Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.569
Filter
Add more filters

Publication year range
1.
Stroke ; 55(2): 260-268, 2024 02.
Article in English | MEDLINE | ID: mdl-37850361

ABSTRACT

BACKGROUND: The menopause transition is associated with an increasing risk of cerebrovascular disorders. However, the direct effect of menopause status on brain perfusion hemodynamics remains unclear. This study aimed to explore the influence of menopause status on cerebral blood flow (CBF) using arterial spin labeling magnetic resonance imaging. METHODS: In this cross-sectional study, 185 subjects underwent arterial spin labeling magnetic resonance imaging at a hospital in China between September 2020 and December 2022, including 38 premenopausal women (mean age, 47.74±2.02 years), 42 perimenopausal women (mean age, 50.62±3.15 years), 42 postmenopausal women (mean age, 54.02±4.09 years), and 63 men (mean age, 52.70±4.33 years) of a similar age range. Mean CBF values in the whole brain, gray matter, white matter, cortical gray matter, subcortical gray matter, juxtacortical white matter, deep white matter, and periventricular white matter were extracted. ANCOVA was used to compare mean CBF among the 4 groups, controlling for confounding factors. Student t test was applied to compare mean CBF between the 3 female groups and age-matched males, respectively. Multivariable regression analysis was used to analysis the effect of age, sex, and menopause status on the CBF of the whole brain, gray matter, white matter, and subregions. RESULTS: Perimenopausal and postmenopausal women showed a higher proportion of white matter hyperintensities compared with the other 2 groups (P<0.001). Premenopausal women exhibited higher CBF in the whole brain, gray matter, white matter, and subregions, compared with perimenopausal, postmenopausal women and men (P≤0.001). Multivariable regression analysis demonstrated significant effect of age and insignificant effect of sex on CBF for all participants. In addition, menopause status and the interaction between age and menopause status on CBF of whole brain, gray matter, white matter, and the subregions were observed in female participants, except for the deep and periventricular white matter regions, with premenopausal women exhibited a slight increase in CBF with age, while perimenopausal and postmenopausal women exhibited declines in CBF with age. CONCLUSIONS: The current findings suggest that alterations of brain perfusion hemodynamics begin during the perimenopause period, which may be due to the increased burden of white matter hyperintensities.


Subject(s)
Brain , White Matter , Male , Humans , Female , Middle Aged , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/blood supply , Magnetic Resonance Imaging/methods , White Matter/pathology , Hemodynamics , Perfusion , Menopause , Cerebrovascular Circulation/physiology , Spin Labels
2.
Neuroimage ; 286: 120506, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38185186

ABSTRACT

Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance imaging technique for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers from an inherently low signal-to-noise ratio (SNR) and spatial resolution, undermining its potential. Increasing spatial resolution without significantly sacrificing SNR or scan time represents a critical challenge towards routine clinical use. In this work, we propose a model-based super-resolution reconstruction (SRR) method with joint motion estimation that breaks the traditional SNR/resolution/scan-time trade-off. From a set of differently oriented 2D multi-slice pseudo-continuous ASL images with a low through-plane resolution, 3D-isotropic, high resolution, quantitative CBF maps are estimated using a Bayesian approach. Experiments on both synthetic whole brain phantom data, and on in vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms state-of-the-art ASL quantification.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Angiography , Humans , Image Processing, Computer-Assisted/methods , Spin Labels , Bayes Theorem , Magnetic Resonance Angiography/methods , Brain/blood supply , Cerebrovascular Circulation/physiology , Signal-To-Noise Ratio , Magnetic Resonance Imaging/methods
3.
J Neurosci Res ; 102(1): e25277, 2024 01.
Article in English | MEDLINE | ID: mdl-38284834

ABSTRACT

End-stage renal disease (ESRD) is associated with vascular and neuronal dysfunction, causing neurovascular coupling (NVC) dysfunction, but how NVC dysfunction acts on the mechanism of cognitive impairment in ESRD patients from local to remote is still poorly understood. We recruited 48 ESRD patients and 35 demographically matched healthy controls to scan resting-state functional MRI and arterial spin labeling, then investigated the four types of NVC between amplitude of low-frequency fluctuation (ALFF), fractional ALFF, regional homogeneity, degree centrality, and cerebral blood perfusion (CBF), and associated functional networks. Our results indicated that ESRD patients showed NVC dysfunction in global gray matter and multiple brain regions due to the mismatch between CBF and neural activity, and associated disrupted functional connectivity (FC) within sensorimotor network (SMN), visual network (VN), default mode network (DMN), salience network (SN), and disrupted FC between them with limbic network (LN), while increased FC between SMN and DMN. Anemia may affect the NVC of middle occipital gyrus and precuneus, and increased pulse pressure may result in disrupted FC with SMN. The NVC dysfunction of the right precuneus, middle frontal gyrus, and parahippocampal gyrus and the FC between the right angular gyrus and the right anterior cingulate gyrus may reflect cognitive impairment in ESRD patients. Our study confirmed that ESRD patients may exist NVC dysfunction and disrupted functional integration in SMN, VN, DMN, SN and LN, serving as one of the mechanisms of cognitive impairment. Anemia and increased pulse pressure may be related risk factors.


Subject(s)
Anemia , Cognitive Dysfunction , Kidney Failure, Chronic , Neurovascular Coupling , Humans , Cognitive Dysfunction/diagnostic imaging , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/diagnostic imaging , Magnetic Resonance Imaging
4.
Magn Reson Med ; 91(4): 1384-1403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38181170

ABSTRACT

PURPOSE: To present a theoretical framework that rigorously defines and analyzes key concepts and quantities for velocity selective arterial spin labeling (VSASL). THEORY AND METHODS: An expression for the VSASL arterial delivery function is derived based on (1) labeling and saturation profiles as a function of velocity and (2) physiologically plausible approximations of changes in acceleration and velocity across the vascular system. The dependence of labeling efficiency on the amplitude and effective bolus width of the arterial delivery function is defined. Factors that affect the effective bolus width are examined, and timing requirements to minimize quantitation errors are derived. RESULTS: The model predicts that a flow-dependent negative bias in the effective bolus width can occur when velocity selective inversion (VSI) is used for the labeling module and velocity selective saturation (VSS) is used for the vascular crushing module. The bias can be minimized by choosing a nominal labeling cutoff velocity that is lower than the nominal cutoff velocity of the vascular crushing module. CONCLUSION: The elements of the model are specified in a general fashion such that future advances can be readily integrated. The model can facilitate further efforts to understand and characterize the performance of VSASL and provide critical theoretical insights that can be used to design future experiments and develop novel VSASL approaches.


Subject(s)
Arteries , Magnetic Resonance Angiography , Spin Labels , Arteries/diagnostic imaging , Models, Theoretical , Acceleration , Cerebrovascular Circulation/physiology , Blood Flow Velocity/physiology
5.
Magn Reson Med ; 91(5): 1743-1760, 2024 May.
Article in English | MEDLINE | ID: mdl-37876299

ABSTRACT

The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.


Subject(s)
Brain , Magnetic Resonance Imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Perfusion Imaging/methods , Spin Labels , Cerebrovascular Circulation/physiology , Magnetic Resonance Angiography/methods , Perfusion
6.
Magn Reson Med ; 91(2): 803-818, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37849048

ABSTRACT

PURPOSE: To present a Swin Transformer-based deep learning (DL) model (SwinIR) for denoising single-delay and multi-delay 3D arterial spin labeling (ASL) and compare its performance with convolutional neural network (CNN) and other Transformer-based methods. METHODS: SwinIR and CNN-based spatial denoising models were developed for single-delay ASL. The models were trained on 66 subjects (119 scans) and tested on 39 subjects (44 scans) from three different vendors. Spatiotemporal denoising models were developed using another dataset (6 subjects, 10 scans) of multi-delay ASL. A range of input conditions was tested for denoising single and multi-delay ASL, respectively. The performance was evaluated using similarity metrics, spatial SNR and quantification accuracy of cerebral blood flow (CBF), and arterial transit time (ATT). RESULTS: SwinIR outperformed CNN and other Transformer-based networks, whereas pseudo-3D models performed better than 2D models for denoising single-delay ASL. The similarity metrics and image quality (SNR) improved with more slices in pseudo-3D models and further improved when using M0 as input, but introduced greater biases for CBF quantification. Pseudo-3D models with three slices achieved optimal balance between SNR and accuracy, which can be generalized to different vendors. For multi-delay ASL, spatiotemporal denoising models had better performance than spatial-only models with reduced biases in fitted CBF and ATT maps. CONCLUSIONS: SwinIR provided better performance than CNN and other Transformer-based methods for denoising both single and multi-delay 3D ASL data. The proposed model offers flexibility to improve image quality and/or reduce scan time for 3D ASL to facilitate its clinical use.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/blood supply , Spin Labels , Arteries , Cerebrovascular Circulation/physiology , Image Processing, Computer-Assisted/methods
7.
Magn Reson Med ; 92(6): 2520-2534, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39161091

ABSTRACT

PURPOSE: To develop a generalized signal model for dual-module velocity-selective arterial spin labeling (dm-VSASL) that can integrate arbitrary saturation and inversion profiles. THEORY AND METHODS: A recently developed mathematical framework for single-module VSASL is extended to address the increased complexity of dm-VSASL and to model the use of realistic velocity-selective profiles in the label-control and vascular crushing modules. Expressions for magnetization difference, arterial delivery functions, labeling efficiency, and cerebral blood flow (CBF) estimation error are presented. Sources of error are examined and timing requirements to minimize quantification errors are derived. RESULTS: For ideal velocity-selective profiles, the predicted signals match those of prior work. With realistic profiles, a CBF-dependent estimation error can occur when velocity-selective inversion (VSI) is used for the labeling modules and velocity-selective saturation (VSS) is used for the vascular crushing module. The error reflects a mismatch between the leading and trailing edges of the delivery function for the second bolus and can be minimized by choosing a nominal labeling cutoff velocity that is lower than the nominal saturation cutoff velocity. In the presence of B 0 $$ {\mathrm{B}}_0 $$ and B 1 $$ {\mathrm{B}}_1 $$ inhomogeneities, the labeling efficiency of dual-module VSI is more attenuated than that of dual-module VSS. CONCLUSION: The proposed signal model will enable researchers to more accurately assess and compare the performance of realistic dm-VSASL implementations and improve the quantification of dm-VSASL CBF measures.


Subject(s)
Algorithms , Cerebrovascular Circulation , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Blood Flow Velocity/physiology , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain/blood supply , Computer Simulation , Magnetic Resonance Imaging/methods , Arteries/diagnostic imaging , Magnetic Resonance Angiography/methods , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiology
8.
Magn Reson Med ; 92(5): 2091-2100, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39011598

ABSTRACT

PURPOSE: To mitigate the B0/B1 + sensitivity of velocity-selective inversion (VSI) pulse trains for velocity-selective arterial spin labeling (VSASL) by implementing adiabatic refocusing. This approach aims to achieve artifact-free VSI-based perfusion imaging through single-pair label-control subtractions, reducing the need for the currently required four-pair dynamic phase-cycling (DPC) technique when using a velocity-insensitive control. METHODS: We introduce a Fourier-transform VSI (FT-VSI) train that incorporates sinc-modulated hard excitation pulses with MLEV-8-modulated adiabatic hyperbolic secant refocusing pairs. We compare performance between this train and the standard composite refocusing train, including with and without DPC, for dual-module VSI VSASL. We evaluate (1) simulated velocity-selective profiles and subtraction fidelity across a broad B0/B1 + range, (2) subtraction fidelity in phantoms, and (3) image quality, artifact presence, and gray-matter perfusion heterogeneity (as measured by the spatial coefficient of variation) in healthy human subjects. RESULTS: Adiabatic refocusing significantly improves FT-VSI robustness to B0/B1 + inhomogeneity for a single label-control subtraction. Subtraction fidelity is dramatically improved in both simulation and phantoms compared with composite refocusing without DPC, and is similar compared with DPC methods. In humans, marked artifacts seen with the non-DPC composite refocusing approach are eliminated, corroborated by significantly reduced gray-matter heterogeneity (via lower spatial coefficient of variation values). CONCLUSION: A novel VSASL labeling train using adiabatic refocusing pulses for VSI was found to reduce artifacts related to B0/B1 + inhomogeneity, thereby providing an alternative to DPC and its associated limitations, which include increased vulnerability to physiological noise and motion, reduced functional MRI applicability, and suboptimal data censoring.


Subject(s)
Algorithms , Artifacts , Image Processing, Computer-Assisted , Phantoms, Imaging , Spin Labels , Humans , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain/blood supply , Adult , Fourier Analysis , Male , Female , Cerebrovascular Circulation/physiology , Magnetic Resonance Imaging/methods , Computer Simulation , Magnetic Resonance Angiography/methods , Gray Matter/diagnostic imaging
9.
Magn Reson Med ; 91(6): 2320-2331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38173296

ABSTRACT

PURPOSE: Background suppression (BS) is recommended in arterial spin labeling (ASL) for improved SNR but is difficult to optimize in existing velocity-selective ASL (VSASL) methods. Dual-module VSASL (dm-VSASL) enables delay-insensitive, robust, and SNR-efficient perfusion imaging, while allowing efficient BS, but its optimization has yet to be thoroughly investigated. METHODS: The inversion effects of the velocity-selective labeling pulses, such as velocity-selective inversion (VSI), can be used for BS, and were modeled for optimizing BS in dm-VSASL. In vivo experiments using dual-module VSI (dm-VSI) were performed to compare two BS strategies: a conventional one with additional BS pulses and a new one without any BS pulse. Their BS performance, temporal noise, and temporal SNR were examined and compared, with pulsed and pseudo-continuous ASL (PASL and PCASL) as the reference. RESULTS: The in vivo experiments validated the BS modeling. Strong positive linear correlations (r > 0.82, p < 0.0001) between the temporal noise and the tissue signal were found in PASL/PCASL and dm-VSI. Optimal BS can be achieved with and without additional BS pulses in dm-VSI; the latter improved the ASL signals by 8.5% in gray matter (p = 0.006) and 12.2% in white matter (p = 0.014) and tended to provide better temporal SNR. The dm-VSI measured significantly higher ASL signal (p < 0.016) and temporal SNR (p < 0.018) than PASL and PCASL. Complex reconstruction was found necessary with aggressive BS. CONCLUSION: Guided by modeling, optimal BS can be achieved without any BS pulse in dm-VSASL, further improving the ASL signal and the SNR performance.


Subject(s)
Magnetic Resonance Angiography , White Matter , Magnetic Resonance Angiography/methods , Spin Labels , Arteries/diagnostic imaging , Gray Matter , Cerebrovascular Circulation , Brain/diagnostic imaging
10.
Magn Reson Med ; 91(5): 1787-1802, 2024 May.
Article in English | MEDLINE | ID: mdl-37811778

ABSTRACT

PURPOSE: To create an inventory of image processing pipelines of arterial spin labeling (ASL) and list their main features, and to evaluate the capability, flexibility, and ease of use of publicly available pipelines to guide novice ASL users in selecting their optimal pipeline. METHODS: Developers self-assessed their pipelines using a questionnaire developed by the Task Force 1.1 of the ISMRM Open Science Initiative for Perfusion Imaging. Additionally, each publicly available pipeline was evaluated by two independent testers with basic ASL experience using a scoring system created for this purpose. RESULTS: The developers of 21 pipelines filled the questionnaire. Most pipelines are free for noncommercial use (n = 18) and work with the standard NIfTI (Neuroimaging Informatics Technology Initiative) data format (n = 15). All pipelines can process standard 3D single postlabeling delay pseudo-continuous ASL images and primarily differ in their support of advanced sequences and features. The publicly available pipelines (n = 9) were included in the independent testing, all of them being free for noncommercial use. The pipelines, in general, provided a trade-off between ease of use and flexibility for configuring advanced processing options. CONCLUSION: Although most ASL pipelines can process the common ASL data types, only some (namely, ASLPrep, ASLtbx, BASIL/Quantiphyse, ExploreASL, and MRICloud) are well-documented, publicly available, support multiple ASL types, have a user-friendly interface, and can provide a useful starting point for ASL processing. The choice of an optimal pipeline should be driven by specific data to be processed and user experience, and can be guided by the information provided in this ASL inventory.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Spin Labels , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Arteries , Perfusion Imaging , Cerebrovascular Circulation , Magnetic Resonance Imaging/methods , Perfusion
11.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594906

ABSTRACT

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Subject(s)
Brain , Cerebrovascular Circulation , Spin Labels , Humans , Brain/diagnostic imaging , Brain/blood supply , Cerebrovascular Circulation/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging
12.
Magn Reson Med ; 92(6): 2491-2505, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39155401

ABSTRACT

PURPOSE: To develop a novel framework to improve the visualization of distal arteries in arterial spin labeling (ASL) dynamic MRA. METHODS: The attenuation of ASL blood signal due to the repetitive application of excitation RF pulses was minimized by splitting the acquisition volume into multiple thin 2D (M2D) slices, thereby reducing the exposure of the arterial blood magnetization to RF pulses while it flows within the brain. To improve the degraded vessel visualization in the slice direction due to the limited minimum achievable 2D slice thickness, a super-resolution (SR) convolutional neural network (CNN) was trained by using 3D time-of-flight (TOF)-MRA images from a large public dataset. And then, we applied domain transfer from 3D TOF-MRA to M2D ASL-MRA, while avoiding acquiring a large number of ASL-MRA data required for CNN training. RESULTS: Compared to the conventional 3D ASL-MRA, far more distal arteries were visualized with higher signal intensity by using M2D ASL-MRA. In general, however, the vessel visualization with a conventional interpolation was prone to be blurry and unclear due to the limited spatial resolution in the slice direction, particularly in small vessels. Application of CNN-based SR transferred from 3D TOF-MRA to M2D ASL-MRA successfully addressed such a limitation and achieved clearer visualization of small vessels than conventional interpolation. CONCLUSION: This study demonstrated that the proposed framework provides improved visualization of distal arteries in later dynamic phases, which will particularly benefit the application of this approach in patients with cerebrovascular disease who have slow blood flow.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Angiography , Neural Networks, Computer , Spin Labels , Humans , Magnetic Resonance Angiography/methods , Imaging, Three-Dimensional/methods , Male , Adult , Female , Brain/diagnostic imaging , Brain/blood supply , Image Processing, Computer-Assisted/methods , Cerebrovascular Circulation/physiology , Cerebral Arteries/diagnostic imaging , Middle Aged , Algorithms
13.
Magn Reson Med ; 92(4): 1568-1583, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38767321

ABSTRACT

PURPOSE: To improve the spatial resolution and repeatability of a non-contrast MRI technique for simultaneous time resolved 3D angiography and perfusion imaging by developing an efficient 3D cone trajectory design. METHODS: A novel parameterized 3D cone trajectory design incorporating the 3D golden angle was integrated into 4D combined angiography and perfusion using radial imaging and arterial spin labeling (CAPRIA) to achieve higher spatial resolution and sampling efficiency for both dynamic angiography and perfusion imaging with flexible spatiotemporal resolution. Numerical simulations and physical phantom scanning were used to optimize the cone design. Eight healthy volunteers were scanned to compare the original radial trajectory in 4D CAPRIA with our newly designed cone trajectory. A locally low rank reconstruction method was used to leverage the complementary k-space sampling across time. RESULTS: The improved sampling in the periphery of k-space obtained with the optimized 3D cone trajectory resulted in improved spatial resolution compared with the radial trajectory in phantom scans. Improved vessel sharpness and perfusion visualization were also achieved in vivo. Less dephasing was observed in the angiograms because of the short TE of our cone trajectory and the improved k-space sampling efficiency also resulted in higher repeatability compared to the original radial approach. CONCLUSION: The proposed 3D cone trajectory combined with 3D golden angle ordering resulted in improved spatial resolution and image quality for both angiography and perfusion imaging and could potentially benefit other applications that require an efficient sampling scheme with flexible spatial and temporal resolution.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Angiography , Phantoms, Imaging , Spin Labels , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Reproducibility of Results , Adult , Male , Algorithms , Female , Perfusion Imaging/methods , Healthy Volunteers , Image Processing, Computer-Assisted/methods , Computer Simulation
14.
Magn Reson Med ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39344291

ABSTRACT

PURPOSE: To develop a highly accelerated non-contrast-enhanced 4D-MRA technique by combining stack-of-stars golden-angle radial acquisition with a modified self-calibrated low-rank subspace reconstruction. METHODS: A low-rank subspace reconstruction framework was introduced in radial 4D MRA (SUPER 4D MRA) by combining stack-of-stars golden-angle radial acquisition with control-label k-space subtraction-based low-rank subspace modeling. Radial 4D MRA data were acquired and reconstructed using the proposed technique on 12 healthy volunteers and 1 patient with steno-occlusive disease. The performance of SUPER 4D MRA was compared with two temporally constrained reconstruction methods (golden-angle radial sparse parallel [GRASP] and GRASP-Pro) at different acceleration rates in terms of image quality and delineation of blood dynamics. RESULTS: SUPER 4D MRA outperformed the other two reconstruction methods, offering superior image quality with a clear background and detailed delineation of cerebrovascular structures as well as great temporal fidelity in blood flow dynamics. SUPER 4D MRA maintained excellent performance even at higher acceleration rates. CONCLUSIONS: SUPER 4D MRA is a promising technique for highly accelerating 4D MRA acquisition without comprising both temporal fidelity and image quality.

15.
Magn Reson Med ; 92(5): 2163-2180, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38852172

ABSTRACT

PURPOSE: Multiparametric arterial spin labeling (MP-ASL) can quantify cerebral blood flow (CBF) and arterial cerebral blood volume (CBVa). However, its accuracy is compromised owing to its intrinsically low SNR, necessitating complex and time-consuming parameter estimation. Deep neural networks (DNNs) offer a solution to these limitations. Therefore, we aimed to develop simulation-based DNNs for MP-ASL and compared the performance of a supervised DNN (DNNSup), physics-informed unsupervised DNN (DNNUns), and the conventional lookup table method (LUT) using simulation and in vivo data. METHODS: MP-ASL was performed twice during resting state and once during the breath-holding task. First, the accuracy and noise immunity were evaluated in the first resting state. Second, CBF and CBVa values were statistically compared between the first resting state and the breath-holding task using the Wilcoxon signed-rank test and Cliff's delta. Finally, reproducibility of the two resting states was assessed. RESULTS: Simulation and first resting-state analyses demonstrated that DNNSup had higher accuracy, noise immunity, and a six-fold faster computation time than LUT. Furthermore, all methods detected task-induced CBF and CBVa elevations, with the effect size being larger with the DNNSup (CBF, p = 0.055, Δ = 0.286; CBVa, p = 0.008, Δ = 0.964) and DNNUns (CBF, p = 0.039, Δ = 0.286; CBVa, p = 0.008, Δ = 1.000) than that with LUT (CBF, p = 0.109, Δ = 0.214; CBVa, p = 0.008, Δ = 0.929). Moreover, all the methods exhibited comparable and satisfactory reproducibility. CONCLUSION: DNNSup outperforms DNNUns and LUT with respect to estimation performance and computation time.


Subject(s)
Brain , Cerebrovascular Circulation , Neural Networks, Computer , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Adult , Male , Reproducibility of Results , Female , Brain/diagnostic imaging , Brain/blood supply , Computer Simulation , Image Processing, Computer-Assisted/methods , Young Adult , Algorithms , Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Cerebral Blood Volume/physiology , Breath Holding
16.
Magn Reson Med ; 92(5): 2065-2073, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38852173

ABSTRACT

PURPOSE: Velocity selective arterial spin labeling (VSASL) quantification assumes that the labeled bolus continuously moves into the imaging voxel during the post-labeling delay (PLD). Faster blood flow could lead to a bolus duration shorter than the applied PLD of VSASL and cause underestimation of cerebral blood flow (CBF). This study aims to evaluate the performance of velocity-selective inversion (VSI) prepared arterial spin labeling (ASL) with different PLDs and pseudo-continuous ASL (PCASL) for quantification of hypercapnia-induced cerebrovascular reactivity (CVR), using phase-contrast (PC) MRI as a global reference. METHODS: We compared CVR obtained by VSI-ASL with PLD of 1520 ms (VSASL-1520), 1000 ms (VSASL-1000), and 500 ms (VSASL-500), PCASL with PLD of 1800 ms (PCASL-1800), and PC MRI on eight healthy volunteers at two sessions. RESULTS: Compared with PC MRI, VSASL-1520 produced significantly lower global CVR values, while PCASL-1800, VSASL-1000, and VSASL-500 yielded more consistent results. The reduced CVR in VSASL-1520 was more pronounced in carotid territories including frontal and temporal lobes than in vertebral territories such as the occipital lobe. This is largely caused by the underestimated perfusion during hypercapnia due to the reduced bolus duration being less than the PLD. CONCLUSION: Although VSASL offers certain advantages over spatially selective ASL due to its reduced susceptibility to delayed ATT, this technique is prone to biases when the ATT is excessively short. Therefore, a short PLD should be employed for reliable perfusion and CVR quantification in populations or conditions with fast flow.


Subject(s)
Brain , Cerebrovascular Circulation , Hypercapnia , Magnetic Resonance Imaging , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Male , Adult , Female , Blood Flow Velocity , Hypercapnia/diagnostic imaging , Brain/diagnostic imaging , Brain/blood supply , Magnetic Resonance Imaging/methods , Healthy Volunteers , Young Adult , Image Processing, Computer-Assisted/methods
17.
Magn Reson Med ; 92(2): 761-771, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38523590

ABSTRACT

PURPOSE: This study evaluated the velocity-selective (VS) MRA with different VS labeling modules, including double refocused hyperbolic tangent, eight-segment B1-insensitive rotation, delay alternating with nutation for tailored excitation, Fourier transform-based VS saturation, and Fourier transform-based inversion. METHODS: These five VS labeling modules were evaluated first through Bloch simulations, and then using VSMRA directly on various cerebral arteries of healthy subjects. The relative signal ratios from arterial ROIs and surrounding tissues as well as relative arteria-tissue contrast ratios of different methods were compared. RESULTS: Double refocused hyperbolic tangent and eight-segment B1-insensitive rotation showed very similar labeling effects. Delay alternating with nutation for tailored excitation yielded high arterial signal but with residual tissue signal due to the spatial banding effect. Fourier transform-based VS saturation with half the time of other techniques serves as an efficient nonsubtractive VSMRA method, but the remaining tissue signal still obscured some small distal arteries that were delineated by other subtraction-based VSMRA, allowing more complete cancelation of static tissue. Fourier transform-based inversion produced the highest arterial signal in VSMRA with minimal tissue background. CONCLUSION: This is the first study that angiographically compared five different VS labeling modules. Their labeling characteristics on arteries and tissue and implications for VSMRA and VS arterial spin labeling are discussed.


Subject(s)
Cerebral Arteries , Fourier Analysis , Magnetic Resonance Angiography , Humans , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiology , Magnetic Resonance Angiography/methods , Adult , Male , Female , Algorithms , Blood Flow Velocity/physiology , Spin Labels , Cerebral Angiography/methods , Cerebrovascular Circulation/physiology , Image Processing, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods
18.
Magn Reson Med ; 91(1): 118-132, 2024 01.
Article in English | MEDLINE | ID: mdl-37667643

ABSTRACT

PURPOSE: To investigate and mitigate the influence of physiological and acquisition-related parameters on myocardial blood flow (MBF) measurements obtained with myocardial Arterial Spin Labeling (myoASL). METHODS: A Flow-sensitive Alternating Inversion Recovery (FAIR) myoASL sequence with bSSFP and spoiled GRE (spGRE) readout is investigated for MBF quantification. Bloch-equation simulations and phantom experiments were performed to evaluate how variations in acquisition flip angle (FA), acquisition matrix size (AMS), heart rate (HR) and blood T 1 $$ {\mathrm{T}}_1 $$ relaxation time ( T 1 , B $$ {\mathrm{T}}_{1,B} $$ ) affect quantification of myoASL-MBF. In vivo myoASL-images were acquired in nine healthy subjects. A corrected MBF quantification approach was proposed based on subject-specific T 1 , B $$ {\mathrm{T}}_{1,B} $$ values and, for spGRE imaging, subtracting an additional saturation-prepared baseline from the original baseline signal. RESULTS: Simulated and phantom experiments showed a strong dependence on AMS and FA ( R 2 $$ {R}^2 $$ >0.73), which was eliminated in simulations and alleviated in phantom experiments using the proposed saturation-baseline correction in spGRE. Only a very mild HR dependence ( R 2 $$ {R}^2 $$ >0.59) was observed which was reduced when calculating MBF with individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ . For corrected spGRE, in vivo mean global spGRE-MBF ranged from 0.54 to 2.59 mL/g/min and was in agreement with previously reported values. Compared to uncorrected spGRE, the intra-subject variability within a measurement (0.60 mL/g/min), between measurements (0.45 mL/g/min), as well as the inter-subject variability (1.29 mL/g/min) were improved by up to 40% and were comparable with conventional bSSFP. CONCLUSION: Our results show that physiological and acquisition-related factors can lead to spurious changes in myoASL-MBF if not accounted for. Using individual T 1 , B $$ {\mathrm{T}}_{1,B} $$ and a saturation-baseline can reduce these variations in spGRE and improve reproducibility of FAIR-myoASL against acquisition parameters.


Subject(s)
Coronary Circulation , Myocardial Perfusion Imaging , Humans , Reproducibility of Results , Coronary Circulation/physiology , Myocardium , Heart Rate , Phantoms, Imaging , Myocardial Perfusion Imaging/methods
19.
Magn Reson Med ; 91(2): 558-569, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37749847

ABSTRACT

PURPOSE: Quantitative mapping of brain perfusion, diffusion, T2 *, and T1 has important applications in cerebrovascular diseases. At present, these sequences are performed separately. This study aims to develop a novel MRI technique to simultaneously estimate these parameters. METHODS: This sequence to measure perfusion, diffusion, T2 *, and T1 mapping with magnetic resonance fingerprinting (MRF) was based on a previously reported MRF-arterial spin labeling (ASL) sequence, but the acquisition module was modified to include different TEs and presence/absence of bipolar diffusion-weighting gradients. We compared parameters derived from the proposed method to those derived from reference methods (i.e., separate sequences of MRF-ASL, conventional spin-echo DWI, and T2 * mapping). Test-retest repeatability and initial clinical application in two patients with stroke were evaluated. RESULTS: The scan time of our proposed method was 24% shorter than the sum of the reference methods. Parametric maps obtained from the proposed method revealed excellent image quality. Their quantitative values were strongly correlated with those from reference methods and were generally in agreement with values reported in the literature. Repeatability assessment revealed that ADC, T2 *, T1 , and B1 + estimation was highly reliable, with voxelwise coefficient of variation (CoV) <5%. The CoV for arterial transit time and cerebral blood flow was 16% ± 3% and 25% ± 9%, respectively. The results from the two patients with stroke demonstrated that parametric maps derived from the proposed method can detect both ischemic and hemorrhagic stroke. CONCLUSION: The proposed method is a promising technique for multi-parametric mapping and has potential use in patients with stroke.


Subject(s)
Magnetic Resonance Imaging , Stroke , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/blood supply , Magnetic Resonance Spectroscopy , Perfusion , Stroke/diagnostic imaging , Phantoms, Imaging , Image Processing, Computer-Assisted/methods
20.
NMR Biomed ; 37(6): e5124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403798

ABSTRACT

Advanced intraoperative MR images (ioMRI) acquired during the resection of pediatric brain tumors could offer additional physiological information to preserve healthy tissue. With this work, we aimed to develop a protocol for ioMRI with increased sensitivity for arterial spin labeling (ASL) and diffusion MRI (dMRI), optimized for patient positioning regularly used in the pediatric neurosurgery setting. For ethical reasons, ASL images were acquired in healthy adult subjects that were imaged in the prone and supine position. After this, the ASL cerebral blood flow (CBF) was quantified and compared between both positions. To evaluate the impact of the RF coils setups on image quality, we compared different setups (two vs. four RF coils) by looking at T1-weighted (T1w) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), as well as undertaking a qualitative evaluation of T1w, T2w, ASL, and dMR images. Mean ASL CBF did not differ between the surgical prone and supine positions in any of the investigated regions of interest or the whole brain. T1w SNR (gray matter: p = 0.016, 34% increase; white matter: p = 0.016, 32% increase) and CNR were higher (p = 0.016) in the four versus two RF coils setups (18.0 ± 1.8 vs. 13.9 ± 1.8). Qualitative evaluation of T1w, T2w, ASL, and dMR images resulted in acceptable to good image quality and did not differ statistically significantly between setups. Only the nonweighted diffusion image maps and corticospinal tract reconstructions yielded higher image quality and reduced susceptibility artifacts with four RF coils. Advanced ioMRI metrics were more precise with four RF coils as the standard deviation decreased. Taken together, we have investigated the practical use of advanced ioMRI during pediatric neurosurgery. We conclude that ASL CBF quantification in the surgical prone position is valid and that ASL and dMRI acquisition with two RF coils can be performed adequately for clinical use. With four versus two RF coils, the SNR of the images increases, and the sensitivity to artifacts reduces.


Subject(s)
Magnetic Resonance Imaging , Neurosurgical Procedures , Signal-To-Noise Ratio , Humans , Male , Female , Magnetic Resonance Imaging/methods , Child , Adult , Cerebrovascular Circulation/physiology , Spin Labels , Diffusion Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/surgery
SELECTION OF CITATIONS
SEARCH DETAIL