Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.484
Filter
Add more filters

Publication year range
1.
Mol Pharm ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39348508

ABSTRACT

The proceedings from the 30th August 2023 (Day 2) of the workshop "Physiologically Based Biopharmaceutics Models (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives" are provided herein. Day 2 covered PBBM case studies from six regulatory authorities which provided considerations for model verification, validation, and application based on the context of use (COU) of the model. PBBM case studies to define critical material attribute (CMA) specification settings, such as active pharmaceutical ingredient (API) particle size distributions (PSDs) were shared. PBBM case studies to define critical quality attributes (CQAs) such as the dissolution specification setting or to define the bioequivalence safe space were also discussed. Examples of PBBM using the credibility assessment framework, COU and model risk assessment, as well as scientific learnings from PBBM case studies are provided. Breakout session discussions highlighted current trends and barriers to application of PBBMs including: (a) PBBM credibility assessment framework and level of validation, (b) use of disposition parameters in PBBM and points to consider when iv data are not available, (c) conducting virtual bioequivalence trials and dealing with variability, (d) model acceptance criteria, and (e) application of PBBMs for establishing safe space and failure edges.

2.
Mol Pharm ; 21(8): 3697-3731, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38946085

ABSTRACT

This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.


Subject(s)
Biopharmaceutics , Models, Biological , Biopharmaceutics/methods , Humans , Solubility , Pharmaceutical Preparations/chemistry , Excipients/chemistry , Chemistry, Pharmaceutical/methods
3.
Mol Pharm ; 21(9): 4191-4198, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39133824

ABSTRACT

Pharmacokinetic bioequivalence of orally inhaled drug products is a critical component of the US FDA's "weight of evidence" approach, and it can serve as the sole indicator of safety and effectiveness of follow-on inhalation products approved in Europe and some other geographic areas. The approved labels of the orally inhaled drug products recommend the maximum number of actuations that can be administered in a single dose on one occasion. This single maximum dose may consist of one or more inhalations depending upon the product. Bioequivalence studies for the inhalation drug product registrations in the US and EU have employed single and multiple actuation doses, in some cases over and above the approved single maximum labeled doses, thus, inconsistent with the approved labeling of the reference products. Pharmacokinetics of inhaled drug products after single and multiple doses may be different, with implications for bioequivalence determined at single and multiple doses. Scientific literature indicates that the relative bioavailability of the Test and Reference products may differ between administrations of doses in one and multiple inhalations. Multiple doses not only alter the pharmacokinetics but also may reduce the sensitivity of the bioassay to actual differences between the Test and Reference product performances. Ability of the pharmacokinetic bioassay to accurately determine the extent of difference between two products may also be substantially reduced at high doses. Therefore, in our opinion, pharmacokinetic bioequivalence to support regulatory approvals of inhalation products at doses above the recommended single maximum dose should be avoided. Furthermore, the bioequivalence of products (if any) established at doses exceeding the approved single maximum doses should be revisited to determine if the products maintain bioequivalence when evaluated at the clinically relevant single maximum doses.


Subject(s)
Drugs, Generic , Therapeutic Equivalency , Administration, Inhalation , Humans , Drugs, Generic/pharmacokinetics , Drugs, Generic/administration & dosage , Biological Availability , United States , United States Food and Drug Administration , Drug Approval
4.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38600804

ABSTRACT

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Subject(s)
Biopharmaceutics , Drug Industry , Humans , Biopharmaceutics/methods , Drug Industry/methods , Models, Biological , Therapeutic Equivalency , Pharmaceutical Preparations/chemistry , United States
5.
Malar J ; 23(1): 176, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840151

ABSTRACT

BACKGROUND: With only one 15 mg primaquine tablet registered by a stringent regulatory authority and marketed, more quality-assured primaquine is needed to meet the demands of malaria elimination. METHODS: A classic, two sequence, crossover study, with a 10-day wash out period, of 15 mg of IPCA-produced test primaquine tablets and 15 mg of Sanofi reference primaquine tablets was conducted. Healthy volunteers, aged 18-45 years, without glucose-6-phosphate dehydrogenase deficiency, a baseline haemoglobin ≥ 11 g/dL, creatinine clearance ≥ 70 mL/min/1.73 ms, and body mass index of 18.5-30 kg/m2 were randomized to either test or reference primaquine, administered on an empty stomach with 240 mL of water. Plasma primaquine and carboxyprimaquine concentrations were measured at baseline, then 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.333, 2.667, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 12.0, 16.0, 24.0, 36.0, 48.0 and 72.0 h by liquid chromatography coupled to tandem mass spectrometry. Primaquine pharmacokinetic profiles were evaluated by non-compartmental analysis and bioequivalence concluded if the 90% confidence intervals (CI) of geometric mean (GM) ratios of test vs. reference formulation for the peak concentrations (Cmax) and area under the drug concentration-time (AUC0-t) were within 80.00 to 125.00%. RESULTS: 47 of 50 volunteers, median age 33 years, completed both dosing rounds and were included in the bioequivalence analysis. For primaquine, GM Cmax values for test and reference formulations were 62.12 vs. 59.63 ng/mL, resulting in a GM ratio (90% CI) of 104.17% (96.92-111.96%); the corresponding GM AUC0-t values were 596.56 vs. 564.09 ngxh/mL, for a GM ratio of 105.76% (99.76-112.08%). Intra-subject coefficient of variation was 20.99% for Cmax and 16.83% for AUC0-t. Median clearances and volumes of distribution were similar between the test and reference products: 24.6 vs. 25.2 L/h, 189.4 vs. 191.0 L, whilst the median half-lives were the same, 5.2 h. CONCLUSION: IPCA primaquine was bioequivalent to the Sanofi primaquine. This opens the door to prequalification, registration in malaria endemic countries, and programmatic use for malaria elimination. Trial registration The trial registration reference is ISRCTN 54640699.


Subject(s)
Antimalarials , Cross-Over Studies , Primaquine , Therapeutic Equivalency , Primaquine/pharmacokinetics , Primaquine/administration & dosage , Humans , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Adult , Young Adult , Male , Female , Adolescent , Middle Aged , Malaria/drug therapy , Malaria/prevention & control , Healthy Volunteers , Tablets
6.
Malar J ; 23(1): 296, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363296

ABSTRACT

BACKGROUND: Parenteral artesunate is the first-line therapy for severe malaria. Artesunate, in its current formulation, must be prepared immediately before administration by first dissolving in sodium bicarbonate solution and then diluting in saline. A novel solvent for rapid and stable single step reconstitution of artesunate was recently developed showing improved solubility and stability. This study aimed to compare the safety and pharmacokinetic properties of the currently available and newly developed parenteral formulation of artesunate in healthy Thai volunteers. METHODS: This was an open-label, randomized, 4 periods, 4-treatments, 24-sequence, single-dose, cross-over study in 72 male and female healthy Thai volunteers. Frequent pharmacokinetic samples were collected in all volunteers at each dose occasion. Observed concentration-time profiles were analysed with a non-compartmental approach followed by a bioequivalence evaluation. RESULTS: Both intramuscular and intravenous administrations of the new parenteral formulation of artesunate were safe and well-tolerated, with no additional safety signals compared to the currently used formulation. The pharmacokinetic properties of artesunate and its active metabolite, dihydroartemisinin, were well-characterized, and showed rapid conversion of artesunate into dihydroartemisinin. Intramuscular administration of the newly formulated artesunate resulted in almost complete bioavailability of dihydroartemisinin. The pharmacokinetic properties were similar between the old and new formulation. CONCLUSIONS: The new and more easily prepared formulation of artesunate was safe and well-tolerated, with similar pharmacokinetic properties compared to the currently used formulation. Dihydroartemisinin, the active metabolite responsible for the majority of the anti-malarial effect, showed equivalent exposure after both intravenous and intramuscular administration of artesunate, suggesting that both routes of administration should generate comparable therapeutic effects. TRIAL REGISTRATION: The study was registered to clinicaltrials.gov (#TCTR20170907002).


Subject(s)
Antimalarials , Artemisinins , Artesunate , Cross-Over Studies , Healthy Volunteers , Humans , Artesunate/pharmacokinetics , Artesunate/administration & dosage , Male , Antimalarials/pharmacokinetics , Antimalarials/administration & dosage , Antimalarials/adverse effects , Adult , Artemisinins/pharmacokinetics , Artemisinins/administration & dosage , Artemisinins/adverse effects , Female , Thailand , Young Adult , Injections, Intramuscular , Administration, Intravenous , Middle Aged , Adolescent , Therapeutic Equivalency , Southeast Asian People
7.
Stat Med ; 43(5): 833-854, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38115199

ABSTRACT

Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have "equivalent" means. The two one-sided tests (TOST) procedure, consisting in testing whether the target parameter is respectively significantly greater and lower than some pre-defined lower and upper equivalence limits, is typically used in this context, usually by checking whether the confidence interval for the target parameter lies within these limits. This intuitive and visual procedure is however known to be conservative, especially in the case of highly variable drugs, where it shows a rapid power loss, often reaching zero, hence making it impossible to conclude for equivalence when it is actually true. Here, we propose a finite sample correction of the TOST procedure, the α $$ \alpha $$ -TOST, which consists in a correction of the significance level of the TOST allowing to guarantee a test size (or type-I error rate) of α $$ \alpha $$ . This new procedure essentially corresponds to a finite sample and variability correction of the TOST procedure. We show that this procedure is uniformly more powerful than the TOST, easy to compute, and that its operating characteristics outperform the ones of its competitors. A case study about econazole nitrate deposition in porcine skin is used to illustrate the benefits of the proposed method and its advantages compared to other available procedures.


Subject(s)
Therapeutic Equivalency , Sample Size
8.
Stat Med ; 43(7): 1475-1488, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38316492

ABSTRACT

The regulatory EMA's reference scaled average bioequivalence (RSABE) approach for highly variable drugs suffers from some type I error control problems at the neighborhood of the 30% coefficient of variation (CV), where the bioequivalence (BE) limits change from constant to linearly scaled. This paper analyses BE inference methods based on the "Leveling-off" (LO) soft sigmoid expanding BE limits that were proposed as an appealing surrogate for the EMA's limits and compares both approaches, on the replicated and partially replicated crossover designs. The initially proposed version of the LO method also has type I error inflation problems, albeit attenuated. But given its more mathematically regular character, it is more suitable for analytical corrections. Here we introduce two improvements over LO, one based on the application of Howe's method and the other based on correcting the estimation error. They further reduce the type I error inflation, although it does not disappear completely. Finally, the effect of heteroscedasticity on the above results is studied. It leads to inflation or deflation of the type I error, depending on the design and the type of heteroscedasticity (variability of the test product greater than that of the reference product or the opposite). The replicated design is much more stable against these effects than the partially replicated design and maintains these improvements much better.


Subject(s)
Therapeutic Equivalency , Humans , Cross-Over Studies , Sample Size
9.
Stat Med ; 43(18): 3403-3416, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38847215

ABSTRACT

Conventional pharmacokinetic (PK) bioequivalence (BE) studies aim to compare the rate and extent of drug absorption from a test (T) and reference (R) product using non-compartmental analysis (NCA) and the two one-sided test (TOST). Recently published regulatory guidance recommends alternative model-based (MB) approaches for BE assessment when NCA is challenging, as for long-acting injectables and products which require sparse PK sampling. However, our previous research on MB-TOST approaches showed that model misspecification can lead to inflated type I error. The objective of this research was to compare the performance of model selection (MS) on R product arm data and model averaging (MA) from a pool of candidate structural PK models in MBBE studies with sparse sampling. Our simulation study was inspired by a real case BE study using a two-way crossover design. PK data were simulated using three structural models under the null hypothesis and one model under the alternative hypothesis. MB-TOST was applied either using each of the five candidate models or following MS and MA with or without the simulated model in the pool. Assuming T and R have the same PK model, our simulation shows that following MS and MA, MB-TOST controls type I error rates at or below 0.05 and attains similar or even higher power than when using the simulated model. Thus, we propose to use MS prior to MB-TOST for BE studies with sparse PK sampling and to consider MA when candidate models have similar Akaike information criterion.


Subject(s)
Computer Simulation , Cross-Over Studies , Models, Statistical , Therapeutic Equivalency , Humans , Pharmacokinetics
10.
Pharm Res ; 41(1): 105-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884679

ABSTRACT

PURPOSE: The purpose of the present study was to investigate the effect of food viscosity on the dissolution rate of a drug. There are two types of viscosity, macroviscosity and microviscosity. Macroviscosity affects the diffusion layer thickness, whereas microviscosity affects the molecular diffusion coefficient. The mass transfer coefficient (kc) in the intrinsic dissolution rate (IDR) depends on the viscosity (η) as kc ∝ ηa (a is an exponent on η). In theory, for rotating flow over a disk, if a thickener increases only macroviscosity, a = -1/6, and if it increases both macroviscosity and microviscosity equally, a = -7/6. METHOD: Benzocaine was used as a model drug. Hydroxypropyl cellulose (HPC) and methylcellulose (MC) were employed as control thickeners that increase only macroviscosity. Sucrose was employed as a control thickener for both macroviscosity and microviscosity. The FDA breakfast homogenate (BFH) was diluted with distilled water or 1 mM HCl with/without pepsin digestion. The IDR value was measured by the paddle-over-disk method. RESULTS: The η value of 30% BFH distilled water was 209 mPa∙s, about 300 times higher than distilled water. It was further increased by HCl (430 mPa∙s), and reduced by pepsin digestion (35 mPa∙s). The kc value was little affected by BFH (a = 0.00 to -0.09), slightly less than those in HPC (a = -0.19) and MC (a = -0.21). Sucrose decreased the kc value more significantly (a = -0.70). CONCLUSION: The IDR and kc values of benzocaine were little affected by BFH, suggesting that BFH increased only macroviscosity.


Subject(s)
Benzocaine , Pepsin A , Drug Liberation , Viscosity , Methylcellulose , Water , Sucrose
11.
Pharm Res ; 41(9): 1797-1809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251485

ABSTRACT

PURPOSE: Currently, for veterinary oral formulations containing one or more active pharmaceutical ingredient (API) that are not systemically absorbed and act locally within the gastrointestinal (GI) tract, the use of terminal clinical endpoint bioequivalence (BE) studies is the only option for evaluating product BE. This investigation explored the use of a totality of evidence approach as an alternative to these terminal studies. METHODS: Three formulations of tablets containing ivermectin plus praziquantel were manufactured to exhibit distinctly different in vitro release characteristics. Because these APIs are highly permeable, plasma drug concentrations served as a biomarker of in vivo dissolution. Tablets were administered to 27 healthy Beagle dogs (3-way crossover) and the rate and extent of exposure of each API for each formulation was compared in a pairwise manner. These results were compared to product relative in vitro dissolution profiles in 3 media. In vivo and in vitro BE predictions were compared. RESULTS: In vivo/in vitro inconsistencies in product relative performance were observed with both compounds when considering product performance across the 3 dissolution media. Formulation comparisons flagged major differences that could explain this outcome. CONCLUSIONS: The finding of an inconsistent in vivo/in vitro relationship confirmed that in vitro dissolution alone cannot assure product BE for veterinary locally acting GI products. However, when combined with a comparison of product composition and manufacturing method, this totality of evidence approach can successfully alert scientists to potential therapeutic inequivalence, thereby supporting FDA's efforts to Replace, Reduce, and/or Refine terminal animal studies.


Subject(s)
Cross-Over Studies , Ivermectin , Tablets , Therapeutic Equivalency , Dogs , Animals , Ivermectin/pharmacokinetics , Ivermectin/administration & dosage , Praziquantel/pharmacokinetics , Praziquantel/administration & dosage , Praziquantel/chemistry , Solubility , Administration, Oral , Male , Veterinary Drugs/pharmacokinetics , Veterinary Drugs/administration & dosage , Chemistry, Pharmaceutical/methods , Drug Liberation , Female , Bulk Drugs
12.
Pharm Res ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375241

ABSTRACT

PURPOSE: For locally-acting dry powder inhalers (DPIs), developing novel analytical tools that are able to evaluate the state of aggregation may provide a better understanding of the impact of material properties and processing parameters on the in vivo performance. This study explored the utility of the Morphologically-Directed Raman Spectroscopy (MDRS) and dissolution as orthogonal techniques to assess microstructural equivalence of the aerosolized dose of DPIs collected with an aerosol collection device. METHODS: Commercial DPIs containing different strengths of Fluticasone Propionate (FP) and Salmeterol Xinafoate (SX) as monotherapy and combination products were sourced from different regions. These inhalers were compared with aerodynamic particle size distribution (APSD), dissolution, and MDRS studies. RESULTS: APSD testing alone might not be able to explain differences reported elsewhere in in vivo studies of commercial FP/SX drug products with different Advair® strengths and/or batches. Dissolution studies demonstrated different dissolution rates between Seretide™ 100/50 and Advair® 100/50, whereas Flixotide™ 100 and Flovent® 100 had similar dissolution rates between each other. These differences in dissolution profiles were supported by MDRS results: the dissolution rate is increased if the fraction of FP associated with high soluble components is increased. Principle component analysis was used to identify the agglomerate classes that better discriminate different products. CONCLUSIONS: MDRS and dissolution studies of the aerosolized dose of DPIs were successfully used as orthogonal techniques. This study highlights the importance of further assessing in vitro tools that are able to provide a bridge between material attributes or process parameters and in vivo performance.

13.
Pharm Res ; 41(7): 1507-1520, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955999

ABSTRACT

PURPOSE: To develop a toolkit of test methods for characterizing potentially critical quality attributes (CQAs) of topical semisolid products and to evaluate how CQAs influence the rate and extent of active ingredient bioavailability (BA) by monitoring cutaneous pharmacokinetics (PK) using an In Vitro Permeation Test (IVPT). METHODS: Product attributes representing the physicochemical and structural (Q3) arrangement of matter, such as attributes of particles and globules, were assessed for a set of test acyclovir creams (Aciclostad® and Acyclovir 1A Pharma) and compared to a set of reference acyclovir creams (Zovirax® US, Zovirax® UK and Zovirax® Australia). IVPT studies were performed with all these creams using heat-separated human epidermis, evaluated with both, static Franz-type diffusion cells and a flow through diffusion cell system. RESULTS: A toolkit developed to characterize quality and performance attributes of these acyclovir topical cream products identified certain differences in the Q3 attributes and the cutaneous PK of acyclovir between the test and reference sets of products. The cutaneous BA of acyclovir from the set of reference creams was substantially higher than from the set of test creams. CONCLUSIONS: This research elucidates how differences in the composition or manufacturing of product formulations can alter Q3 attributes that modulate myriad aspects of topical product performance. The results demonstrate the importance of understanding the Q3 attributes of topical semisolid drug products, and of developing appropriate product characterization tests. The toolkit developed here can be utilized to guide topical product development, and to mitigate the risk of differences in product performance, thereby supporting a demonstration of bioequivalence (BE) for prospective topical generic products and reducing the reliance on comparative clinical endpoint BE studies.


Subject(s)
Acyclovir , Antiviral Agents , Biological Availability , Skin Absorption , Skin Cream , Therapeutic Equivalency , Acyclovir/pharmacokinetics , Acyclovir/administration & dosage , Humans , Skin Cream/pharmacokinetics , Skin Cream/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Administration, Cutaneous , Skin/metabolism
14.
Pharm Res ; 41(7): 1413-1425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898304

ABSTRACT

PURPOSE: Το formulate a methodology for the assessment of bioequivalence using metrics, which are based on the physiologically sound F.A.T. METHODS: The equations of the physiologically based finite time pharmacokinetic models for the one-and two-compartment model with one and two input stages of absorption were solved to derive metrics for the extent and rate of absorption. Simulated data were used to study the proper way for the estimation of metrics. A bioequivalence study was analyzed using these metrics. RESULTS: The rate of drug absorption was found to be equal to the slope of the amount absorbed versus time curve. The amount of drug absorbed at the end of the absorption process, corresponding to the blood concentration at F.A.T. is an indicator of the extent of absorption. The plot of the ratio test/reference of the simulated data for the amount absorbed as a function of time becomes constant beyond the end of drug absorption from the formulation exhibiting the longer absorption. The assessment of the bioequivalence study was based on the slope of the amount absorbed versus time curve for the rate of absorption, while the estimate for the constant ratio test/reference for the amount absorbed was used for the assessment of extent of absorption. CONCLUSIONS: The assessment of rate in bioequivalence studies can be based on the estimation of slope of the percent absorbed versus time curve while the constant ratio test/reference for the amount of drug absorbed is an indicator of the extent of absorption.


Subject(s)
Models, Biological , Therapeutic Equivalency , Humans , Computer Simulation , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Intestinal Absorption
15.
Pharm Res ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349693

ABSTRACT

PURPOSE: The objective of this study was to investigate whether different dispensing processes can alter the physicochemical and structural (Q3) attributes of a topical cream product, and potentially alter its performance. METHODS: Acyclovir cream, 5% (Zovirax®) is sold in the UK and other countries in a tube and a pump packaging configurations. The structural attributes of the cream dispensed from each packaging configuration were analyzed by optical microscopy, confocal Raman microscopy and cryo-scanning electron microscopy. Rheological behavior of the products was also evaluated. Product performance (rate and extent of skin delivery) was assessed by in vitro permeation tests (IVPT) using heat-separated human epidermis mounted in static vertical (Franz-type) diffusion cells. RESULTS: Differences in Q3 attributes and IVPT profiles were observed with creams dispensed from the two packaging configurations, even though the product inside each packaging appeared to be the same in Q3 attributes. Visible globules were recognized in the sample dispensed from the pump, identified as dimethicone globules by confocal Raman microscopy. Differences in rheological behaviour could be attributed to these globules as products not dispensed through the pump, demonstrated a similar rheological behaviour. Further, IVPT confirmed a reduced rate and extent to delivery across human epidermis from the product dispensed through a pump. CONCLUSIONS: Different methods of dispensing topical semisolid products can result in metamorphosis and Q3 changes that may have the potential to alter the bioavailability of an active ingredient. These findings have potential implications for product developers and regulators, related to the manufacturing and comparative testing of reference standard and prospective generic products dispensed from different packaging configurations.

16.
BMC Med Res Methodol ; 24(1): 82, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580928

ABSTRACT

BACKGROUND: This retrospective analysis aimed to comprehensively review the design and regulatory aspects of bioequivalence trials submitted to the Saudi Food and Drug Authority (SFDA) since 2017. METHODS: This was a retrospective, comprehensive analysis study. The Data extracted from the SFDA bioequivalence assessment reports were analyzed for reviewing the overall design and regulatory aspects of the successful bioequivalence trials, exploring the impact of the coefficient of variation of within-subject variability (CVw) on some design aspects, and providing an in-depth assessment of bioequivalence trial submissions that were deemed insufficient in demonstrating bioequivalence. RESULTS: A total of 590 bioequivalence trials were included of which 521 demonstrated bioequivalence (440 single active pharmaceutical ingredients [APIs] and 81 fixed combinations). Most of the successful trials were for cardiovascular drugs (84 out of 521 [16.1%]), and the 2 × 2 crossover design was used in 455 (87.3%) trials. The sample size tended to increase with the increase in the CVw in trials of single APIs. Biopharmaceutics Classification System Class II and IV drugs accounted for the majority of highly variable drugs (58 out of 82 [70.7%]) in the study. Most of the 51 rejected trials were rejected due to concerns related to the study center (n = 21 [41.2%]). CONCLUSION: This comprehensive analysis provides valuable insights into the regulatory and design aspects of bioequivalence trials and can inform future research and assist in identifying opportunities for improvement in conducting bioequivalence trials in Saudi Arabia.


Subject(s)
Drugs, Generic , Humans , Therapeutic Equivalency , Drugs, Generic/therapeutic use , Saudi Arabia , Retrospective Studies , Sample Size
17.
Pediatr Blood Cancer ; 71(3): e30813, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38110844

ABSTRACT

BACKGROUND: 6-Mercaptopurine (6MP) is the mainstay chemotherapy for acute lymphoblastic leukemia (ALL) and is conventionally available as 50 mg tablets. A new 6MP powder for oral suspension (PFOS 10 mg/mL) was developed recently by IDRS Labs, India, intended for pediatric use. A comparative pharmacokinetics of PFOS with T. mercaptopurine was conducted to determine the dose equivalence. METHODS: An open-label, randomized, two-treatment, two-period, two-sequence, single oral dose, crossover, bioequivalence study was conducted on 51 healthy adult subjects. Post hoc, a population pharmacokinetic (PopPK) model was developed using the healthy volunteer data to perform simulations with various PFOS doses and select a bioequivalent dose. Further, to confirm the safety of PFOS in pediatrics, a simulation of 6MP and 6-thioguanine exposures was performed by incorporating the formulation-specific parameters derived from the healthy volunteer study into the PopPK model in childhood ALL available in literature. RESULTS: The 6MP PFOS had 47% higher oral bioavailability compared to the reference product. Simulations using a two-compartmental PopPK model with dissolution and transit compartments showed that 40 mg of PFOS was found to be equivalent to 50 mg tablets. The simulated 6-thioguanine nucleotide concentrations in children using the dose adjusted for PFOS were between 114 and 703.6 pmol/8 × 108 RBC, which was within the range reported in pediatric ALL studies. CONCLUSION: 6MP PFOS 10 mg/mL should be administered at a 20% lower dose than the tablet to achieve comparable exposure. 6MP PFOS addresses an unmet medical need for a liquid formulation of 6MP in the Indian subcontinent.


Subject(s)
Mercaptopurine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Child , Humans , Administration, Oral , Cross-Over Studies , Mercaptopurine/administration & dosage , Powders , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Tablets , Therapeutic Equivalency , Thioguanine
18.
J Pharm Pharm Sci ; 27: 12398, 2024.
Article in English | MEDLINE | ID: mdl-38577255

ABSTRACT

Bioequivalence (BE) studies are considered the standard for demonstrating that the performance of a generic drug product in the human body is sufficiently similar to that of its comparator product. The objective of this article is to describe the recommendations from participating Bioequivalence Working Group for Generics (BEWGG) members of the International Pharmaceutical Regulators Programme (IPRP) regarding the conduct and acceptance criteria for BE studies of immediate release solid oral dosage forms. A survey was conducted among BEWGG members regarding their BE recommendations and requirements related to study subjects, study design, sample size, single or multiple dose administration, study conditions (fasting or fed), analyte to be measured, selection of product strength, drug content, handling of endogenous substances, BE acceptance criteria, and additional design aspects. All members prefer conducting single dose cross-over designed studies in healthy subjects with a minimum of 12 subjects and utilizing the parent drug data to assess BE. However, differences emerged among the members when the drug's pharmacokinetics and pharmacodynamics become more complex, such that the study design (e.g., fasting versus fed conditions) and BE acceptance criteria (e.g., highly variable drugs, narrow therapeutic index drugs) may be affected. The survey results and discussions were shared with the ICH M13 Expert Working Group (EWG) and played an important role in identifying and analyzing gaps during the harmonization process. The draft ICH M13A guideline developed by the M13 EWG was endorsed by ICH on 20 December 2022, under Step 2.


Subject(s)
Drugs, Generic , Research Design , Humans , Therapeutic Equivalency
19.
Xenobiotica ; : 1-13, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39126638

ABSTRACT

The advanced in silico simulation tools, such as physiologically based biopharmaceutics models (PBBM) or physiologically based pharmacokinetic models (PBPK), play critical role in model informed formulation development. This approach has been successfully implemented in the present case for development of novel omeprazole delayed-release orally disintegrating tablets (ODT) formulation, aimed to enhance patient compliance.PBBM was developed using physicochemical, biopharmaceutical, and dissolution data. The dissolution studies for pilot formulations were conducted in biopredictive media in fasting (0.1 N HCl followed by pH 6.8) and fed (pH 5 followed by pH 6.8) conditions. The model was extensively validated in three stages: pilot fasted, pilot fed virtual bioequivalence and food effect assessments. Impressively, the model was able to predict both passed and failed batches appropriately.Based on insights from the pilot study, a higher scale pivotal formulation was optimised. Prospective predictions were made for pivotal formulations using validated model and bio results were found to be in line with model predictions in fasting condition.Overall, a rationale and patient compliant formulation was developed using innovative modelling approach and filed to regulatory agency. The novel omeprazole formulation enhanced patient compliance through ease of administration thereby circumventing challenges of conventional formulation.

20.
Biomed Chromatogr ; 38(6): e5860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38558021

ABSTRACT

A liquid chromatography-tandem mass spectrometry method with vonoprazan fumarate-d4 as a stable isotope-labeled internal standard was developed and validated aiming at quantification of vonoprazan fumarate in human plasma for a bioequivalence study. Chromatographic separation was achieved by acetonitrile one-step protein precipitation using a gradient elution of 0.1% formic acid aqueous solution and acetonitrile with a run time of 3.65 min. Detection was carried out on a tandem mass spectrometer in multiple reaction monitoring mode via a positive electrospray ionization interface. The multiple reaction monitoring mode of precursor-product ion transitions for vonoprazan fumarate and vonoprazan fumarate-d4 were m/z 346.0 → 315.1 and 350.0 → 316.0, respectively. The linear range was 0.150-60.000 ng/ml. This method was fully validated with acceptable results in terms of selectivity, carryover, lower limit of quantification, calibration curve, accuracy, precision, dilution effect, matrix effect, stability, recovery and incurred sample reanalysis. A successful application of this method was realized in the bioequivalence study of vonoprazan fumarate tablet (20 mg) among healthy Chinese volunteers.


Subject(s)
Pyrroles , Sulfonamides , Tandem Mass Spectrometry , Therapeutic Equivalency , Humans , Tandem Mass Spectrometry/methods , Sulfonamides/blood , Sulfonamides/pharmacokinetics , Sulfonamides/chemistry , Pyrroles/pharmacokinetics , Pyrroles/blood , Pyrroles/chemistry , Reproducibility of Results , Linear Models , Chromatography, Liquid/methods , Limit of Detection , Male , Adult , Liquid Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL