Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.092
Filter
Add more filters

Publication year range
1.
Cell ; 187(15): 3888-3903.e18, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38870946

ABSTRACT

Defective host defenses later in life are associated with changes in immune cell activities, suggesting that age-specific considerations are needed in immunotherapy approaches. In this study, we found that PD-1 and CTLA4-based cancer immunotherapies are unable to eradicate tumors in elderly mice. This defect in anti-tumor activity correlated with two known age-associated immune defects: diminished abundance of systemic naive CD8+ T cells and weak migratory activities of dendritic cells (DCs). We identified a vaccine adjuvant, referred to as a DC hyperactivator, which corrects DC migratory defects in the elderly. Vaccines containing tumor antigens and DC hyperactivators induced T helper type 1 (TH1) CD4+ T cells with cytolytic activity that drive anti-tumor immunity in elderly mice. When administered early in life, DC hyperactivators were the only adjuvant identified that elicited anti-tumor CD4+ T cells that persisted into old age. These results raise the possibility of correcting age-associated immune defects through DC manipulation.


Subject(s)
CD4-Positive T-Lymphocytes , Dendritic Cells , Mice, Inbred C57BL , Dendritic Cells/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Mice , Aging/immunology , CD8-Positive T-Lymphocytes/immunology , Immunotherapy/methods , Cancer Vaccines/immunology , Female , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/metabolism , CTLA-4 Antigen/metabolism , Cell Movement , Antigens, Neoplasm/immunology
2.
Cell ; 187(16): 4355-4372.e22, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121848

ABSTRACT

Overcoming immune-mediated resistance to PD-1 blockade remains a major clinical challenge. Enhanced efficacy has been demonstrated in melanoma patients with combined nivolumab (anti-PD-1) and relatlimab (anti-LAG-3) treatment, the first in its class to be FDA approved. However, how these two inhibitory receptors synergize to hinder anti-tumor immunity remains unknown. Here, we show that CD8+ T cells deficient in both PD-1 and LAG-3, in contrast to CD8+ T cells lacking either receptor, mediate enhanced tumor clearance and long-term survival in mouse models of melanoma. PD-1- and LAG-3-deficient CD8+ T cells were transcriptionally distinct, with broad TCR clonality and enrichment of effector-like and interferon-responsive genes, resulting in enhanced IFN-γ release indicative of functionality. LAG-3 and PD-1 combined to drive T cell exhaustion, playing a dominant role in modulating TOX expression. Mechanistically, autocrine, cell-intrinsic IFN-γ signaling was required for PD-1- and LAG-3-deficient CD8+ T cells to enhance anti-tumor immunity, providing insight into how combinatorial targeting of LAG-3 and PD-1 enhances efficacy.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Interferon-gamma , Lymphocyte Activation Gene 3 Protein , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Interferon-gamma/metabolism , Mice , Antigens, CD/metabolism , Autocrine Communication , Humans , Melanoma/immunology , Melanoma/drug therapy , Female , Cell Line, Tumor , Melanoma, Experimental/immunology , T-Cell Exhaustion
3.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37028428

ABSTRACT

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Subject(s)
Limosilactobacillus reuteri , Melanoma , Tumor Microenvironment , Humans , Diet , Immune Checkpoint Inhibitors , Limosilactobacillus reuteri/metabolism , Melanoma/therapy , Tryptophan/metabolism , CD8-Positive T-Lymphocytes/immunology , Receptors, Aryl Hydrocarbon/agonists
4.
Cell ; 183(2): 347-362.e24, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33064988

ABSTRACT

Neoantigens arise from mutations in cancer cells and are important targets of T cell-mediated anti-tumor immunity. Here, we report the first open-label, phase Ib clinical trial of a personalized neoantigen-based vaccine, NEO-PV-01, in combination with PD-1 blockade in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. This analysis of 82 patients demonstrated that the regimen was safe, with no treatment-related serious adverse events observed. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination in all of the patients. The vaccine-induced T cells had a cytotoxic phenotype and were capable of trafficking to the tumor and mediating cell killing. In addition, epitope spread to neoantigens not included in the vaccine was detected post-vaccination. These data support the safety and immunogenicity of this regimen in patients with advanced solid tumors (Clinicaltrials.gov: NCT02897765).


Subject(s)
Cancer Vaccines/immunology , Immunotherapy/methods , Precision Medicine/methods , Aged , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Female , Humans , Kaplan-Meier Estimate , Male , Melanoma/drug therapy , Melanoma/immunology , Middle Aged , Mutation , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/immunology
5.
Cell ; 175(7): 1731-1743.e13, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30503213

ABSTRACT

Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Carcinoma, Squamous Cell , Cetuximab/therapeutic use , Immunity, Cellular/drug effects , Immunotherapy , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily C , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Clinical Trials, Phase II as Topic , Humans , Killer Cells, Natural/pathology , Mice , NK Cell Lectin-Like Receptor Subfamily C/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily C/immunology
6.
Cell ; 175(7): 1972-1988.e16, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30550791

ABSTRACT

In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.


Subject(s)
Models, Immunological , Neoplasms, Experimental/immunology , Organoids/immunology , Receptors, Antigen, T-Cell/immunology , Tumor Microenvironment/immunology , Animals , B7-H1 Antigen/immunology , Coculture Techniques , Female , Humans , Immunotherapy , Male , Mice , Mice, Inbred BALB C , Neoplasm Proteins/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Organoids/pathology
7.
Annu Rev Microbiol ; 76: 435-460, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35655344

ABSTRACT

Extensive research has elucidated the influence of the gut microbiota on human health and disease susceptibility and resistance. We review recent clinical and laboratory-based experimental studies associating the gut microbiota with certain human diseases. We also highlight ongoing translational advances that manipulate the gut microbiota to treat human diseases and discuss opportunities and challenges in translating microbiome research from and to the bedside.


Subject(s)
Disease , Gastrointestinal Microbiome , Therapeutics , Fecal Microbiota Transplantation , Humans , Probiotics/therapeutic use , Therapeutics/trends
8.
CA Cancer J Clin ; 70(2): 86-104, 2020 03.
Article in English | MEDLINE | ID: mdl-31944278

ABSTRACT

Cancer immunotherapies, including checkpoint inhibitors and adoptive cell therapy, manipulate the immune system to recognize and attack cancer cells. These therapies have the potential to induce durable responses in multiple solid and hematologic malignancies and thus have transformed treatment algorithms for numerous tumor types. Cancer immunotherapies lead to unique toxicity profiles distinct from the toxicities of other cancer therapies, depending on their mechanism of action. These toxicities often require specific management, which can include steroids and immune-modulating therapy and for which consensus guidelines have been published. This review will focus on the toxicities of checkpoint inhibitors and chimeric antigen receptor T cells, including pathophysiology, diagnosis, and management.


Subject(s)
Immunologic Factors/therapeutic use , Immunotherapy/methods , Neoplasms/therapy , Humans
9.
Immunol Rev ; 318(1): 22-36, 2023 09.
Article in English | MEDLINE | ID: mdl-37583051

ABSTRACT

Uncoupling toxicity from therapeutic effect lies at the foundation of the current state of the field of cutaneous immune-related adverse events to immune checkpoint inhibitor therapy. This will be achieved through understanding the drivers of toxicity, tumor response, and resistance via large, well-powered population-level studies, institutional cohort data, and cellular-level data. Increasing diagnostic specificity through the application of consensus disease definitions has the power to improve clinical care and each approach to research. Cutaneous immune-related adverse events are associated with increased survival, and their treatment must invoke the maintenance of a delicate balance between immunosuppression, anti-tumor effect of immune checkpoint inhibitor therapy, and quality of life. The multidisciplinary care of cancer patients with adverse events is critical to optimizing clinical and translational research outcomes and, as such, dermatologists are vital to moving the study of cutaneous adverse events forward.


Subject(s)
Exanthema , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Quality of Life , Exanthema/diagnosis , Exanthema/drug therapy , Exanthema/pathology , Skin , Neoplasms/drug therapy , Neoplasms/pathology
10.
Immunol Rev ; 318(1): 110-137, 2023 09.
Article in English | MEDLINE | ID: mdl-37565407

ABSTRACT

Cancer patients treated with immune checkpoint inhibitors (ICIs) are susceptible to a broad and variable array of immune-related adverse events (irAEs). With increasing clinical use of ICIs, defining the mechanism for irAE development is more critical than ever. However, it currently remains challenging to predict when these irAEs occur and which organ may be affected, and for many of the more severe irAEs, inaccessibility to the tissue site hampers mechanistic insight. This lack of understanding of irAE development in the clinical setting emphasizes the need for greater use of preclinical models that allow for improved prediction of biomarkers for ICI-initiated irAEs or that validate treatment options that inhibit irAEs without hampering the anti-tumor immune response. Here, we discuss the utility of preclinical models, ranging from exploring databases to in vivo animal models, focusing on where they are most useful and where they could be improved.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Animals , Humans , Immune Checkpoint Inhibitors/adverse effects , Neoplasms/drug therapy , Neoplasms/etiology , Immunotherapy/adverse effects , Biomarkers
11.
Immunol Rev ; 318(1): 37-50, 2023 09.
Article in English | MEDLINE | ID: mdl-37548043

ABSTRACT

Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. However, their use is frequently associated with immune-related adverse events (irAEs) potentially affecting any organ. The mechanisms mediating such irAEs remain poorly understood and biomarkers to predict the development of irAEs are lacking. Growing evidence shows the importance of self-antigens in mediating irAEs during ICI therapy, in particular the well-described melanocyte differentiation antigens in melanoma patients. This review will focus on two novel classes of self-antigens involved in mediating autoimmune skin toxicity and pneumonitis in non-small cell lung cancer patients treated with immunotherapy. T cells specific for these self-antigens are thought to not only mediate irAEs but are thought to simultaneously mediate anti-tumor responses and are therefore associated with both autoimmune toxicity and response to ICI therapy. We further discuss emerging cellular and proteomic immune signatures of irAEs that may serve as biomarkers to help predict which patients are at higher risk of developing these irAEs. The determination of new tumor antigens involved in ICI therapy and the identification of related biomarkers brings us a step forward in the mechanistic understanding of ICIs and will help to monitor patients at higher risk of developing irAEs. Lastly, we discuss the current challenges in collecting research samples for the study of ICI-related mechanisms and in distinguishing between immune signatures of response and those of irAEs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoplasms , Pneumonia , Skin Diseases , Humans , Immune Checkpoint Inhibitors/adverse effects , Autoimmunity , Proteomics , Lung Neoplasms/drug therapy , Neoplasms/therapy , Autoantigens , Pneumonia/diagnosis , Pneumonia/etiology
12.
Immunol Rev ; 318(1): 81-88, 2023 09.
Article in English | MEDLINE | ID: mdl-37493210

ABSTRACT

Immune checkpoint inhibitor therapies act through blockade of inhibitory molecules involved in the regulation of T cells, thus releasing tumor specific T cells to destroy their tumor targets. However, immune checkpoint inhibitors (ICI) can also lead to a breach in self-tolerance resulting in immune-related adverse events (irAEs) that include tissue-specific autoimmunity. This review addresses the question of whether the mechanisms that drive ICI-induced irAEs are shared or distinct with those driving spontaneous autoimmunity, focusing on ICI-induced diabetes, ICI-induced arthritis, and ICI-induced thyroiditis due to the wealth of knowledge about the development of autoimmunity in type 1 diabetes, rheumatoid arthritis, and Hashimoto's thyroiditis. It reviews current knowledge about role of genetics and autoantibodies in the development of ICI-induced irAEs and presents new studies utilizing single-cell omics approaches to identify T-cell signatures associated with ICI-induced irAEs. Collectively, these studies indicate that there are similarities and differences between ICI-induced irAEs and autoimmune disease and that studying them in parallel will provide important insight into the mechanisms critical for maintaining immune tolerance.


Subject(s)
Autoimmunity , Neoplasms , Humans , Immunotherapy/methods , Autoantibodies , T-Lymphocytes
13.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36882021

ABSTRACT

Immune checkpoint inhibitor (ICI) treatment has created the opportunity of improved outcome for patients with hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from ICI treatment owing to poor treatment efficacy and safety concerns. There are few predictive factors that precisely stratify HCC responders to immunotherapy. In this study, we developed a tumour microenvironment risk (TMErisk) model to divide HCC patients into different immune subtypes and evaluated their prognosis. Our results indicated that virally mediated HCC patients who had more common tumour protein P53 (TP53) alterations with lower TMErisk scores were appropriate for ICI treatment. HCC patients with alcoholic hepatitis who more commonly harboured catenin beta 1 (CTNNB1) alterations with higher TMErisk scores could benefit from treatment with multi-tyrosine kinase inhibitors. The developed TMErisk model represents the first attempt to anticipate tumour tolerance of ICIs in the TME through the degree of immune infiltration in HCCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment , Liver Neoplasms/drug therapy , Immunotherapy
14.
Hum Genomics ; 18(1): 55, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822443

ABSTRACT

BACKGROUND: Although CDKN2A alteration has been explored as a favorable factor for tumorigenesis in pan-cancers, the association between CDKN2A point mutation (MUT) and intragenic deletion (DEL) and response to immune checkpoint inhibitors (ICIs) is still disputed. This study aims to determine the associations of CDKN2A MUT and DEL with overall survival (OS) and response to immune checkpoint inhibitors treatment (ICIs) among pan-cancers and the clinical features of CDKN2A-altered gastric cancer. METHODS: This study included 45,000 tumor patients that underwent tumor sequencing across 33 cancer types from four cohorts, the MSK-MetTropism, MSK-IMPACT, OrigiMed2020 and TCGA cohorts. Clinical outcomes and genomic factors associated with response to ICIs, including tumor mutational burden, copy number alteration, neoantigen load, microsatellite instability, tumor immune microenvironment and immune-related gene signatures, were collected in pan-cancer. Clinicopathologic features and outcomes were assessed in gastric cancer. Patients were grouped based on the presence of CDKN2A wild type (WT), CDKN2A MUT, CDKN2A DEL and CDKN2A other alteration (ALT). RESULTS: Our research showed that CDKN2A-MUT patients had shorter survival times than CDKN2A-WT patients in the MSK MetTropism and TCGA cohorts, but longer OS in the MSK-IMPACT cohort with ICIs treatment, particularly in patients having metastatic disease. Similar results were observed among pan-cancer patients with CDKN2A DEL and other ALT. Notably, CDKN2A ALT frequency was positively related to tumor-specific objective response rates to ICIs in MSK MetTropism and OrigiMed 2020. Additionally, individuals with esophageal carcinoma or stomach adenocarcinoma who had CDKN2A MUT had poorer OS than patients from the MSK-IMPACT group, but not those with adenocarcinoma. We also found reduced levels of activated NK cells, T cells CD8 and M2 macrophages in tumor tissue from CDKN2A-MUT or DEL pan-cancer patients compared to CDKN2A-WT patients in TCGA cohort. Gastric cancer scRNA-seq data also showed that CDKN2A-ALT cancer contained less CD8 T cells but more exhausted T cells than CDKN2A-WT cancer. A crucial finding of the pathway analysis was the inhibition of three immune-related pathways in the CDKN2A ALT gastric cancer patients, including the interferon alpha response, inflammatory response, and interferon gamma response. CONCLUSIONS: This study illustrates the CDKN2A MUT and DEL were associated with a poor outcome across cancers. CDKN2A ALT, on the other hand, have the potential to be used as a biomarker for choosing patients for ICI treatment, notably in esophageal carcinoma and stomach adenocarcinoma.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Stomach Neoplasms , Tumor Microenvironment , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Biomarkers, Tumor/genetics , Aged , Prognosis , DNA Copy Number Variations/genetics , Mutation/genetics , Microsatellite Instability
15.
Mol Ther ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39066478

ABSTRACT

Cancer vaccines have been developed as a promising way to boost cancer immunity. However, their clinical potency is often limited due to the imprecise delivery of tumor antigens. To overcome this problem, we conjugated an endogenous Toll-like receptor (TLR)2/6 ligand, UNE-C1, to human papilloma virus type 16 (HPV-16)-derived peptide antigen, E7, and found that the UNE-C1-conjugated cancer vaccine (UCV) showed significantly enhanced antitumor activity in vivo compared with the noncovalent combination of UNE-C1 and E7. The combination of UCV with PD-1 blockades further augmented its therapeutic efficacy. Specifically, the conjugation of UNE-C1 to E7 enhanced its retention in inguinal draining lymph nodes, the specific delivery to dendritic cells and E7 antigen-specific T cell responses, and antitumor efficacy in vivo compared with the noncovalent combination of the two peptides. These findings suggest the potential of UNE-C1 derived from human cysteinyl-tRNA synthetase 1 as a unique vehicle for the specific delivery of cancer antigens to antigen-presenting cells via TLR2/6 for the improvement of cancer vaccines.

16.
Mol Ther ; 32(8): 2711-2727, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38943249

ABSTRACT

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.


Subject(s)
Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily C , Xenograft Model Antitumor Assays , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Animals , Mice , Cell Line, Tumor , HLA-E Antigens , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Antibodies, Monoclonal/pharmacology , CRISPR-Cas Systems , Gene Deletion , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Cytotoxicity, Immunologic
17.
Article in English | MEDLINE | ID: mdl-38626354

ABSTRACT

RATIONALE: Immune checkpoint inhibitor-related pneumonitis is a serious autoimmune event affecting up to 20% of patients with non-small cell lung cancer, yet the factors underpinning its development in some patients and not others are poorly understood. OBJECTIVES: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. METHODS: The study cohort consisted of non-small cell lung cancer patients who gave blood samples before and during immune checkpoint inhibitor treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with non-small cell lung cancer and patients with melanoma. MEASUREMENTS AND MAIN RESULTS: Across both cohorts, patients who developed pneumonitis had higher pre-treatment levels of immunoglobulin G autoantibodies targeting surfactant protein-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ interferon-gamma-positive surfactant protein B-specific T cells, and expanding T cell clonotypes recognizing this protein, accompanied by a pro-inflammatory serum proteomic profile. CONCLUSIONS: Our data suggest that the co-occurrence of surfactant protein-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pre-treatment levels of these antibodies may represent a potential biomarker for elevated risk of developing pneumonitis and on-treatment levels may provide a diagnostic aid. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

18.
Nano Lett ; 24(9): 2921-2930, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38411094

ABSTRACT

Immune checkpoint inhibitor (ICI) therapy is effectively employed in treating various malignancies. However, the response rate is constrained to 5-30%, which is attributed to differences in immune responses across different tumors. Overcoming all obstacles of multistep immune activation with monotherapy is difficult. Here, maleimide-modified resiquimod (R848) prodrug nanoparticles (MAL-NPs) are reported and combined with radiotherapy (RT) and anti-PD1 to enhance ICI therapy. MAL-NPs can promote antigen endocytosis by dendritic cells and are radio-reduced to produce R848. When combined with RT, MAL-NPs can augment the concentration of nanoparticles at tumor sites and be selectively radio-reduced within the tumor, thereby triggering a potent antitumor immune response. The systemic immune response and long-term memory efficacy induced by MAL-NPs + RT + anti-PD1 significantly inhibit the abscopal tumor growth and prevent tumor recurrence. This strategy can achieve systemic therapy through selective training of the tumor immune microenvironment, offering a new approach to overcome the obstacles of ICI therapy.


Subject(s)
Nanostructures , Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/radiotherapy , Imidazoles/pharmacology , Imidazoles/therapeutic use , Tumor Microenvironment , Cell Line, Tumor , Immunotherapy
19.
Semin Cancer Biol ; 96: 5-10, 2023 11.
Article in English | MEDLINE | ID: mdl-37717718

ABSTRACT

Cancers express a large battery of genes by which they establish an immunosuppressive tumor microenvironment. Many of these genes are induced by intratumoral hypoxia through transcriptional activation mediated by hypoxia-inducible factors HIF-1 and HIF-2. This review summarizes several recent reports describing hypoxia-induced mechanisms of immune evasion in sarcoma and breast, colorectal, hepatocellular, prostate and uterine cancer. These studies point to several novel therapeutic approaches to improve anti-tumor immunity and increase responses to immunotherapy.


Subject(s)
Neoplasms , Male , Humans , Neoplasms/genetics , Neoplasms/therapy , Hypoxia/genetics , Tumor Microenvironment/genetics
20.
J Cell Mol Med ; 28(10): e18384, 2024 May.
Article in English | MEDLINE | ID: mdl-38760964

ABSTRACT

Smoking is a well-known risk factor for non-small-cell lung cancer (NSCLC) and bladder urothelial carcinoma (BLCA). Despite this, there has been no investigation into a prognostic marker based on smoking-related genes that could universally predict prognosis in these cancers and correlate with immune checkpoint therapy. This study aimed to identify smoking-related differential genes in NSCLC and BLCA, analyse their roles in patient prognosis and immune checkpoint therapy through subgroup analyses, and shed light on PRR11 as a crucial prognostic gene in both cancers. By examining PRR11 co-expressed genes, a prognostic model was constructed and its impact on immunotherapy for NSCLC and BLCA was evaluated. Molecular docking and tissue microarray analyses were conducted to explore the correlation between PRR11 and its reciprocal gene SPDL1. Additionally, miRNAs associated with PRR11 were analysed. The study confirmed a strong link between smoking-related genes, prognosis, and immune checkpoint therapy in NSCLC and BLCA. PRR11 was identified as a key smoking-associated gene that influences the efficacy of immune checkpoint therapy by modulating the stemness of these cancers. A prognostic model based on PRR11 co-expressed genes in BLCA was established and its prognostic value was validated in NSCLC. Furthermore, it was found that PRR11 regulates PDL1 via SPDL1, impacting immunotherapeutic efficacy in both cancers. The involvement of hsa-miR-200b-3p in the regulation of SPDL1 expression by PRR11 was also highlighted. Overall, the study elucidates that PRR11 modulates patient immunotherapy by influencing PDL1 expression through its interaction with SPDL1, with potential upstream regulation by hsa-miR-200b-3p.


Subject(s)
Gene Expression Regulation, Neoplastic , Immunotherapy , Lung Neoplasms , MicroRNAs , Smoking , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/therapy , Urinary Bladder Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Prognosis , Smoking/adverse effects , Immunotherapy/methods , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/pathology , Male , Female
SELECTION OF CITATIONS
SEARCH DETAIL