Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 399
Filter
Add more filters

Publication year range
1.
Mol Cell Proteomics ; 22(7): 100577, 2023 07.
Article in English | MEDLINE | ID: mdl-37209816

ABSTRACT

Accurate biomarkers are a crucial and necessary precondition for precision medicine, yet existing ones are often unspecific and new ones have been very slow to enter the clinic. Mass spectrometry (MS)-based proteomics excels by its untargeted nature, specificity of identification, and quantification, making it an ideal technology for biomarker discovery and routine measurement. It has unique attributes compared to affinity binder technologies, such as OLINK Proximity Extension Assay and SOMAscan. In in a previous review in 2017, we described technological and conceptual limitations that had held back success. We proposed a 'rectangular strategy' to better separate true biomarkers by minimizing cohort-specific effects. Today, this has converged with advances in MS-based proteomics technology, such as increased sample throughput, depth of identification, and quantification. As a result, biomarker discovery studies have become more successful, producing biomarker candidates that withstand independent verification and, in some cases, already outperform state-of-the-art clinical assays. We summarize developments over the last years, including the benefits of large and independent cohorts, which are necessary for clinical acceptance. Shorter gradients, new scan modes, and multiplexing are about to drastically increase throughput, cross-study integration, and quantification, including proxies for absolute levels. We have found that multiprotein panels are inherently more robust than current single analyte tests and better capture the complexity of human phenotypes. Routine MS measurement in the clinic is fast becoming a viable option. The full set of proteins in a body fluid (global proteome) is the most important reference and the best process control. Additionally, it increasingly has all the information that could be obtained from targeted analysis although the latter may be the most straightforward way to enter regular use. Many challenges remain, not least of a regulatory and ethical nature, but the outlook for MS-based clinical applications has never been brighter.


Subject(s)
Body Fluids , Proteomics , Humans , Proteomics/methods , Mass Spectrometry/methods , Biomarkers/analysis , Proteome/metabolism , Body Fluids/chemistry , Body Fluids/metabolism
2.
Mass Spectrom Rev ; 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37357849

ABSTRACT

Peptides carry important functions in normal physiological and pathophysiological processes and can serve as clinically useful biomarkers. Given the ability to diffuse passively across endothelial barriers, endogenous peptides can be examined in several body fluids, including among others urine, blood, and cerebrospinal fluid. This review article provides an update on the recently published literature that reports on investigating native peptides in body fluids using mass spectrometry-based platforms, specifically those studies that focus on the application of peptides as biomarkers to improve clinical management. We emphasize on the critical evaluation of their clinical value, how close they are to implementation, and the associated challenges and potential solutions to facilitate clinical implementation. During the last 5 years, numerous studies have been published, demonstrating the increased interest in mass spectrometry for the assessment of endogenous peptides as potential biomarkers. Importantly, the presence of few successful examples of implementation in patients' management and/or in the context of clinical trials indicates that the peptide biomarker field is evolving. Nevertheless, most studies still report evidence based on small sample size, while validation phases are frequently missing. Therefore, a gap between discovery and implementation still exists.

3.
Electrophoresis ; 45(5-6): 392-399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072648

ABSTRACT

An analytical method based on capillary electrophoresis (CE) using capacitively coupled contactless conductivity detection (C4 D) was developed and validated for fast, straightforward, and reliable determination of lactate in artificial and human sweat samples. The background electrolyte was composed of equimolar concentrations (10 mmol/L) of 2-(N-morpholino)ethanesulfonic acid and histidine, with 0.2 mmol/L of cetyltrimethylammonium bromide as electroosmotic flow inverter. The limit of detection and quantification were 3.1 and 10.3 µmol/L, respectively. Recoveries in the 97 to 118% range were obtained using sweat samples spiked with lactate at three concentration levels, indicating an acceptable accuracy. The intraday and interday precisions were 1.49 and 7.08%, respectively. The proposed CE-C4 D method can be a starting point for monitoring lactate concentrations in sweat samples for diagnostics, physiological studies, and sports performance assessment applications.


Subject(s)
Alkanesulfonic Acids , Lactic Acid , Morpholines , Sweat , Humans , Cetrimonium , Electrophoresis, Capillary/methods , Electric Conductivity
4.
Int J Legal Med ; 138(3): 781-786, 2024 May.
Article in English | MEDLINE | ID: mdl-38030939

ABSTRACT

The identification of the type of body fluid in crime scene evidence may be crucial, so that the efforts are high to reduce the complexity of these analyses and to minimize time and costs. Reliable immunochromatographic rapid tests for specific and sensitive identification of blood, saliva, urine and sperm secretions are already routinely used in forensic genetics. The recently introduced Seratec® PMB test is said to detect not only hemoglobin, but also differentiate menstrual blood from other secretions containing blood (cells) by detecting D-dimers. In our experimental set-up, menstrual blood could be reliably detected in mock forensic samples. Here, the result was independent of sample age and extraction buffer volume. It was also successfully demonstrated that all secretions without blood cells were negative for both, hemoglobin (P) and D-dimer (M). However, several blood cell-containing secretions/tissues comprising blood (injury), nasal blood, postmortem blood and wound crust also demonstrated positive results for D-dimer (M) and were therefore false positives. For blood (injury) and nasal blood, this result was reproduced for different extraction buffer volumes. The results of this study clearly demonstrate that the Seratec® PMB test is neither useful nor suitable for use in forensic genetics because of the great risk of false positive results which can lead to false conclusions, especially in sexual offense or violent acts.


Subject(s)
Body Fluids , Semen , Humans , Male , Semen/chemistry , Body Fluids/chemistry , Saliva/chemistry , Bodily Secretions/chemistry , Hemoglobins/analysis , Forensic Genetics/methods
5.
Int J Legal Med ; 138(2): 329-350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37770641

ABSTRACT

At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Male , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Circular , Piwi-Interacting RNA , RNA, Untranslated , Forensic Medicine
6.
Cytopathology ; 35(2): 275-282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095270

ABSTRACT

BACKGROUND: Burkitt lymphoma (BL) is an aggressive high-grade B-cell non-Hodgkin lymphoma commonly diagnosed in young age and is known to involve extra nodal sites. But the involvement of body fluids by BL is an uncommon presentation. Rapid diagnosis of BL is vital to prevent complications like tumour lysis syndrome. Cytological examination of body fluids continues to be an indispensable tool for rapid diagnosis of BL. OBJECTIVES: In this study, we aim to study the clinical, cytomorphological and immunophenotypic characteristics of BL involving serous effusions and other fluids. MATERIALS AND METHODS: In this retrospective study, 17 cases reported as BL in fluid cytology from 2016 to 2022 were collected and reviewed. We performed a comprehensive analysis of the clinical data, cytomorphological features, immunophenotyping data along with the haematological workup of these cases. We have also compared with the histopathological diagnosis for those cases where biopsy was available. RESULTS: BL more commonly involved ascitic fluid (52%), followed by pleural fluid (4 cases) and cerebrospinal fluid (CSF; 4 cases). Primary diagnosis of BL in fluid was done in 88% of the cases. Bone marrow involvement was noted in two cases. Cytological smears showed discrete monomorphous population of medium-sized atypical lymphoid cells with frequent apoptotic bodies. Classic cytoplasmic punched out vacuoles were observed in 88% of the cases. Immunophenotyping data was available for 12 cases in which tumour cells showed positivity for CD20 (100%), CD10 (4 of 7 cases), BCL6 (3 of 5 cases) and cMYC (7 of 7 cases-100%) and were negative for Terminal deoxynucleotidyl transferase (TdT) (11 of 11 cases). Mean Ki67 labelling index was 95%. Histopathological diagnosis was available for 9 cases, and there was 100% agreement between cytological and histopathological diagnosis in 7 cases. CONCLUSION: Precise diagnosis of BL can be rendered in body fluids by identification of classic cytomorphological features and by performing supportive ancillary tests in fluids for immunophenotyping.


Subject(s)
Burkitt Lymphoma , Humans , Burkitt Lymphoma/diagnosis , Burkitt Lymphoma/pathology , Cytodiagnosis , Cytology , Immunophenotyping , Retrospective Studies , Tertiary Healthcare
7.
Proteomics ; 23(23-24): e2200243, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37474490

ABSTRACT

Cellular communication relies on signaling circuits whose statuses are mainly modulated by soluble biomolecules such as carbohydrates, lipids, proteins, and metabolites as well as extracellular vesicles (EVs). Therefore, the active secretion of such biomolecules is critical for both cell homeostasis and proper pathophysiological responses in a timely fashion. In this context, proteins are among the main modulators of such biological responses. Hence, profiling cell line secretomes may be an opportunity for the identification of "signatures" of specific cell types (i.e., stromal or metastatic cells) with important prognostic/therapeutic value. This review will focus on the biological implications of cell secretomes in the context of cancer, as well as their functional roles in shaping the tumoral microenvironment (TME) and communication status of participating cells.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Secretome , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction , Cell Communication , Adaptation, Physiological , Tumor Microenvironment
8.
Emerg Infect Dis ; 29(10): 2065-2072, 2023 10.
Article in English | MEDLINE | ID: mdl-37735747

ABSTRACT

An outbreak of human mpox infection in nonendemic countries appears to have been driven largely by transmission through body fluids or skin-to-skin contact during sexual activity. We evaluated the stability of monkeypox virus (MPXV) in different environments and specific body fluids and tested the effectiveness of decontamination methodologies. MPXV decayed faster at higher temperatures, and rates varied considerably depending on the medium in which virus was suspended, both in solution and on surfaces. More proteinaceous fluids supported greater persistence. Chlorination was an effective decontamination technique, but only at higher concentrations. Wastewater was more difficult to decontaminate than plain deionized water; testing for infectious MPXV could be a helpful addition to PCR-based wastewater surveillance when high levels of viral DNA are detected. Our findings suggest that, because virus stability is sufficient to support environmental MPXV transmission in healthcare settings, exposure and dose-response will be limiting factors for those transmission routes.


Subject(s)
Body Fluids , Wastewater , Humans , Monkeypox virus/genetics , Wastewater-Based Epidemiological Monitoring , DNA, Viral
9.
J Pediatr ; 270: 113774, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37839510

ABSTRACT

OBJECTIVE: To determine if oral secretions (OS) can be used as a noninvasively collected body fluid, in lieu of tracheal aspirates (TA), to track respiratory status and predict bronchopulmonary dysplasia (BPD) development in infants born <32 weeks. STUDY DESIGN: This was a retrospective, single center cohort study that included data and convenience samples from week-of-life (WoL) 3 from 2 independent preterm infant cohorts. Using previously banked samples, we applied our sample-sparing, high-throughput proteomics technology to compare OS and TA proteomes in infants born <32 weeks admitted to the Neonatal Intensive Care Unit (NICU) (Cohort 1; n = 23 infants). In a separate similar cohort, we mapped the BPD-associated changes in the OS proteome (Cohort 2; n = 17 infants including 8 with BPD). RESULTS: In samples collected during the first month of life, we identified 607 proteins unique to OS, 327 proteins unique to TA, and 687 overlapping proteins belonging to pathways involved in immune effector processes, neutrophil degranulation, leukocyte mediated immunity, and metabolic processes. Furthermore, we identified 37 OS proteins that showed significantly differential abundance between BPD cases and controls: 13 were associated with metabolic and immune dysregulation, 10 of which (eg, SERPINC1, CSTA, BPI) have been linked to BPD or other prematurity-related lung disease based on blood or TA investigations, but not OS. CONCLUSIONS: OS are a noninvasive, easily accessible alternative to TA and amenable to high-throughput proteomic analysis in preterm newborns. OS samples hold promise to yield actionable biomarkers of BPD development, particularly for prospective categorization and timely tailored treatment of at-risk infants with novel therapies.

10.
Mass Spectrom Rev ; 41(5): 842-860, 2022 09.
Article in English | MEDLINE | ID: mdl-33759206

ABSTRACT

The lacrimal film has attracted increasing interest in the last decades as a potential source of biomarkers of physiopathological states, due to its accessibility, moderate complexity, and responsiveness to ocular and systemic diseases. High-performance liquid chromatography-mass spectrometry (LC-MS) has led to effective approaches to tear proteomics, despite the intrinsic limitations in sample amounts. This review focuses on the recent progress in strategy and technology, with an emphasis on the potential for personalized medicine. After an introduction on lacrimal-film composition, examples of applications to biomarker discovery are discussed, comparing approaches based on pooled-sample and single-tear analysis. Then, the most critical steps of the experimental pipeline, that is, tear collection, sample fractionation, and LC-MS implementation, are discussed with reference to proteome-coverage optimization. Advantages and challenges of the alternative procedures are highlighted. Despite the still limited number of studies, tear quantitative proteomics, including single-tear investigation, could offer unique contributions to the identification of low-invasiveness, sustained-accessibility biomarkers, and to the development of personalized approaches to therapy and diagnosis.


Subject(s)
Proteomics , Tears , Biomarkers/analysis , Mass Spectrometry/methods , Proteome/analysis , Proteomics/methods , Tears/chemistry
11.
Electrophoresis ; 44(5-6): 501-520, 2023 03.
Article in English | MEDLINE | ID: mdl-36416190

ABSTRACT

The expression of gangliosides in central nervous system is a few times higher than in the extraneural tissue, a characteristic highlighting their major role at this level. Although in very low amounts, gangliosides are ubiquitously distributed in body fluids too, where, depending on many factors, including pathological states, their composition fluctuates, thus having diagnostic value. Ganglioside investigation in biological fluids, which, except for cerebrospinal fluid (CSF), may be sampled noninvasively, was for years impeded by the limited sensitivity of the analytical instrumentation available in glycomics. However, because the last decade has witnessed significant developments in biological mass spectrometry (MS) and the hyphenated separation techniques, marked by a major increase in sensitivity, reproducibility, and data reliability, ganglioside research started to be focused on biofluid analysis by separation techniques coupled to MS. In this context, our review presents the achievements in this emerging field of gangliosidomics, with a particular emphasis on modern liquid chromatography (LC), thin-layer chromatography, hydrophilic interaction LC, and ion mobility separation coupled to high-performance MS, as well as the results generated by these systems and allied experimental procedures in profiling and structural analysis of gangliosides in healthy or diseased body fluids, such as CSF, plasma/serum, and milk.


Subject(s)
Body Fluids , Gangliosides , Gangliosides/analysis , Reproducibility of Results , Mass Spectrometry/methods , Chromatography, Liquid/methods , Body Fluids/chemistry
12.
Exp Physiol ; 108(2): 188-206, 2023 02.
Article in English | MEDLINE | ID: mdl-36622358

ABSTRACT

NEW FINDINGS: What is the central question of the study? Ventilation increases during prolonged intense exercise, but the impact of dehydration and hyperthermia, with associated blunting of pulmonary circulation, and independent influences of dehydration, hyperthermia and sympathoadrenal discharge on ventilatory and pulmonary gas exchange responses remain unclear. What is the main finding and its importance? Dehydration and hyperthermia led to hyperventilation and compensatory adjustments in pulmonary CO2 and O2 exchange, such that CO2 output increased and O2 uptake remained unchanged despite the blunted circulation. Isolated hyperthermia and adrenaline infusion, but not isolated dehydration, increased ventilation to levels similar to combined dehydration and hyperthermia. Hyperthermia is the main stimulus increasing ventilation during prolonged intense exercise, partly via sympathoadrenal activation. ABSTRACT: The mechanisms driving hyperthermic hyperventilation during exercise are unclear. In a series of retrospective analyses, we evaluated the impact of combined versus isolated dehydration and hyperthermia and the effects of sympathoadrenal discharge on ventilation and pulmonary gas exchange during prolonged intense exercise. In the first study, endurance-trained males performed two submaximal cycling exercise trials in the heat. On day 1, participants cycled until volitional exhaustion (135 ± 11 min) while experiencing progressive dehydration and hyperthermia. On day 2, participants maintained euhydration and core temperature (Tc ) during a time-matched exercise (control). At rest and during the first 20 min of exercise, pulmonary ventilation ( V ̇ E ${\skew2\dot V_{\rm{E}}}$ ), arterial blood gases, CO2 output and O2 uptake were similar in both trials. At 135 ± 11 min, however, V ̇ E ${\skew2\dot V_{\rm{E}}}$ was elevated with dehydration and hyperthermia, and this was accompanied by lower arterial partial pressure of CO2 , higher breathing frequency, arterial partial pressure of O2 , arteriovenous CO2 and O2 differences, and elevated CO2 output and unchanged O2 uptake despite a reduced pulmonary circulation. The increased V ̇ E ${\skew2\dot V_{\rm{E}}}$ was closely related to the rise in Tc and circulating catecholamines (R2  ≥ 0.818, P ≤ 0.034). In three additional studies in different participants, hyperthermia independently increased V ̇ E ${\skew2\dot V_{\rm{E}}}$ to an extent similar to combined dehydration and hyperthermia, whereas prevention of hyperthermia in dehydrated individuals restored V ̇ E ${\skew2\dot V_{\rm{E}}}$ to control levels. Furthermore, adrenaline infusion during exercise elevated both Tc and V ̇ E ${\skew2\dot V_{\rm{E}}}$ . These findings indicate that: (1) adjustments in pulmonary gas exchange limit homeostatic disturbances in the face of a blunted pulmonary circulation; (2) hyperthermia is the main stimulus increasing ventilation during prolonged intense exercise; and (3) sympathoadrenal activation might partly mediate the hyperthermic hyperventilation.


Subject(s)
Hyperthermia, Induced , Hyperventilation , Male , Humans , Carbon Dioxide , Dehydration , Retrospective Studies , Pulmonary Ventilation , Respiration , Pulmonary Gas Exchange/physiology , Epinephrine , Oxygen Consumption/physiology
13.
Int J Legal Med ; 137(6): 1683-1692, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37535091

ABSTRACT

The determination of cellular origin of DNA is a useful method in forensic genetics and complements identification of the DNA donor by STR analysis, since it could provide helpful information for the reconstruction of crime scenes and verify or disprove the descriptions of involved people. There already exist several rapid/pre-tests for several secretions (blood, sperm secretion, saliva, and urine), RNA-based expression analyses (blood, menstrual blood, saliva, vaginal secretion, nasal secretion, and sperm secretion), or specific CpG methylation analyses (nasal blood, blood, saliva, vaginal secretion, nasal secretion, and sperm secretion) for determining the cell type.To identify and to discriminate seven different body fluids and mixtures thereof in a simple workflow from each other, assays based on specific methylation patterns at several CpGs combined with pre-/rapid tests were set up in this study. For each of the seven secretions listed above, we selected the CpG marker achieving the highest possible discrimination (out of 30 markers tested). Validation studies confirmed a definite identification for saliva, vaginal secretion, and semen secretion in 100% of samples as well as discrimination from all other secretions. Moreover, the unambiguously correctly determined proportion of nasal samples, blood and menstrual blood varied between 61% (nasal blood) and 85% (nasal secretion).In summary, our workflow proved to be an easy and useful tool in forensic analysis for the identification and discrimination of seven different body fluids often found at a crime scene.

14.
Epidemiol Infect ; 152: e35, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37218613

ABSTRACT

The study investigated the sero-status of human immunodeficiency virus among healthcare workers in Addis Ababa public hospitals. A multi-centered, institutional-based, cross-sectional study was conducted from 18 September 2022 to 30 October 2022. A simple random sampling method and a semi-structured, self-administered questionnaire were used to collect the data, which were analyzed using the Statistical Package for Social Sciences (SPSS) version 25. A binary logistic regression model was used to identify the factors associated with the human immunodeficiency virus sero-status of healthcare workers post exposure to infected blood and body fluids. Of the 420 study participants who were exposed to blood and body fluids, 403 (96%) were non-reactive. Healthcare workers who had 20-29 years of work experience had approximately six times higher odds of testing positive for the human immunodeficiency virus (AOR = 6.21, 95% CI: 2.39, 9.55). Healthcare workers who did not use personal protective equipment properly had five times higher odds of testing positive for the human immunodeficiency virus (AOR = 5.02, CI: 3.73, 9.51). This study showed that, among those healthcare workers who tested positive for the human immunodeficiency virus infection, the majority were from the emergency department. Healthcare workers who did not use personal protective equipment properly had higher odds of testing positive for the human immunodeficiency virus.


Subject(s)
Body Fluids , HIV Infections , Humans , Cross-Sectional Studies , Ethiopia/epidemiology , Health Personnel , HIV Infections/epidemiology , Hospitals, Public
15.
J Sep Sci ; 46(23): e2300557, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37803927

ABSTRACT

This study developed a facile, highly sensitive technique for extracting and quantifying barbiturates in serum samples. This method combined ultrasound and surfactant-assisted dispersive liquid-liquid microextraction with poly(ethylene oxide)-mediated stacking in capillary electrophoresis. Factors influencing the extraction and stacking performance, such as the type and volume of extraction solvents, the type and concentration of surfactant, extraction time, salt additives, sample matrix, solution pH, and composition of the background electrolyte, were carefully studied and optimized to achieve the optimal detection sensitivity. Under the optimized extraction (injecting 140 µL C2 H4 Cl2 into 1 mL of sample with pH 4 (5 mM sodium phosphate containing 0.05 mM Tween 20 and sonication for 1 min) and separation conditions (150 mM tris(hydroxymethyl)aminomethane-borate with pH 8.5 containing 0.5% (m/v) poly(ethylene oxide)), the limits of detection (signal-to-noise ratio = 3) of five barbiturates ranged from 0.20 to 0.33 ng/mL, and the calculated sensitivity improvement ranged from 868- to 1700-fold. The experimental results revealed excellent linearity (R2  > 0.99), with relative standard deviations of 2.1%-3.4% for the migration time and 4.3%-5.7% for the peak area. The recoveries of the spiked serum samples were 97.1% -110.3%. Our proposed approach offers a rapid and practical method for quantifying barbiturates in biological fluids.


Subject(s)
Liquid Phase Microextraction , Surface-Active Agents , Humans , Polyethylene Glycols , Ethylene Oxide , Liquid Phase Microextraction/methods , Solvents/chemistry , Limit of Detection
16.
Mikrochim Acta ; 190(10): 390, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37700117

ABSTRACT

Zirconium copper oxide microflowers (Zr/CuO MF) based non-enzymatic sensor was developed for glucose detection in saliva, urine, and blood. An easy urea hydrolysis method was employed for the synthesis of the metal oxide and further calcined to improve the catalytic property. The flower-like morphology of the Zr/CuO was confirmed by SEM analysis and the presence of copper and zirconium was examined using energy dispersive X-ray analysis (EDAX). The Zr/CuO MF modified screen-printed electrodes exhibited excellent glucose sensing performance in 0.15 M NaOH medium and could quantify glucose in the range from 10 µM to 27 mM. A high sensitivity of 1.815 ± 0.003 mA mM-1 cm-2 was obtained for lower glucose concentration from 15 µM to 3 mM and 1.250 ± 0.006 mA mM-1 cm-2 for higher concentration glucose from 3 to 27 mM. The limit of detection of the fabricated sensor was found to be 0.8 µM. The sensor displayed high selectivity and stability towards glucose in different body fluids like saliva, urine, and blood serum at a working potential of 0.6 V (vs. Ag/AgCl). In saliva, urine, and serum samples, the sensor exhibited excellent recovery of 95-108, 92-108, and 93-101% in saliva, urine, and serum, respectively, with a relative standard deviation of less than 10%, demonstrating high accuracy and reliability of the sensor. The developed sensor is promising for developing an invasive and non-invasive point-of-care testing device for glucose detection.


Subject(s)
Body Fluids , Saliva , Serum , Copper , Glucose , Zirconium , Reproducibility of Results , Oxides
17.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762257

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a group of fluorinated, organic, man-made chemicals; they do not occur naturally in the environment. This study aimed to determine the profile and content of PFASs in the volunteers' blood plasma and urine after the consumption of fermented red beetroot juice and then correlated it with the blood parameters. Over 42 days, 24 healthy volunteers ingested 200 mL/60 kg of body weight of fermented red beetroot juice. PFASs were analyzed using the micro-HPLC-MS/MS method. Five perfluoroalkyl substances were found in the volunteers' body fluids. After consuming the juice, it was discovered that regarding the perfluorocarboxylic acids, a downward trend was observed, while regarding the perfluoroalkane sulfonates, and their plasma content showed a statistically significant upward trend. Analysis of the hematology parameters indicated that the intake of fermented red beetroot juice showed a significant decrease in mean corpuscular volume (MCV), platelets concentration, mean platelet volume (MPV), platelet large cell ratio (P-LCR) at the significance level p < 0.01, and hematocrit (p < 0.05). On the other hand, the dietary intervention also indicated a significant (p < 0.01) increase in corpuscular/cellular hemoglobin concentration (MCHC). In the case of blood biochemistry, no significant change was observed in the blood samples after the intake of the fermented beetroot juice. However, a decreasing tendency of total cholesterol and low-density lipoprotein concentration (LDL-C) was observed. Based on the presented results, there is a need to analyze and monitor health-promoting food regarding undesirable substances and their impact on consumer health.


Subject(s)
Body Fluids , Fluorocarbons , Humans , Human Body , Tandem Mass Spectrometry , Plasma , Antioxidants
18.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240351

ABSTRACT

Neurodegenerative disorders, which are currently incurable diseases of the nervous system, are a constantly growing social concern. They are progressive and lead to gradual degeneration and/or death of nerve cells, resulting in cognitive deterioration or impaired motor functions. New therapies that would ensure better treatment results and contribute to a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Vanadium (V), which is an element with a wide range of impacts on the mammalian organism, is at the forefront among the different metals studied for their potential therapeutic use. On the other hand, it is a well-known environmental and occupational pollutant and can exert adverse effects on human health. As a strong pro-oxidant, it can generate oxidative stress involved in neurodegeneration. Although the detrimental effects of vanadium on the CNS are relatively well recognized, the role of this metal in the pathophysiology of various neurological disorders, at realistic exposure levels in humans, is not yet well characterized. Hence, the main goal of this review is to summarize data on the neurological side effects/neurobehavioral alterations in humans, in relation to vanadium exposure, with the focus on the levels of this metal in biological fluids/brain tissues of subjects with some neurodegenerative syndromes. Data collected in the present review indicate that vanadium cannot be excluded as a factor playing a pivotal role in the etiopathogenesis of neurodegenerative illnesses, and point to the need for additional extensive epidemiological studies that will provide more evidence supporting the relationship between vanadium exposure and neurodegeneration in humans. Simultaneously, the reviewed data, clearly showing the environmental impact of vanadium on health, suggest that more attention should be paid to chronic diseases related to vanadium and to the assessment of the dose-response relationship.


Subject(s)
Environmental Pollutants , Neurodegenerative Diseases , Animals , Humans , Vanadium/toxicity , Brain , Environmental Pollutants/toxicity , Oxidative Stress , Neurodegenerative Diseases/chemically induced , Mammals
19.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674873

ABSTRACT

S100A6, also known as calcyclin, is a calcium-binding protein belonging to the S100 protein family. It was first identified and purified more than 30 years ago. Initial structural studies, focused mostly on the mode and affinity of Ca2+ binding and resolution of the resultant conformational changes, were soon complemented by research on its expression, localization and identification of binding partners. With time, the use of biophysical methods helped to resolve the structure and versatility of S100A6 complexes with some of its ligands. Meanwhile, it became clear that S100A6 expression was altered in various pathological states and correlated with the stage/progression of many diseases, including cancers, indicative of its important, and possibly causative, role in some of these diseases. This, in turn, prompted researchers to look for the mechanism of S100A6 action and to identify the intermediary signaling pathways and effectors. After all these years, our knowledge on various aspects of S100A6 biology is robust but still incomplete. The list of S100A6 ligands is growing all the time, as is our understanding of the physiological importance of these interactions. The present review summarizes available data concerning S100A6 expression/localization, interaction with intracellular and extracellular targets, involvement in Ca2+-dependent cellular processes and association with various pathologies.


Subject(s)
Neoplasms , S100 Proteins , Humans , S100 Calcium Binding Protein A6/metabolism , Ligands , S100 Proteins/chemistry , Cell Cycle Proteins/metabolism , Signal Transduction
20.
Fa Yi Xue Za Zhi ; 39(5): 465-470, 2023 Oct 25.
Article in English, Zh | MEDLINE | ID: mdl-38006266

ABSTRACT

OBJECTIVES: To explore the feasibility of genetic marker detection of semen-specific coding region single nucleotide polymorphism (cSNP) based on SNaPshot technology in semen stains and mixed body fluid identification. METHODS: Genomic DNA (gDNA) and total RNA were extracted from 16 semen stains and 11 mixtures composed of semen and venous blood, and the total RNA was reverse transcribed into complementary DNA (cDNA). The cSNP genetic markers were screened on the validated semen-specific mRNA coding genes. The cSNP multiplex detection system based on SNaPshot technology was established, and samples were genotyped by capillary electrophoresis (CE). RESULTS: A multiplex detection system containing 5 semen-specific cSNPs was successfully established. In 16 semen samples, except the cSNP located in the TGM4 gene showed allele loss in cDNA detection results, the gDNA and cDNA typing results of other cSNPs were highly consistent. When detecting semen-venous blood mixtures, the results of cSNP typing detected were consistent with the genotype of semen donor and were not interfered by the genotype of venous blood donor. CONCLUSIONS: The method of semen-specific cSNPs detection by SNaPshot technology method can be applied to the genotyping of semen (stains) and provide information for determining the origin of semen in mixed body fluids (stains).


Subject(s)
Body Fluids , Semen , Genetic Markers , Polymorphism, Single Nucleotide , DNA, Complementary/genetics , RNA, Messenger/genetics , DNA , Saliva , Forensic Genetics/methods
SELECTION OF CITATIONS
SEARCH DETAIL