Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(5): 107285, 2024 May.
Article in English | MEDLINE | ID: mdl-38636656

ABSTRACT

The parasite Plasmodium vivax preferentially invades human reticulocytes. Its merozoite surface protein 1 paralog (PvMSP1P), particularly the 19-kDa C-terminal region (PvMSP1P-19), has been shown to bind to reticulocytes, and this binding can be inhibited by antisera obtained by PvMSP1P-19 immunization. The molecular mechanism of interactions between PvMSP1P-19 and reticulocytes during P. vivax invasion, however, remains unclear. In this study, we analyzed the ability of MSP1P-19 to bind to different concentrations of reticulocytes and confirmed its reticulocyte preference. LC-MS analysis was used to identify two potential reticulocyte receptors, band3 and CD71, that interact with MSP1P-19. Both PvMSP1P-19 and its sister taxon Plasmodium cynomolgi MSP1P-19 were found to bind to the extracellular loop (loop 5) of band3, where the interaction of MSP1P-19 with band3 was chymotrypsin sensitive. Antibodies against band3-P5, CD71, and MSP1P-19 reduced the binding activity of PvMSP1P-19 and Plasmodium cynomolgi MSP1P-19 to reticulocytes, while MSP1P-19 proteins inhibited Plasmodium falciparum invasion in vitro in a concentration-dependent manner. To sum up, identification and characterization of the reticulocyte receptor is important for understanding the binding of reticulocytes by MSP1P-19.


Subject(s)
Antigens, CD , Plasmodium vivax , Protozoan Proteins , Receptors, Transferrin , Reticulocytes , Plasmodium vivax/metabolism , Plasmodium vivax/genetics , Reticulocytes/metabolism , Reticulocytes/parasitology , Humans , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Anion Exchange Protein 1, Erythrocyte/metabolism , Anion Exchange Protein 1, Erythrocyte/genetics , Protein Binding , Merozoite Surface Protein 1/metabolism , Merozoite Surface Protein 1/genetics , Malaria, Vivax/parasitology , Malaria, Vivax/metabolism , Animals
2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000500

ABSTRACT

The ammonia/ammonium (NH3/NH4+, AM) concentration in human erythrocytes (RBCs) is significantly higher than in plasma. Two main possible mechanisms for AM transport, including simple and facilitated diffusion, are described; however, the driving force for AM transport is not yet fully characterized. Since the erythroid ammonium channel RhAG forms a structural unit with anion exchanger 1 (eAE1) within the ankyrin core complex, we hypothesized the involvement of eAE1 in AM transport. To evaluate the functional interaction between eAE1 and RhAG, we used a unique feature of RBCs to swell and lyse in isotonic NH4+ buffer. The kinetics of cell swelling and lysis were analyzed by flow cytometry and an original laser diffraction method, adapted for accurate volume sensing. The eAE1 role was revealed according to (i) the changes in cell swelling and lysis kinetics, and (ii) changes in intracellular pH, triggered by eAE1 inhibition or the modulation of eAE1 main ligand concentrations (Cl- and HCO3-). Additionally, the AM import kinetics was analyzed enzymatically and colorimetrically. In NH4+ buffer, RBCs concentration-dependently swelled and lysed when [NH4+] exceeded 100 mM. Cell swelling and hemolysis were tightly regulated by chloride concentration. The complete substitution of chloride with glutamate prevented NH4+-induced cell swelling and hemolysis, and the restoration of [Cl-] dose-dependently amplified the rates of RBC swelling and lysis and the percentage of hemolyzed cells. Similarly, eAE1 inhibition impeded cell swelling and completely prevented hemolysis. Accordingly, eAE1 inhibition, or a lack of chloride anions in the buffer, significantly decreased NH4+ import. Our data indicate that the eAE1-mediated chloride gradient is required for AM transport. Taken together, our data reveal a new player in AM transport in RBCs.


Subject(s)
Ammonium Compounds , Chlorides , Erythrocytes , Humans , Erythrocytes/metabolism , Ammonium Compounds/metabolism , Chlorides/metabolism , Anion Exchange Protein 1, Erythrocyte/metabolism , Hydrogen-Ion Concentration , Kinetics , Biological Transport , Blood Proteins , Membrane Glycoproteins
3.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928131

ABSTRACT

Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug's ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 µM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.


Subject(s)
Anion Exchange Protein 1, Erythrocyte , Chloroquine , Erythrocytes , Hemoglobins , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Chloroquine/pharmacology , Hemoglobins/metabolism , Anion Exchange Protein 1, Erythrocyte/metabolism , Adenosine Triphosphate/metabolism , Antimalarials/pharmacology , Caspase 3/metabolism
4.
J Biol Chem ; 298(4): 101765, 2022 04.
Article in English | MEDLINE | ID: mdl-35202655

ABSTRACT

Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.


Subject(s)
Erythrocytes , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Anion Exchange Protein 1, Erythrocyte/metabolism , Ankyrins/metabolism , Erythrocytes/parasitology , Humans , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Plasmodium vivax/metabolism , Protozoan Proteins/metabolism
5.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L825-L835, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37014821

ABSTRACT

Band 3 protein is a Cl-/[Formula: see text] transporter on the red blood cell (RBC) surface with an important role in CO2 excretion. Greater band 3 expression by roughly 20% is found in people with the GP.Mur blood type. Intriguingly, a disproportional percentage of those with GP.Mur excel in field-and-track sports. Could higher band 3 activity benefit an individual's physical performance? This study explored the impact of GP.Mur/higher band 3 expression on ventilation and gas exchange during exhaustive exercise. We recruited 36 nonsmoking, elite male athletes (36.1% GP.Mur) from top sports universities to perform incremental exhaustive treadmill cardiopulmonary exercise testing (CPET). We analyzed CPET data with respect to absolute running time and to individual's %running time and %maximal O2 uptake. We found persistently higher respiratory frequencies and slightly lower tidal volume in GP.Mur athletes, resulting in a slightly larger increase of ventilation as the workload intensified. The expiratory duty cycle (Te/Ttot) was persistently longer and inspiratory duty cycle (Ti/Ttot) was persistently shorter for GP.Mur subjects throughout the run. Consequently, end-tidal pressure of carbon dioxide ([Formula: see text], a surrogate marker for alveolar and arterial CO2 tension-[Formula: see text] and [Formula: see text]) was lower in the GP.Mur athletes during the early stages of exercise. In conclusion, athletes with GP.Mur and higher band 3 expression hyperventilate more during exercise in a pattern that uses a greater fraction of time for expiration than inspiration to increase the rate of CO2 excretion than increased tidal volume. This greater ventilation response reduced Pco2 and may help to extend exercise capacity in high-level sports.NEW & NOTEWORTHY Higher expression of the Cl-/[Formula: see text] transporter band 3 anion exchanger-1 (AE1) on the red blood cell membrane, as in people with the GP.Mur blood type, increases the rate of CO2 excretion during exercise.


Subject(s)
Carbon Dioxide , Pulmonary Gas Exchange , Humans , Male , Carbon Dioxide/metabolism , Pulmonary Gas Exchange/physiology , Respiration , Lung/metabolism , Exhalation
6.
FASEB J ; 36(6): e22360, 2022 06.
Article in English | MEDLINE | ID: mdl-35593742

ABSTRACT

Although both protein tyrosine phosphatases and kinases are constitutively active in healthy human red blood cells (RBCs), the preponderance of phosphatase activities maintains the membrane proteins in a predominantly unphosphorylated state. We report here that unlike healthy RBCs, proteins in sickle cells are heavily tyrosine phosphorylated, raising the question regarding the mechanism underpinning this tyrosine phosphorylation. Upon investigating possible causes, we observe that protein tyrosine phosphatase 1B (PTP1B), the major erythrocyte tyrosine phosphatase, is largely digested to a lower molecular weight fragment in sickle cells. We further find that the resulting truncated form of PTP1B is significantly less active than its intact counterpart, probably accounting for the intense tyrosine phosphorylation of Band 3 in sickle erythrocytes. Because this tyrosine phosphorylation of Band 3 promotes erythrocyte membrane weakening that causes release of both membrane vesicles and cell free hemoglobin that in turn initiates vaso-occlusive events, we conclude that cleavage of PTP1B could contribute to the symptoms of sickle cell disease. We further posit that methods to inhibit proteolysis of PTP1B could mitigate symptoms of the disease.


Subject(s)
Anemia, Sickle Cell , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Anemia, Sickle Cell/metabolism , Erythrocyte Membrane/metabolism , Humans , Membrane Proteins/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Tyrosine/metabolism
7.
Vox Sang ; 118(2): 147-152, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36510386

ABSTRACT

BACKGROUND AND OBJECTIVES: Early studies indicate that red cell A and B antigens are attached primarily onto band 3 and GLUT1 on the erythrocyte membrane and little onto glycophorin A (GPA) and glycophorin B (GPB). But as GPA and band 3 form stable protein complexes and GPA is much more heavily glycosylated than band 3, this study re-examined the association between ABO antigens and GPA/GPB. MATERIALS AND METHODS: Band 3/GPA-associated protein complexes were first immunoprecipitated, followed by differential enzymatic deglycosylation that removed sialic acids, N-glycans and O-glycans. Serological anti-A (BIRMA 1) and anti-B IgM (GAMA 110) could be used for western blot (WB); however, only the anti-B IgM showed significant reactivity for the immunoprecipitates isolated by anti-band 3. The expression of the B antigen in un-deglycosylated and differentially deglycosylated band 3 immunoprecipitates was thus compared. RESULTS: Besides attachment to band 3, red cell B antigen expressed substantially on GPA monomer and homodimer, GPA*GPB heterodimer, and GPB monomer and dimer via attachments through the N- and O-glycans. CONCLUSION: Immunoprecipitation (IP), as a means of protein separation and concentration, was used in combination with a WB to differentiate glycosylation on different proteins and oligomers. This study implemented differential enzymatic deglycosylation during IP of the band 3 complexes. This combined approach allowed separate identification of the B antigen on GPA/GPB monomer and dimer and GPA*GPB heterodimer, and band 3 on the WB and verified non-trivial expression of the B antigen on GPA and GPB on the erythrocyte surface.


Subject(s)
Blood Group Antigens , Glycophorins , Humans , Glycophorins/metabolism , Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocytes , Blood Group Antigens/metabolism , Carbohydrates , Immunoglobulin M
8.
Microsc Microanal ; 29(2): 777-785, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37749743

ABSTRACT

In hereditary spherocytosis (HS), genetic mutations in the cell membrane and cytoskeleton proteins cause structural defects in red blood cells (RBCs). As a result, cells are rigid and misshapen, usually with a characteristic spherical form (spherocytes), too stiff to circulate through microcirculation regions, so they are prone to undergo hemolysis and phagocytosis by splenic macrophages. Mild to severe anemia arises in HS, and other derived symptoms like splenomegaly, jaundice, and cholelithiasis. Although abnormally shaped RBCs can be identified under conventional light microscopy, HS diagnosis relies on several clinical factors and sometimes on the results of complex molecular testing. It is specially challenging when other causes of anemia coexist or after recent blood transfusions. We propose two different approaches to characterize RBCs in HS: (i) an immunofluorescence assay targeting protein band 3, which is affected in most HS cases and (ii) a three-dimensional morphology assay, with living cells, staining the membrane with fluorescent dyes. Confocal laser scanning microscopy (CLSM) was used to carry out both assays, and in order to complement the latter, a software was developed for the automated detection of spherocytes in blood samples. CLSM allowed the precise and unambiguous assessment of cell shape and protein expression.


Subject(s)
Erythrocytes , Membrane Proteins , Microscopy, Confocal , Cell Membrane , Cell Shape
9.
J Biol Chem ; 296: 100724, 2021.
Article in English | MEDLINE | ID: mdl-33932403

ABSTRACT

Solute carrier family 4 (SLC4) transporters mediate the transmembrane transport of HCO3-, CO32-, and Cl- necessary for pH regulation, transepithelial H+/base transport, and ion homeostasis. Substrate transport with varying stoichiometry and specificity is achieved through an exchange mechanism and/or through coupling of the uptake of anionic substrates to typically co-transported Na+. Recently solved outward-facing structures of two SLC4 members (human anion exchanger 1 [hAE1] and human electrogenic sodium bicarbonate cotransporter 1 [hNBCe1]) with different transport modes (Cl-/HCO3- exchange versus Na+-CO32- symport) revealed highly conserved three-dimensional organization of their transmembrane domains. However, the exact location of the ion binding sites and their protein-ion coordination motifs are still unclear. In the present work, we combined site identification by ligand competitive saturation mapping and extensive molecular dynamics sampling with functional mutagenesis studies which led to the identification of two substrate binding sites (entry and central) in the outward-facing states of hAE1 and hNBCe1. Mutation of residues in the identified binding sites led to impaired transport in both proteins. We also showed that R730 in hAE1 is crucial for anion binding in both entry and central sites, whereas in hNBCe1, a Na+ acts as an anchor for CO32- binding to the central site. Additionally, protonation of the central acidic residues (E681 in hAE1 and D754 in hNBCe1) alters the ion dynamics in the permeation cavity and may contribute to the transport mode differences in SLC4 proteins. These results provide a basis for understanding the functional differences between hAE1 and hNBCe1 and may facilitate potential drug development for diseases such as proximal and distal renal tubular acidosis.


Subject(s)
Solute Carrier Proteins/chemistry , Solute Carrier Proteins/metabolism , Binding Sites , Biological Transport , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
10.
J Cell Physiol ; 237(2): 1586-1596, 2022 02.
Article in English | MEDLINE | ID: mdl-34783011

ABSTRACT

Aging, a time-dependent multifaceted process, affects both cell structure and function and involves oxidative stress as well as glycation. The present investigation focuses on the role of the band 3 protein (B3p), an anion exchanger essential to red cells homeostasis, in a d-galactose ( d-Gal)-induced aging model. Anion exchange capability, measured by the rate constant of SO4²- uptake through B3p, levels of lipid peroxidation, oxidation of membrane sulfhydryl groups, B3p expression, methemoglobin, glycated hemoglobin (Hb), and the reduced glutathione/oxidized glutathione ratio were determined after exposure of human erythrocytes to 25, 35, 50, and 100 mmol/L d-Gal for 24 h. Our results show that: (i) in vitro application of d-Gal is useful to model early aging in human erythrocytes; (ii) assessment of B3p ion transport function is a sensitive tool to monitor aging development; (iii) d-Gal leads to Hb glycation and produces substantial changes on the endogenous antioxidant system; (iv) the impact of aging on B3p function proceeds through steps, first involving Hb glycation and then oxidative events at the membrane level. These findings offer a useful tool to understand the mechanisms of aging in human erythrocytes and propose B3p as a possible target for new therapeutic strategies to counteract age-related disturbances.


Subject(s)
Anion Exchange Protein 1, Erythrocyte , Galactose , Aging , Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocytes/metabolism , Galactose/metabolism , Galactose/pharmacology , Humans , Oxidative Stress
11.
J Pediatr ; 243: 142-145, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35033565

ABSTRACT

OBJECTIVE: To evaluate laboratory indices in patients with hereditary spherocytosis, with positive and borderline flow cytometry eosin-5-melamide (EMA)-bound red blood cells screening test. STUDY DESIGN: We compared laboratory indices of 151 samples obtained from 139 different individual patients with negative, borderline, or positive EMA-test results. We also compared the clinical data of the patients in each EMA test results group. RESULTS: Borderline EMA-test results were obtained for 13 patients and were associated with more severe anemia, and lower reticulocyte count and reticulocyte production index compared with samples with positive EMA-test results. A receiving operator characteristic analysis identified mean corpuscular hemoglobin concentration of <32.5 g/dL as a cut-off, between positive/borderline and negative test results with 100% sensitivity. A higher prevalence of clinical markers typical of hereditary spherocytosis was found in patients with borderline or positive compared with negative EMA test samples. CONCLUSIONS: Based on laboratory data, borderline EMA-test results may be an indication of a more severe form of hereditary spherocytosis. Using mean corpuscular hemoglobin concentration as a cut-off may help predict and reduce negative EMA tests without compromising sensitivity. This finding needs to be further validated in other flow cytometry laboratories with a large EMA test sample pool.


Subject(s)
Laboratories , Spherocytosis, Hereditary , Eosine Yellowish-(YS)/analysis , Flow Cytometry/methods , Humans , Maleimides , Spherocytosis, Hereditary/diagnosis
12.
J Formos Med Assoc ; 121(9): 1721-1727, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35000824

ABSTRACT

BACKGROUND/PURPOSE: GP.Mur is a clinically important red blood cell (RBC) type. GP.Mur and band 3 interact on the RBCs. We previously observed that healthy adults with GP.Mur type present slightly higher blood pressure (BP). Because band 3 and Hb comodulate nitric oxide (NO)-dependent vasodilation and hemoglobin (Hb) is positively associated with BP, we aimed to test whether these could contribute to higher BP in GP.Mur+ people. METHODS: We recruited 989 non-elderly adults (21% GP.Mur) free of catastrophic illness and not on cardiovascular or anti-hypertensive medication. Their body indices, blood lab data and lifestyle data were collected for analyses of potential BP-related factors (BMI, age, smoking, Hb, and GP.Mur). RESULTS: BMI and age remained the most significant contributors to BP. GP.Mur slightly increased systolic BP (SBP). The direct correlation between Hb and BP was only found in Taiwanese non-anemic men, not women. After age and BMI adjusted, we estimated an increase of 1.8 mmHg and 2.6 mmHg of SBP by 1 g/dL Hb among men without and with GP.Mur type, respectively. Hb was generally lower among people expressing GP.Mur, which likely limited their larger impact on BP. CONCLUSION: GP.Mur contributed to BP in both Hb-dependent and Hb-independent fashion. A pronounced impact of hemoglobin on BP likely requires sufficient Hb, as GP.Mur increased the sensitivity of SBP to Hb only in non-anemic Taiwanese men, and not in Taiwanese women or anemic men. The mechanism through which GP.Mur affected BP independent of Hb is unknown.


Subject(s)
Glycophorins , Hypertension , Adult , Blood Pressure , Erythrocytes , Female , Hemoglobins , Humans , Male , Middle Aged
13.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232293

ABSTRACT

During their lifespan, red blood cells (RBCs) are exposed to a large number of stressors and are therefore considered as a suitable model to investigate cell response to oxidative stress (OS). This study was conducted to evaluate the potential beneficial effects of the natural antioxidant quercetin (Q) on an OS model represented by human RBCs treated with H2O2. Markers of OS, including % hemolysis, reactive oxygen species (ROS) production, thiobarbituric acid reactive substances (TBARS) levels, oxidation of protein sulfhydryl groups, CD47 and B3p expression, methemoglobin formation (% MetHb), as well as the anion exchange capability through Band 3 protein (B3p) have been analyzed in RBCs treated for 1 h with 20 mM H2O2 with or without pre-treatment for 1 h with 10 µM Q, or in RBCs pre-treated with 20 mM H2O2 and then exposed to 10 µM Q. The results show that pre-treatment with Q is more effective than post-treatment to counteract OS in RBCs. In particular, pre-exposure to Q avoided morphological alterations (formation of acanthocytes), prevented H2O2-induced OS damage, and restored the abnormal distribution of B3p and CD47 expression. Moreover, H2O2 exposure was associated with a decreased rate constant of SO42- uptake via B3p, as well as an increased MetHb formation. Both alterations have been attenuated by pre-treatment with 10 µM Q. These results contribute (1) to elucidate OS-related events in human RBCs, (2) propose Q as natural antioxidant to counteract OS-related alterations, and (3) identify B3p as a possible target for the treatment and prevention of OS-related disease conditions or aging-related complications impacting on RBCs physiology.


Subject(s)
Anion Exchange Protein 1, Erythrocyte , Antioxidants , Anion Exchange Protein 1, Erythrocyte/metabolism , Anion Exchange Protein 1, Erythrocyte/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , CD47 Antigen/metabolism , Erythrocytes/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Methemoglobin/metabolism , Oxidative Stress , Quercetin/metabolism , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
14.
Int J Mol Sci ; 23(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35887126

ABSTRACT

Aging is a multi-factorial process developing through a complex net of interactions between biological and cellular mechanisms and it involves oxidative stress (OS) as well as protein glycation. The aim of the present work was to verify the protective role of Quercetin (Q), a polyphenolic flavonoid compound, in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. The anion-exchange capability through the Band 3 protein (B3p) measured by the rate constant of the SO42- uptake, thiobarbituric acid reactive substances (TBARS) levels-a marker of lipid peroxidation-total sulfhydryl (-SH) groups, glycated hemoglobin (A1c), and a reduced glutathione/oxidized glutathione (GSH-GSSG) ratio were determined following the exposure of erythrocytes to 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µM Q. The results confirmed that d-Gal activated OS pathways in human erythrocytes, affecting both membrane lipids and proteins, as denoted by increased TBARS levels and decreased total sulfhydryl groups, respectively. In addition, d-Gal led to an acceleration of the rate constant of the SO42- uptake through the B3p. Both the alteration of the B3p function and oxidative damage have been improved by pre-treatment with Q, which preferentially ameliorated lipid peroxidation rather than protein oxidation. Moreover, Q prevented glycated A1c formation, while no protective effect on the endogenous antioxidant system (GSH-GSSG) was observed. These findings suggest that the B3p could be a novel potential target of antioxidant treatments to counteract aging-related disturbances. Further studies are needed to confirm the possible role of Q in pharmacological strategies against aging.


Subject(s)
Oxidative Stress , Quercetin , Antioxidants/metabolism , Antioxidants/pharmacology , Erythrocytes/metabolism , Galactose/metabolism , Galactose/pharmacology , Glutathione/metabolism , Glutathione Disulfide/metabolism , Glycated Hemoglobin/metabolism , Humans , Quercetin/metabolism , Quercetin/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism
15.
Molecules ; 27(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163973

ABSTRACT

The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.


Subject(s)
Drug Resistance, Multiple/physiology , Melatonin/metabolism , Prions/metabolism , Animals , Drug Resistance, Multiple/genetics , Humans , Lipid Peroxidation , Melatonin/pharmacology , Melatonin/physiology , Membrane Microdomains/metabolism , Neoplasms/metabolism , Prion Proteins/metabolism , Prions/chemistry , Prions/genetics , Signal Transduction , Tumor Microenvironment/physiology
16.
Am J Physiol Cell Physiol ; 321(6): C1028-C1059, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34669510

ABSTRACT

The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/[Formula: see text] exchange, one of the steps in CO2 excretion, and 2) anchoring the membrane skeleton. This review summarizes the 150-year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of [Formula: see text], Cl-, O2, CO2, pH, and nitric oxide (NO) metabolites during pulmonary and systemic capillary gas exchange.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/metabolism , Cell Membrane/metabolism , Erythrocytes/metabolism , Animals , Cell Physiological Phenomena/physiology , Humans , Ion Transport/physiology , Membrane Transport Proteins/metabolism
17.
J Cell Physiol ; 236(9): 6225-6234, 2021 09.
Article in English | MEDLINE | ID: mdl-33559172

ABSTRACT

Band 3 protein (B3p), anion transporter, allows the HCO3- /Cl- exchange across plasma membrane and plays an important role for erythrocytes homeostasis. In addition, B3p is linked to proteins cytoskeleton, thus contributing to cell shape and deformability, essential to erythrocytes adjustment within narrowest capillaries. Taking into account that erythrocytes are a suitable cell model to investigate the response of the oxidative stress effects, B3p functions, and specifically anion exchange capability, determining the rate constant for SO42- uptake, has been considered. As, in the latter years, rising attention has been addressed to membrane transport system, and particularly to this protein, the present mini-review has been conceived to report the most recent knowledge about B3p, with specific regard to its functions in oxidative stress conditions, including oxidative stress-related diseases.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocytes/metabolism , Erythrocytes/pathology , Oxidative Stress , Aging/pathology , Animals , Blood Glucose/metabolism , Humans , Inflammation/pathology
18.
Cell Physiol Biochem ; 55(1): 117-129, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33667330

ABSTRACT

BACKGROUND/AIMS: Hereditary Spherocytosis (HS) is the most common erythrocyte membrane disorder causing hemolytic anemia. The wide heterogeneity of both clinical and laboratory manifestations of HS contributes to difficulties associated with the diagnosis of this disorder. Although massive data previously reported worldwide, there is yet no data on HS among the Tunisian population. Here we aim to characterize HS in Tunisian patients at biochemical and cellular levels, identify the membrane protein deficiency, and compare the accuracy of the diagnostic tests to identify the most appropriate assay for HS diagnosis. METHODS: We investigated 81 patients with hemolytic anemia and 167 normal controls. The exploration of HS based on clinical and family history, physical examination, and the results of laboratory tests: blood smear, osmotic fragility test (OFT), cryohemolysis test (CT), pink test (PT), eosine-5'-maleimide (EMA) test, and erythrocyte membrane protein electrophoresis. RESULTS: We identified 21 patients with HS, classified as severe (6/21;28.5%), moderate (10/21;47.6%), and mild (5/21;23.8%). The most prevalent protein deficiency was the band 3 protein detected in ten Tunisian HS patients. The EMA test showed a high specificity (97.5%) and sensitivity (94.7%) for HS diagnosis compared to the other screening tests. Interestingly, fourteen among sixteen patients presenting with homozygous sickle cells HbSS showed an increase of EMA fluorescence intensity compared to other anemic patients. CONCLUSION: Our study highlights the efficiency of the EMA dye for the detection of HS whatever the nature of the involved protein deficiency. We report for the first time, the most prevalent protein deficiency among Tunisians with HS. Moreover, we found that the combination of the EMA-binding test with PT or incubated OFT improves the diagnosis sensitivity while maintaining a good specificity.


Subject(s)
Eosine Yellowish-(YS)/analogs & derivatives , Erythrocyte Membrane , Flow Cytometry , Membrane Proteins/metabolism , Adolescent , Adult , Child , Child, Preschool , Eosine Yellowish-(YS)/chemistry , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Female , Humans , Infant , Male , Osmotic Fragility , Proteomics , Spherocytosis, Hereditary/metabolism , Spherocytosis, Hereditary/pathology , Tunisia
19.
Transfusion ; 61(5): 1586-1599, 2021 05.
Article in English | MEDLINE | ID: mdl-33830505

ABSTRACT

BACKGROUND: During storage, red blood cells (RBCs) undergo significant biochemical and morphologic changes, referred to collectively as the "storage lesion". It was hypothesized that these defects may arise from disrupted oxygen-based regulation of RBC energy metabolism, with resultant depowering of intrinsic antioxidant systems. STUDY DESIGN AND METHODS: As a function of storage duration, the dynamic range in RBC metabolic response to three models of biochemical oxidant stress (methylene blue, hypoxanthine/xanthine oxidase, and diamide) was assessed, comparing glycolytic flux by NMR and UHPLC-MS methodologies. Blood was processed/stored under standard conditions (AS-1 additive solution) with leukoreduction. Over a 6-week period, RBC metabolic and antioxidant status were assessed at baseline and following exposure to the three biochemical oxidant models. Comparison was made of glycolytic flux (1 H-NMR tracking of [2-13 C]-glucose and metabolomic phenotyping with [1,2,3-13 C3 ] glucose), reducing equivalent (NADPH/NADP+ ) recycling, and thiol-based (GSH/GSSG) antioxidant status. RESULTS: As a function of storage duration, we observed the following: (1) a reduction in baseline hexose monophosphate pathway (HMP) flux, the sole pathway responsible for the regeneration of the essential reducing equivalent NADPH; with (2) diminished stress-based dynamic range in both overall glycolytic as well as proportional HMP flux. In addition, progressive with storage duration, RBCs showed (3) constraint in reducing equivalent (NADPH) recycling capacity, (4) loss of thiol based (GSH) recycling capacity, and (5) dysregulation of metabolon assembly at the cytoplasmic domain of Band 3 membrane protein (cdB3). CONCLUSION: Blood storage disturbs normal RBC metabolic control, depowering antioxidant capacity and enhancing vulnerability to oxidative injury.


Subject(s)
Blood Preservation , Energy Metabolism , Erythrocytes/metabolism , Blood Preservation/methods , Erythrocytes/cytology , Glucose/metabolism , Glutathione Disulfide/metabolism , Glycolysis , Humans , Metabolomics , NADP/metabolism , Oxidative Stress
20.
Adv Exp Med Biol ; 21: 13-127, 2021.
Article in English | MEDLINE | ID: mdl-33052588

ABSTRACT

Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost ß uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.


Subject(s)
Amino Acids , Amino Acids/metabolism , Dimerization , Humans
SELECTION OF CITATIONS
SEARCH DETAIL