two major alternatively spliced ZAP isoforms, the constitutively expressed ZAPL and the infection-inducible ZAPS, play overlapping yet different antiviral and other roles that need further characterization. We found that the splicing factors hnRNPA1/A2, PTBP1/2, and U1-snRNP inhibit ZAPS production and demonstrated the feasibility to modulate the ZAPL/S balance by splice-switching antisense oligonucleotides in human cells. Transcriptomic analysis of ZAP-isoform-specific knockout cells revealed uncharacterized host mRNAs targeted by ZAPL/S with broad cellular functions such as unfolded protein response (UPR), epithelial-mesenchymal transition (EMT), and innate immunity. We established that endogenous ZAPL and ZAPS localize to membrane compartments and cytosol, respectively, and that the differential localization correlates with their target-RNA specificity. We showed that the ZAP isoforms regulated different UPR branches under resting and stress conditions and affected cell viability during ER stress. We also provided evidence for a different function of the ZAP isoforms in EMT-related cell migration, with effects that are cell-type dependent. Overall, this study demonstrates that the competition between splicing and IPA is a potential target for the modulation of the ZAPL/S balance, and reports new cellular transcripts and processes regulated by the ZAP isoforms.


Subject(s)
Epithelial-Mesenchymal Transition , RNA, Messenger , RNA, Viral , RNA-Binding Proteins , Unfolded Protein Response , Epithelial-Mesenchymal Transition/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins, Small Nuclear/metabolism
3.
RNA ; 28(8): 1089-1109, 2022 08.
Article in English | MEDLINE | ID: mdl-35675984

ABSTRACT

The ability of zinc finger antiviral protein (ZAP) to recognize and respond to RNA virus sequences with elevated frequencies of CpG dinucleotides has been proposed as a functional part of the vertebrate innate immune antiviral response. It has been further proposed that ZAP activity shapes compositions of cytoplasmic mRNA sequences to avoid self-recognition, particularly mRNAs for interferons (IFNs) and IFN-stimulated genes (ISGs) expressed during the antiviral state. We investigated whether restriction of the replication of mutants of influenza A virus (IAV) and the echovirus 7 (E7) replicon with high CpG and UpA frequencies varied in different species of mammals and birds. Cell lines from different bird orders showed substantial variability in restriction of CpG-high mutants of IAV and E7 replicons, whereas none restricted UpA-high mutants, in marked contrast to universal restriction of both mutants in mammalian cells. Dinucleotide representation in ISGs and IFN genes was compared with those of cellular transcriptomes to determine whether potential differences in inferred ZAP activity between species shaped dinucleotide compositions of highly expressed genes during the antiviral state. While mammalian type 1 IFN genes typically showed often profound suppression of CpG and UpA frequencies, there was no oversuppression of either in ISGs in any species, irrespective of their ability to restrict CpG- or UpA-high mutants. Similarly, genome sequences of mammalian and avian RNA viruses were compositionally equivalent, as were IAV strains recovered from ducks, chickens and humans. Overall, we found no evidence for host variability in inferred ZAP function shaping host or viral transcriptome compositions.


Subject(s)
Influenza A virus , Transcriptome , Animals , Antiviral Agents/pharmacology , Chickens/genetics , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Mammals/genetics , RNA, Messenger , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Replication/genetics
4.
J Virol ; 97(3): e0184622, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916924

ABSTRACT

Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.


Subject(s)
Cytomegalovirus , Interferon Type I , Humans , Cytomegalovirus/metabolism , Neurofibromin 2/metabolism , Neurofibromin 2/pharmacology , RNA-Binding Proteins/metabolism , Virus Replication/physiology , Antiviral Agents/pharmacology , Interferon Type I/metabolism , Zinc Fingers
5.
J Virol ; 97(10): e0102823, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772822

ABSTRACT

IMPORTANCE: Emerging vaccine-breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight an urgent need for novel antiviral therapies. Understanding the pathogenesis of coronaviruses is critical for developing antiviral drugs. Here, we demonstrate that the SARS-CoV-2 N protein suppresses interferon (IFN) responses by reducing early growth response gene-1 (EGR1) expression. The overexpression of EGR1 inhibits SARS-CoV-2 replication by promoting IFN-regulated antiviral protein expression, which interacts with and degrades SARS-CoV-2 N protein via the E3 ubiquitin ligase MARCH8 and the cargo receptor NDP52. The MARCH8 mutants without ubiquitin ligase activity are no longer able to degrade SARS-CoV-2 N proteins, indicating that MARCH8 degrades SARS-CoV-2 N proteins dependent on its ubiquitin ligase activity. This study found a novel immune evasion mechanism of SARS-CoV-2 utilized by the N protein, which is helpful for understanding the pathogenesis of SARS-CoV-2 and guiding the design of new prevention strategies against the emerging coronaviruses.


Subject(s)
Early Growth Response Protein 1 , Host Microbial Interactions , SARS-CoV-2 , Ubiquitin-Protein Ligases , Virus Replication , Humans , COVID-19/virology , Drug Discovery , Early Growth Response Protein 1/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
6.
J Virol ; 97(1): e0087222, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36633408

ABSTRACT

The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.


Subject(s)
Evolution, Molecular , Nuclear Export Signals , RNA-Binding Proteins , Ubiquitin-Protein Ligases , Animals , Cullin Proteins/metabolism , Interferons/genetics , RNA, Viral/genetics , Virus Replication/physiology , RNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics
7.
Microb Cell Fact ; 23(1): 224, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118053

ABSTRACT

BACKGROUND: Selection markers are useful in genetic modification of yeast Pichia pastoris. However, the leakage of the promoter caused undesired expression of selection markers especially those toxic proteins like MazF, halting the cell growth and hampering the genetic manipulation in procaryotic system. In this study, a new counter-selectable marker-based strategy has been established for seamless modification with high efficiency and low toxicity. RESULTS: At first, the leaky expression of the enhanced green fluorescent protein (EGFP) as a reporter gene under the control of six inducible promoters of P. pastoris was investigated in two hosts Escherichia coli and P. pastoris, respectively. The results demonstrated that the DAS1 and FDH1 promoters (PDAS1 and PFDH1) had the highest leakage expression activities in procaryotes and eukaryotes, and the DAS2 promoter (PDAS2) was inducible with medium strength but low leakage expression activity, all of which were selected for further investigation. Next, Mirabilis antiviral proteins (MAPs) c21873-1, c21873-1T (truncated form of c21873-1) and c23467 were mined as the new counter-selectable markers, and hygromycin B (Hyg B) resistance gene was used as the positive-selectable marker, respectively. Then, modular plasmids with MAP-target gene-Hyg B cassettes were constructed and used to transform into P. pastoris cells after linearization, and the target genes were integrated into its genome at the BmT1 locus through single-crossover homologous recombination (HR). After counter-selection induced by methanol medium, the markers c21873-1 and c21873-1T were recycled efficiently. But c23467 failed to be recycled due to its toxic effect on the P. pastoris cells. At last, the counter-selectable marker c21873-1 under the tightly regulated PDAS2 enabled the encoding genes of reporter EGFP and tested proteins to be integrated into the target locus and expressed successfully. CONCLUSIONS: We have developed MAP c21873-1 as a novel counter-selectable marker which could perform efficient gene knock-in by site-directed HR. Upon counter-selection, the marker could be recycled for repeated use, and no undesirable sequences were introduced except for the target gene. This unmarked genetic modification strategy may be extended to other genetic modification including but not limited to gene knock-out and site-directed mutagenesis in future.


Subject(s)
Promoter Regions, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Genetic Markers , Saccharomycetales/genetics , Saccharomycetales/metabolism
8.
Biol Pharm Bull ; 47(5): 905-911, 2024.
Article in English | MEDLINE | ID: mdl-38692867

ABSTRACT

Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.


Subject(s)
Glycolysis , HIV Infections , HIV-1 , Virus Replication , Humans , HIV-1/physiology , Glycolysis/physiology , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/immunology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
9.
J Virol ; 96(2): e0134421, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34705559

ABSTRACT

The CCCH-type zinc finger antiviral protein (ZAP) can recognize and induce the degradation of mRNAs and proteins of certain viruses, as well as exerting its antiviral activity by activating T cells. However, the mechanism of ZAP that mediates T cell activation during virus infection remains unclear. Here, we found a potential function of ZAP that relieves immunosuppression of T cell induced by avian leukosis virus subgroup J (ALV-J) via a novel signaling pathway that involves norbin-like protein (NLP), protein kinase C delta (PKC-δ), and nuclear factor of activated T cell (NFAT). Specifically, ZAP expression activated T cells by promoting the dephosphorylation and nuclear translocation of NFAT. Furthermore, knockdown of ZAP weakened the reactivity and antiviral response of T cells. Mechanistically, ZAP reduced PKC-δ activity by upregulating and reactivating NLP by competitively binding with viral protein. Knockdown of NLP decreased the dephosphorylation of PKC-δ by ZAP expression. Moreover, we show that knockdown of PKC-δ reduced the phosphorylation levels of NFAT and enhanced its nuclear translocation. Taken together, these data revealed that ZAP relieves immunosuppression caused by ALV-J and mediates T cell activation through the NLP-PKC-δ-NFAT pathway. IMPORTANCE The evolution of the host defense system is driven synchronously in the process of resisting virus invasion. Accordingly, host innate defense factors effectively work to suppress virus replication. However, it remains unclear whether the host innate defense factors are involved in antiviral immune responses against the invasion of immunosuppressive viruses. Here, we found that CCCH-type zinc finger antiviral protein (ZAP) effectively worked in resistance to immunosuppression caused by avian leukosis virus subgroup J (ALV-J), a classic immunosuppressive virus. Evidence showed that ZAP released the phosphatase activity of NLP inhibited by ALV-J and further activated NFAT by inactivating PKC-δ. This novel molecular mechanism, i.e., ZAP regulation of the antiviral immune response by mediating the NLP-PKC-δ-NFAT pathway, has greatly enriched the understanding of the functions of host innate defense factors and provided important scientific ideas and a theoretical basis for research on immunosuppressive viruses and antiviral immunity.


Subject(s)
Avian Leukosis Virus/immunology , NFATC Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C-delta/metabolism , RNA-Binding Proteins/metabolism , T-Lymphocytes/immunology , Animals , Chickens , Host-Pathogen Interactions , Immune Tolerance , Lymphocyte Activation , Phosphorylation , Protein Binding , RNA-Binding Proteins/genetics , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Viral Proteins/metabolism
10.
J Virol ; 96(16): e0052622, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35913217

ABSTRACT

The zinc finger antiviral protein (ZAP) is an interferon-stimulated gene (ISG) with potent intrinsic antiviral activity. ZAP inhibits the replication of retroviruses, including murine leukemia virus (MLV) and HIV-1, as well as alphaviruses, filoviruses, and hepatitis B virus, and also the retrotransposition of LINE-1 and Alu retroelements. ZAP operates posttranscriptionally to reduce the levels of viral transcripts available for translation in the cytoplasm, although additional functions might be involved. Recent studies have shown that ZAP preferentially binds viral mRNAs containing clusters of CpG dinucleotides via its four CCCH-type zinc fingers. ZAP lacks enzymatic activity and utilizes other cellular proteins to suppress viral replication. Tripartite motif 25 (TRIM25) and the nuclease KHNYN have been identified as ZAP cofactors. In this study, we identify Riplet, a protein known to play a central role in the activation of the retinoic acid-inducible gene I (RIG-I), as a novel ZAP cofactor. Overexpression of Riplet acts to strongly augment ZAP's antiviral activity. Riplet is an E3 ubiquitin ligase containing three domains, an N-terminal RING finger domain, a central coiled-coil domain, and a C-terminal P/SPRY domain. We show that Riplet interacts with ZAP via its P/SPRY domain and that the ubiquitin ligase activity of Riplet is not required to stimulate ZAP-mediated virus inhibition. Moreover, we show that Riplet interacts with TRIM25, suggesting that both Riplet and TRIM25 may operate as a complex to augment ZAP activity. IMPORTANCE The ZAP is a potent restriction factor inhibiting replication of many RNA viruses by binding directly to viral RNAs and targeting them for degradation. We here identify RIPLET as a cofactor that stimulates ZAP activity. The finding connects ZAP to other innate immunity pathways and suggests oligomerization as a common theme in sensing pathogenic RNAs.


Subject(s)
HIV Infections/immunology , HIV-1 , Ubiquitin-Protein Ligases/metabolism , Animals , HIV-1/genetics , HIV-1/metabolism , Ubiquitination , Virus Replication , Zinc Fingers
11.
Virol J ; 20(1): 39, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36859385

ABSTRACT

BACKGROUND: Viruses use various host factors for their growth, and efficient growth requires efficient use of these factors. Our previous study revealed that the occurrence frequency of oligonucleotides in the influenza virus genome is distinctly different among derived hosts, and the frequency tends to adapt to the host cells in which they grow. We aimed to study the adaptation mechanisms of a zoonotic virus to host cells. METHODS: Herein, we compared the frequency of oligonucleotides in the genome of alpha- and betacoronavirus with those in the genomes of humans and bats, which are typical hosts of the viruses. RESULTS: By comparing the oligonucleotide frequency in coronaviruses and their host genomes, we found a statistically tested positive correlation between the frequency of coronaviruses and that of the exon regions of the host from which the virus is derived. To examine the characteristics of early-stage changes in the viral genome, which are assumed to accompany the host change from non-humans to humans, we compared the oligonucleotide frequency between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the beginning of the pandemic and the prevalent variants thereafter, and found changes towards the frequency of the host exon regions. CONCLUSIONS: In alpha- and betacoronaviruses, the genome oligonucleotide frequency is thought to change in response to the cellular environment in which the virus is replicating, and actually the frequency has approached the frequency in exon regions in the host.


Subject(s)
COVID-19 , Chiroptera , Animals , SARS-CoV-2 , Exons , Genome, Viral , Oligonucleotides
12.
Amino Acids ; 55(1): 19-31, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36348073

ABSTRACT

Plant viral pathogens cause damaging diseases in many agriculture systems, and emerging viral infections are a serious threat for providing adequate food to a continuously growing population. Recent studies of biogenic substances have provided new opportunities for producing novel antiviral agents. The present work has been conducted to evaluate the antiviral activity of quinoa (Chenopodium quinoa Willd.) seeds crude extract. The antiviral activity was retained in different buffer solutions of various pH ranges (5.2-8.5) and remained after the diafiltration process. The putative virus inhibitor was sensitive to treatment with sodium dodecyl sulfate and trichloroacetic acid. An antiviral protein with ~ 25 kDa molecular weight was isolated from the seed quinoa extract using ammonium sulfate precipitation, anion and cation exchange chromatography. The purified protein (Quinoin-I) significantly inhibited TMV on tobacco leaves with an IC50 value at a 6.81 µg/ml concentration. Enzyme activity assay revealed the RNase activity of Quinoin-I, and this feature was retained in the presence of ß-mercaptoethanol and ethylene diamine tetraacetic acid. This antiviral protein has been shown as a promising leading molecule for further development as a novel antiviral agent.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/chemistry , Antiviral Agents/pharmacology , Seeds/chemistry
13.
Fish Shellfish Immunol ; 141: 109006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598733

ABSTRACT

Myeloid differentiation primary response protein-88 (MYD88) is an essential adaptor molecule in pathogen-related pattern recognition signaling pathways. Toll-like and interleukin receptors recognize numerous signals and are funneled through MyD88 to express genes responsible for the innate and adaptive immune systems. In the present study, the relevance of MyD88 in viral hemorrhagic septicemia virus (VHSV) was investigated by generating myd88-/- zebrafish. The model was challenged with VHSV, and viral propagation was quantified by evaluating clinical symptoms, mortality, and VHSV copy number. The infected fish showed abnormal morphologies, such as subcutaneous hemorrhages, abdominal swelling, and bulging eyes, which were comparatively more intense in myd88-/- fish than in the wild-type. An injury infection experiment conducted in zebrafish larvae indicated a substantial spread of VHSV in the wound site. The number of neutrophils and macrophages recruited to the wounded area were markedly reduced in myd88-/- fish. According to gene expression analysis, VHSV NP gene expression was considerably upregulated in myd88-/- fish. Substantial gene expression and immune cell marker modulation were observed in the mutant model compared to that in the wild-type. These results suggest that the lack of a significant adaptor protein for immune signal transduction results in enhanced VHSV replication.

14.
Fish Shellfish Immunol ; 140: 108948, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37453491

ABSTRACT

Zinc-finger proteins (ZFPs) are a huge family that exert multiple roles in the cells. ZFPs could be divided into nine types based on the numbers and positions of conserved Cys and His residues, in which CCCH-type ZFP was one of the most widely studied types. CCCH-type zinc finger antiviral protein 1 (ZAP), a CCCH-type ZFP that can inhibit the replication of certain RNA viruses and DNA viruses by mediating degradation of viral RNA and repressing mRNA translation, plays significant roles in the host innate immune defenses against viral infections. Presently, there have been numerous reports investigating the antiviral ability of ZAP, while no data is available about ZAP gene in the species of shrimps or even crustaceans. In this study, a novel protein containing CCCH-type zinc finger motifs (ZnF-CCCH), CCCH-type zinc finger antiviral protein 1 (ZAP) gene, was identified from Pacific white shrimp (Penaeus vannamei) and its role in antiviral immunity was further investigated. Similar to mammalian ZAPs, in addition to ZnF-CCCH, PvZAP also possesses central WWE domains and C-terminal PARP domain. Phylogenetic analysis showed that PvZAP was close to that of the crustacean Pacific oyster, separating from the cluster of vertebrate ZAP proteins. Upon in vivo infection by IHHNV, gene expression of PvZAP was strongly up-regulated in the hepatopancreas and gills of both adult and juvenile shrimps, where adult individuals showed higher fold changes of up-regulation than in juvenile individuals. These results suggested that PvZAP might play an important role in the innate immune defense of Pacific white shrimp against IHHNV infection. This allows us to gain new insights into the immunological function of ZAP in the innate immunity of shrimp species and even crustaceans.


Subject(s)
Penaeidae , Virus Diseases , Animals , RNA-Binding Proteins/genetics , Penaeidae/genetics , Penaeidae/metabolism , Phylogeny , Virus Diseases/veterinary , Zinc Fingers/genetics , Antiviral Agents/pharmacology , RNA, Viral/metabolism , Mammals/metabolism
15.
Neuroimmunomodulation ; 29(4): 349-358, 2022.
Article in English | MEDLINE | ID: mdl-34937041

ABSTRACT

INTRODUCTION: Invasion of viruses into the brain causes viral encephalitis, which can be fatal and causes permanent brain damage. The blood-brain barrier (BBB) protects the brain by excluding harmful substances and microbes. Brain microvascular endothelial cells are important components of the BBB; however, the mechanisms of antiviral reactions in these cells have not been fully elucidated. Zinc-finger antiviral protein (ZAP) is a molecule that restricts the infection of various viruses, and there are 2 major isoforms: ZAPL and ZAPS. Toll-like receptor 3 (TLR3), a pattern-recognition receptor against viral double-stranded RNA, is implicated in antiviral innate immune reactions. The aim of this study was to investigate the expression of ZAP in cultured hCMEC/D3 human brain microvascular endothelial cells treated with an authentic TLR3 agonist polyinosinic-polycytidylic acid (poly IC). METHODS: hCMEC/D3 cells were cultured and treated with poly IC. Expression of ZAPL and ZAPS mRNA was investigated using quantitative reverse transcription-polymerase chain reaction, and protein expression of these molecules was examined using western blotting. The role of nuclear factor-κB (NF-κB) was examined using the NF-κB inhibitor, SN50. The roles of interferon (IFN)-ß, IFN regulatory factor 3 (IRF3), tripartite motif protein 25 (TRIM25), and retinoic acid-inducible gene-I (RIG-I) in poly IC-induced ZAPS expression were examined using RNA interference. Propagation of Japanese encephalitis virus (JEV) was examined using a focus-forming assay. RESULTS: ZAPS mRNA and protein expression was upregulated by poly IC, whereas the change of ZAPL mRNA and protein levels was minimal. Knockdown of IRF3 or TRIM25 decreased the poly IC-induced upregulation of ZAPS, whereas knockdown of IFN-ß or RIG-I did not affect ZAPS upregulation. SN50 did not affect ZAPS expression. Knockdown of ZAP enhanced JEV propagation. CONCLUSION: ZAPL and ZAPS were expressed in hCMEC/D3 cells, and ZAPS expression was upregulated by poly IC. IRF3 and TRIM25 are involved in poly IC-induced upregulation of ZAPS. ZAP may contribute to antiviral reactions in brain microvascular endothelial cells and protect the brain from invading viruses such as JEV.


Subject(s)
Antiviral Agents , Cerebrum , Encephalitis Virus, Japanese , Endothelial Cells , Microvessels , Toll-Like Receptor 3 , Humans , Antiviral Agents/immunology , Antiviral Agents/pharmacology , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/immunology , NF-kappa B/metabolism , Poly I-C/pharmacology , RNA, Messenger/metabolism , Toll-Like Receptor 3/immunology , Zinc , Microvessels/drug effects , Microvessels/immunology , Cerebrum/blood supply , Cerebrum/immunology , Encephalitis Virus, Japanese/drug effects , Encephalitis Virus, Japanese/immunology
16.
Environ Sci Technol ; 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35904357

ABSTRACT

The transmission of most respiratory pathogens, including SARS-CoV-2, occurs via virus-containing respiratory droplets, and thus, factors that affect virus viability in droplet residues on surfaces are of critical medical and public health importance. Relative humidity (RH) is known to play a role in virus survival, with a U-shaped relationship between RH and virus viability. The mechanisms affecting virus viability in droplet residues, however, are unclear. This study examines the structure and evaporation dynamics of virus-containing saliva droplets on fomites and their impact on virus viability using four model viruses: vesicular stomatitis virus, herpes simplex virus 1, Newcastle disease virus, and coronavirus HCoV-OC43. The results support the hypothesis that the direct contact of antiviral proteins and virions within the "coffee ring" region of the droplet residue gives rise to the observed U-shaped relationship between virus viability and RH. Viruses survive much better at low and high RH, and their viability is substantially reduced at intermediate RH. A phenomenological theory explaining this phenomenon and a quantitative model analyzing and correlating the experimentally measured virus survivability are developed on the basis of the observations. The mechanisms by which RH affects virus viability are explored. At intermediate RH, antiviral proteins have optimal influence on virions because of their largest contact time and overlap area, which leads to the lowest level of virus activity.

17.
Proc Natl Acad Sci U S A ; 116(48): 24303-24309, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31719195

ABSTRACT

Infection of animal cells by numerous viruses is detected and countered by a variety of means, including recognition of nonself nucleic acids. The zinc finger antiviral protein (ZAP) depletes cytoplasmic RNA that is recognized as foreign in mammalian cells by virtue of its elevated CG dinucleotide content compared with endogenous mRNAs. Here, we determined a crystal structure of a protein-RNA complex containing the N-terminal, 4-zinc finger human (h) ZAP RNA-binding domain (RBD) and a CG dinucleotide-containing RNA target. The structure reveals in molecular detail how hZAP is able to bind selectively to CG-rich RNA. Specifically, the 4 zinc fingers create a basic patch on the hZAP RBD surface. The highly basic second zinc finger contains a pocket that selectively accommodates CG dinucleotide bases. Structure guided mutagenesis, cross-linking immunoprecipitation sequencing assays, and RNA affinity assays show that the structurally defined CG-binding pocket is not required for RNA binding per se in human cells. However, the pocket is a crucial determinant of high-affinity, specific binding to CG dinucleotide-containing RNA. Moreover, variations in RNA-binding specificity among a panel of CG-binding pocket mutants quantitatively predict their selective antiviral activity against a CG-enriched HIV-1 strain. Overall, the hZAP RBD RNA structure provides an atomic-level explanation for how ZAP selectively targets foreign, CG-rich RNA.


Subject(s)
GC Rich Sequence , RNA, Viral/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Fluorescence Polarization , HEK293 Cells , HIV-1/genetics , Humans , Models, Molecular , Mutagenesis , Mutation , Protein Domains , RNA, Viral/chemistry , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Zinc Fingers
18.
Mol Biol Evol ; 37(9): 2699-2705, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32289821

ABSTRACT

Wild mammalian species, including bats, constitute the natural reservoir of betacoronavirus (including SARS, MERS, and the deadly SARS-CoV-2). Different hosts or host tissues provide different cellular environments, especially different antiviral and RNA modification activities that can alter RNA modification signatures observed in the viral RNA genome. The zinc finger antiviral protein (ZAP) binds specifically to CpG dinucleotides and recruits other proteins to degrade a variety of viral RNA genomes. Many mammalian RNA viruses have evolved CpG deficiency. Increasing CpG dinucleotides in these low-CpG viral genomes in the presence of ZAP consistently leads to decreased viral replication and virulence. Because ZAP exhibits tissue-specific expression, viruses infecting different tissues are expected to have different CpG signatures, suggesting a means to identify viral tissue-switching events. The author shows that SARS-CoV-2 has the most extreme CpG deficiency in all known betacoronavirus genomes. This suggests that SARS-CoV-2 may have evolved in a new host (or new host tissue) with high ZAP expression. A survey of CpG deficiency in viral genomes identified a virulent canine coronavirus (alphacoronavirus) as possessing the most extreme CpG deficiency, comparable with that observed in SARS-CoV-2. This suggests that the canine tissue infected by the canine coronavirus may provide a cellular environment strongly selecting against CpG. Thus, viral surveys focused on decreasing CpG in viral RNA genomes may provide important clues about the selective environments and viral defenses in the original hosts.


Subject(s)
Alphacoronavirus/genetics , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Genome, Viral , Pandemics , Pneumonia, Viral/epidemiology , Reassortant Viruses/genetics , Alphacoronavirus/classification , Alphacoronavirus/pathogenicity , Animals , Betacoronavirus/classification , Betacoronavirus/pathogenicity , Biological Evolution , COVID-19 , Camelus/virology , Chiroptera/virology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Coronavirus Infections/virology , CpG Islands , Dogs , Hedgehogs/virology , Humans , Immune Evasion/genetics , Mice , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Protein Binding , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Rabbits , Rats , Reassortant Viruses/classification , Reassortant Viruses/pathogenicity , SARS-CoV-2 , Virus Replication
19.
Cytokine ; 142: 155492, 2021 06.
Article in English | MEDLINE | ID: mdl-33711707

ABSTRACT

BACKGROUND AND AIMS: The interferon-induced transmembrane protein 3 (IFITM3) plays an important role in the adaptive and innate immune response by inhibiting viral membrane hemifusion between the host and viral cell cytoplasm. Single nucleotide polymorphisms (SNPs) in the gene IFITM3 have been associated with susceptibility and severity of influenza or other viral infections. We aimed to analyze the role of SNPs in the gene IFITM3 in SARS-CoV-2 infection. METHODS: We performed genotyping of the SNPs rs12252 and rs34481144 in the gene IFITM3 in 239 SARS-CoV-2-positive and 253 SARS-CoV-2-negative patients. We analyzed the association of the SNPs with susceptibility to SARS-CoV-2 infection and severity of COVID-19. RESULTS: SARS-CoV-2-positive and SARS-CoV-2-negative patients did not differ regarding demographics. Neither IFITM3 rs12252 nor rs34481144 polymorphisms were related to SARS-CoV-2 infection risk or severity of COVID-19. Interestingly, we observed the putative deleterious rs12252 CC genotype only in SARS-CoV-2-positive patients (N = 2). Also, we found a non-significant higher frequency of rs34481144 A-allele carriers in the patients with 'serious' COVID-19. CONCLUSIONS: In summary, we could not confirm the recently reported influence of polymorphisms in the gene IFITM3 on SARS-CoV-2 infection risk or severity of COVID-19 in a German cohort. Additional studies are needed to clarify the influence of the rs12252 CC genotype on SARS-CoV-2 infection risk and the rs34481144 A-allele on course of COVID-19.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , SARS-CoV-2 , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
20.
Cytokine ; 137: 155354, 2021 01.
Article in English | MEDLINE | ID: mdl-33113474

ABSTRACT

BACKGROUND AND AIMS: The interferon-induced transmembrane proteins play an important antiviral role by preventing viruses from traversing the cellular lipid bilayer. IFITM3 gene variants have been associated with the clinical response to influenza and other viruses. Our aim was to determine whether the IFITM3 rs12252 polymorphism was associated with the risk of developing severe symptoms of COVID-19 in our population. METHODS: A total of 288 COVID-19 patients who required hospitalization (81 in the intensive care unit) and 440 age matched controls were genotyped with a Taqman assay. Linear regression models were used to compare allele and genotype frequencies between the groups, correcting for age and sex. RESULTS: Carriers of the minor allele frequency (rs12252 C) were significantly more frequent in the patients compared to controls after correcting by age and sex (p = 0.01, OR = 2.02, 95%CI = 1.19-3.42). This genotype was non-significantly more common among patients who required ICU. CONCLUSIONS: The IFITM3 rs12252 C allele was a risk factor for COVID-19 hospitalization in our Caucasian population. The extent of the association was lower than the reported among Chinese, a population with a much higher frequency of the risk allele.


Subject(s)
Asian People/genetics , COVID-19/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , White People/genetics , Aged , COVID-19/blood , COVID-19/epidemiology , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Humans , Linear Models , Male , Membrane Proteins/blood , Middle Aged , Polymorphism, Genetic , RNA-Binding Proteins/blood , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL