Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Agric Food Chem ; 72(1): 933-945, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38153029

ABSTRACT

Buttermilk, a potential material used to produce milk fat globule membrane (MFGM), is obtained as a byproduct of butter making from milk whole cream and cheese whey cream. This study investigated the effects of rennet and acid coagulation on the protein profiles of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW). They were compared to those of whey cream buttermilk (WCB). Rennet coagulation was more efficient in removing casein, while retaining more IgG and lactoferrin than acid coagulation. BRW had more MFGM than BAW. Butyrophilin, xanthine dehydrogenase, and mucin1 were significantly higher (P < 0.05) in BRW, while fatty acid-binding protein 3 was enriched in BAW. KEGG analysis showed that complement and coagulation cascades had the greatest differences, and the abundance of proteins involved in this signaling pathway in BRW and BAW was higher, suggesting their potential anticoagulant and anti-inflammatory activity. BAW had higher apolipoprotein A4 and transcobalamin 2, which are essential carriers for transporting long-chain fatty acids and vitamin B12 from the intestine to the blood. Therefore, BAW intake might improve lipids and vitamin B12 absorption. This study can help deepen the understanding of protein composition of MFGM-enriched whey and facilitate the production of MFGM proteins for infants and old-aged populations.


Subject(s)
Buttermilk , Cheese , Cultured Milk Products , Animals , Humans , Middle Aged , Aged , Whey , Goats , Proteomics , Glycolipids/chemistry , Whey Proteins , Lipid Droplets , Vitamin B 12 , Milk Proteins/chemistry
2.
J Agric Food Chem ; 72(19): 11268-11277, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695399

ABSTRACT

Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.


Subject(s)
Buttermilk , Cheese , Goats , Lipidomics , Whey , Animals , Buttermilk/analysis , Cheese/analysis , Whey/chemistry , Phospholipids/analysis , Phospholipids/chemistry , Glycolipids/chemistry , Milk/chemistry , Lipid Droplets/chemistry , Glycoproteins/chemistry , Glycoproteins/analysis , Lipids/chemistry , Lipids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL