Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
Curr Issues Mol Biol ; 46(3): 2278-2300, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38534762

ABSTRACT

The VILLIN (VLN) protein plays a crucial role in regulating the actin cytoskeleton, which is involved in numerous developmental processes, and is crucial for plant responses to both biotic and abiotic factors. Although various plants have been studied to understand the VLN gene family and its potential functions, there has been limited exploration of VLN genes in Gossypium and fiber crops. In the present study, we characterized 94 VLNs from Gossypium species and 101 VLNs from related higher plants such as Oryza sativa and Zea mays and some fungal, algal, and animal species. By combining these VLN sequences with other Gossypium spp., we classified the VLN gene family into three distinct groups, based on their phylogenetic relationships. A more in-depth examination of Gossypium hirsutum VLNs revealed that 14 GhVLNs were distributed across 12 of the 26 chromosomes. These genes exhibit specific structures and protein motifs corresponding to their respective groups. GhVLN promoters are enriched with cis-elements related to abiotic stress responses, hormonal signals, and developmental processes. Notably, a significant number of cis-elements were associated with the light responses. Additionally, our analysis of gene-expression patterns indicated that most GhVLNs were expressed in various tissues, with certain members exhibiting particularly high expression levels in sepals, stems, and tori, as well as in stress responses. The present study potentially provides fundamental insights into the VLN gene family and could serve as a valuable reference for further elucidating the diverse functions of VLN genes in cotton.

2.
Curr Issues Mol Biol ; 46(6): 5744-5776, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38921015

ABSTRACT

In the SARS-CoV-2 lineage, RNA elements essential for its viral life cycle, including genome replication and gene expression, have been identified. Still, the precise structures and functions of these RNA regions in coronaviruses remain poorly understood. This lack of knowledge points out the need for further research to better understand these crucial aspects of viral biology and, in time, prepare for future outbreaks. In this research, the in silico analysis of the cis RNA structures that act in the alpha-, beta-, gamma-, and deltacoronavirus genera has provided a detailed view of the presence and adaptation of the structures of these elements in coronaviruses. The results emphasize the importance of these cis elements in viral biology and their variability between different viral variants. Some coronavirus variants in some groups, depending on the cis element (stem-loop1 and -2; pseudoknot stem-loop1 and -2, and s2m), exhibited functional adaptation. Additionally, the conformation flexibility of the s2m element in the SARS variants was determined, suggesting a coevolution of this element in this viral group. The variability in secondary structures suggests genomic adaptations that may be related to replication processes, genetic regulation, as well as the specific pathogenicity of each variant. The results suggest that RNA structures in coronaviruses can adapt and evolve toward different viral variants, which has important implications for viral adaptation, pathogenicity, and future therapeutic strategies.

3.
J Exp Bot ; 75(8): 2417-2434, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38294133

ABSTRACT

Plants shed organs such as leaves, petals, or fruits through the process of abscission. Monitoring cues such as age, resource availability, and biotic and abiotic stresses allow plants to abscise organs in a timely manner. How these signals are integrated into the molecular pathways that drive abscission is largely unknown. The INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene is one of the main drivers of floral organ abscission in Arabidopsis and is known to transcriptionally respond to most abscission-regulating cues. By interrogating the IDA promoter in silico and in vitro, we identified transcription factors that could potentially modulate IDA expression. We probed the importance of ERF- and WRKY-binding sites for IDA expression during floral organ abscission, with WRKYs being of special relevance to mediate IDA up-regulation in response to biotic stress in tissues destined for separation. We further characterized WRKY57 as a positive regulator of IDA and IDA-like gene expression in abscission zones. Our findings highlight the promise of promoter element-targeted approaches to modulate the responsiveness of the IDA signaling pathway to harness controlled abscission timing for improved crop productivity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Flowers/metabolism , Promoter Regions, Genetic/genetics , Plants/metabolism , Gene Expression Regulation, Plant
4.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125955

ABSTRACT

BACKGROUND: Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS: Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION: Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Multigene Family , Plant Proteins , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Genome, Plant , Plant Growth Regulators/metabolism , Plant Growth Regulators/genetics , Vaccinium/genetics , Vaccinium/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Int J Mol Sci ; 25(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256078

ABSTRACT

Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.


Subject(s)
Cold Temperature , Heat-Shock Response , Temperature , Phylogeny , Heat-Shock Response/genetics , Binding Sites
6.
Funct Integr Genomics ; 23(2): 166, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202648

ABSTRACT

Dirigent proteins (DIRs) are a new class of proteins that were identified during the 8-8' lignan biosynthetic pathway and involves the formation of ( +) or ( -)-pinoresinol through stereoselective coupling from E-coniferyl alcohol. These proteins are known to play a vital role in the development and stress response in plants. Various studies have reported the functional and structural characterization of dirigent gene family in different plants using in silico approaches. Here, we have summarized the importance of dirigent proteins in plants and their role in plant stress tolerance by analyzing the genome-wide analysis including gene structure, mapping of chromosomes, phylogenetic evolution, conserved motifs, gene structure, and gene duplications in important plants. Overall, this review would help to compare and clarify the molecular and evolutionary characteristics of dirigent gene family in different plants.


Subject(s)
Genome , Plant Proteins , Plant Proteins/metabolism , Phylogeny , Plants/genetics , Gene Duplication , Gene Expression Regulation, Plant
7.
BMC Plant Biol ; 23(1): 96, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36793005

ABSTRACT

BACKGROUND: Photoperiod is an important environmental cue interacting with circadian clock pathway to optimize the local adaption and yield of crops. Quinoa (Chenopodium quinoa) in family Amaranthaceae has been known as superfood due to the nutritious elements. As quinoa was originated from the low-latitude Andes, most of the quinoa accessions are short-day type. Short-day type quinoa usually displays altered growth and yield status when introduced into higher latitude regions. Thus, deciphering the photoperiodic regulation on circadian clock pathway will help breed adaptable and high yielding quinoa cultivars. RESULTS: In this study, we conducted RNA-seq analysis of the diurnally collected leaves of quinoa plants treated by short-day (SD) and long-day conditions (LD), respectively. We identified 19,818 (44% of global genes) rhythmic genes in quinoa using HAYSTACK analysis. We identified the putative circadian clock architecture and investigated the photoperiodic regulatory effects on the expression phase and amplitude of global rhythmic genes, core clock components and transcription factors. The global rhythmic transcripts were involved in time-of-day specific biological processes. A higher percentage of rhythmic genes had advanced phases and strengthened amplitudes when switched from LD to SD. The transcription factors of CO-like, DBB, EIL, ERF, NAC, TALE and WRKY families were sensitive to the day length changes. We speculated that those transcription factors may function as key mediators for the circadian clock output in quinoa. Besides, we identified 15 novel time-of-day specific motifs that may be key cis elements for rhythm-keeping in quinoa. CONCLUSIONS: Collectively, this study lays a foundation for understanding the circadian clock pathway and provides useful molecular resources for adaptable elites breeding in quinoa.


Subject(s)
Chenopodium quinoa , Circadian Clocks , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Circadian Rhythm/genetics , Photoperiod , Circadian Clocks/genetics
8.
Biotechnol Appl Biochem ; 70(2): 746-760, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35931417

ABSTRACT

A promoter is a region in the genome sequence located upstream of the transcription start site comprising cis acting elements that initiates and regulates the transcription of an associated genes and restriction endonucleases. As the need for genetically engineered plants has widened, the requirement to develop methods to optimize the control of transgene expression has also increased. Therefore, analyzing the functionality of the promoter is very important in understanding the target gene expression. The widespread use of viral constitutive promoters (cauliflower mosaic virus, CaMV35) has raised concerns about the safety and containment of transgene in the environment. Hence isolation and characterization of novel promoters using fast and efficient genetic engineering tools is the need of the hour. The present study, for the first time, describes the isolation and characterization of a novel constitutive promoter driving ubiquitin E3 ligase from the plant Coleus amboinicus, a perennial herb, of the Lamiaceae family. The functionality of the isolated promoter was demonstrated using the ß -glucuronidase as a reporter in tobacco var Petit havana. The development of blue color in the tobacco leaves indicated the presence of a functional promoter.


Subject(s)
Coleus , Coleus/genetics , Coleus/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Base Sequence , Nicotiana/genetics , Nicotiana/metabolism , Glucuronidase/metabolism , Cloning, Molecular , Ubiquitin-Protein Ligases/metabolism , Gene Expression Regulation, Plant
9.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902052

ABSTRACT

Peanut (Arachis hypogaea L.) is an important food and feed crop worldwide and is affected by various biotic and abiotic stresses. The cellular ATP levels decrease significantly during stress as ATP molecules move to extracellular spaces, resulting in increased ROS production and cell apoptosis. Apyrases (APYs) are the nucleoside phosphatase (NPTs) superfamily members and play an important role in regulating cellular ATP levels under stress. We identified 17 APY homologs in A. hypogaea (AhAPYs), and their phylogenetic relationships, conserved motifs, putative miRNAs targeting different AhAPYs, cis-regulatory elements, etc., were studied in detail. The transcriptome expression data were used to observe the expression patterns in different tissues and under stress conditions. We found that the AhAPY2-1 gene showed abundant expression in the pericarp. As the pericarp is a key defense organ against environmental stress and promoters are the key elements regulating gene expression, we functionally characterized the AhAPY2-1 promoter for its possible use in future breeding programs. The functional characterization of AhAPY2-1P in transgenic Arabidopsis plants showed that it effectively regulated GUS gene expression in the pericarp. GUS expression was also detected in flowers of transgenic Arabidopsis plants. Overall, these results strongly suggest that APYs are an important future research subject for peanut and other crops, and AhPAY2-1P can be used to drive the resistance-related genes in a pericarp-specific manner to enhance the defensive abilities of the pericarp.


Subject(s)
Arabidopsis , Fabaceae , Arachis/genetics , Apyrase/genetics , Phylogeny , Arabidopsis/genetics , Plant Breeding , Fabaceae/genetics , Plants, Genetically Modified , Adenosine Triphosphate , Gene Expression Regulation, Plant
10.
BMC Genomics ; 23(1): 734, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36309637

ABSTRACT

BACKGROUND: Polyamines (PAs) are considered promising biostimulants that have diverse key roles during growth and stress responses in plants. Nevertheless, the molecular basis of these roles by PAs has not been completely realized even now, and unfortunately, the transcriptional analyses of the biosynthesis pathway in various wheat tissues have not been investigated under normal or stress conditions. In this research, the findings of genome-wide analyses of genes implicated in the PAs biosynthesis in wheat (ADC, Arginine decarboxylase; ODC, ornithine decarboxylase; AIH, agmatine iminohydrolase; NPL1, Nitrlase like protein 1; SAMDC, S-adenosylmethionine decarboxylase; SPDS, spermidine synthase; SPMS, spermine synthase and ACL5, thermospermine synthase) are shown. RESULTS: In total, thirty PAs biosynthesis genes were identified. Analysis of gene structure, subcellular compartmentation and promoters were discussed. Furthermore, experimental gene expression analyses in roots, shoot axis, leaves, and spike tissues were investigated in adult wheat plants under control and drought conditions. Results revealed structural similarity within each gene family and revealed the identity of two new motifs that were conserved in SPDS, SPMS and ACL5. Analysis of the promoter elements revealed the incidence of conserved elements (STRE, CAAT-box, TATA-box, and MYB TF) in all promoters and highly conserved CREs in >80% of promoters (G-Box, ABRE, TGACG-motif, CGTCA-motif, as1, and MYC). The results of the quantification of PAs revealed higher levels of putrescine (Put) in the leaves and higher spermidine (Spd) in the other tissues. However, no spermine (Spm) was detected in the roots. Drought stress elevated Put level in the roots and the Spm in the leaves, shoots and roots, while decreased Put in spikes and elevated the total PAs levels in all tissues. Interestingly, PA biosynthesis genes showed tissue-specificity and some homoeologs of the same gene family showed differential gene expression during wheat development. Additionally, gene expression analysis showed that ODC is the Put biosynthesis path under drought stress in roots. CONCLUSION: The information gained by this research offers important insights into the transcriptional regulation of PA biosynthesis in wheat that would result in more successful and consistent plant production.


Subject(s)
Droughts , Polyamines , Polyamines/metabolism , Triticum/genetics , Triticum/metabolism , Genome-Wide Association Study , Spermidine , Putrescine/metabolism , Gene Expression
11.
BMC Plant Biol ; 22(1): 21, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996379

ABSTRACT

BACKGROUND: Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. RESULTS: In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). CONCLUSION: The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.


Subject(s)
Ascomycota/pathogenicity , Brassica napus/genetics , Brassica napus/immunology , Brassica napus/microbiology , Carrier Proteins/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Crops, Agricultural/genetics , Crops, Agricultural/immunology , Crops, Agricultural/microbiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome, Plant
12.
Biol Res ; 55(1): 4, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35063045

ABSTRACT

BACKGROUND: The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. METHODS: The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. RESULTS: There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. CONCLUSIONS: In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Genome, Plant , Gossypium/genetics , Molecular Structure , Multigene Family/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
13.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499751

ABSTRACT

Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.


Subject(s)
Gene Expression Regulation, Plant , Triticum , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Planta ; 253(2): 42, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33475866

ABSTRACT

MAIN CONCLUSION: In this study, useful hybrid promoters were developed for efficient ectopic gene expression in monocot and dicot plants, and they hold strong prominence in both transgenic research and biotech industries. This study deals with developing novel synthetic promoters derived from Rice Tungro Bacilliform Virus (RTBV) and Mirabilis Mosaic Virus (MMV). Despite numerous availability, there is a severe scarcity of promoters universally suitable for monocot and dicot plants. Here, eight chimeric promoter constructs were synthesized as gBlocks gene fragments through domain swapping and hybridization by incorporating important domains of previously characterized RTBV and MMV promoters. The developed promoter constructs were assessed for transient GUS expression in tobacco protoplast (Xanthi Brad) and agro-infiltrated tobacco, petunia, rice and pearl millet. Protoplast expression analysis showed that two promoter constructs, namely pUPMA-RP1-MP1GUS and pUPMA-RP4-MP1GUS exhibited 3.56 and 2.5 times higher activities than that of the CaMV35S promoter. We had observed the similar type of expression patterns of these promoters in agroinfiltration-based transient studies. RP1-MP1 and RP4-MP1 promoters exhibited 1.87- and 1.68-fold increase expression in transgenic tobacco plants; while, a 1.95-fold increase was found in RP1-MP1 transgenic rice plants when compared their activities with CaMV35S promoter. Furthermore, on evaluating these promoter constructs for their expression in the bacterial system, pUPMA-RP1-MP1GFP was found to have the highest GFP expression. Moreover, the promoter construct was also evaluated for its capacity to express the HMP3 gene. Biobeads of encapsulated bacterial cells expressing HMP3 gene under control of the pUPMA-RP4-MP1 promoter were found to reduce 72.9% copper and 29.2% zinc concentration from wastewater. Our results had demonstrated that the developed promoter constructs could be used for translational research in dicot, monocot plants and bacterial systems for efficient gene expression.


Subject(s)
Caulimovirus , Promoter Regions, Genetic , Protein Biosynthesis , Caulimovirus/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Nicotiana/genetics
15.
New Phytol ; 232(4): 1718-1737, 2021 11.
Article in English | MEDLINE | ID: mdl-34245570

ABSTRACT

Cotton fibre is the most important source for natural textiles. The secondary cell walls (SCWs) of mature cotton fibres contain the highest proportion of cellulose content (> 90%) in any plant. The onset and progression of SCW cellulose synthesis need to be tightly controlled to balance fibre elongation and cell wall deposition. However, regulatory mechanisms that control cellulose synthesis during cotton fibre growth remain elusive. Here, we conducted genetic and functional analyses demonstrating that the R2R3-MYB GhMYB7 controls cotton fibre cellulose synthesis. Overexpression of GhMYB7 in cotton sped up SCW cellulose biosynthesis in fibre cells, and led to shorter fibres with thicker walls. By contrast, RNA interference (RNAi) silencing of GhMYB7 delayed fibre SCW cellulose synthesis and resulted in elongated fibres with thinner walls. Furthermore, we demonstrated that GhMYB7 regulated cotton fibre SCW cellulose synthases by directly binding to three distinct cis-elements in the respective GhCesA4, GhCesA7 and GhCesA8 promoters. We found that this regulatory mechanism of cellulose synthesis was 'hi-jacked' also by other GhMYBs. Together, our findings uncover a hitherto-unknown mechanism that cotton fibre employs to regulate SCW cellulose synthesis. Our results also provide a strategy for genetic improvement of SCW thickness of cotton fibre.


Subject(s)
Cellulose , Cotton Fiber , Cell Wall/metabolism , Cellulose/metabolism , Gene Expression , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/metabolism
16.
J Exp Bot ; 72(7): 2769-2789, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33481007

ABSTRACT

Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.


Subject(s)
Aluminum/toxicity , Arabidopsis Proteins , Arabidopsis , Aluminum/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Glutamate Dehydrogenase , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism
17.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073446

ABSTRACT

Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.


Subject(s)
Crops, Agricultural , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Transcription Factors , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Dehydration/genetics , Dehydration/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34360972

ABSTRACT

Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.


Subject(s)
Cytokinins/metabolism , Indoleacetic Acids/metabolism , Signal Transduction , Solanum tuberosum/metabolism , Genes, Plant , Plant Development , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Sucrose/metabolism
19.
Int J Mol Sci ; 22(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069912

ABSTRACT

Cell wall invertase (CWIN) activity and the expression of the corresponding gene were previously observed to be significantly elevated in a Cu-tolerant population of Elsholtzia haichowensis relative to a non-tolerant population under copper stress. To understand the differences in CWIN gene regulation between the two populations, their CWIN promoter ß-glucuronidase (GUS) reporter vectors were constructed. GUS activity was measured in transgenic Arabidopsis in response to copper, sugar, and phytohormone treatments. Under the copper treatment, only the activity of the CWIN promoter from the Cu-tolerant population was slightly increased. Glucose and fructose significantly induced the activity of CWIN promoters from both populations. Among the phytohormone treatments, only salicylic acid induced significantly higher (p < 0.05) activity of the Cu-tolerant CWIN promoter relative to the non-tolerant promoters. Analysis of 5'-deletion constructs revealed that a 270-bp promoter fragment was required for SA induction of the promoter from the Cu-tolerant population. Comparison of this region in the two CWIN promoters revealed that it had 10 mutation sites and contained CAAT-box and W-box cis-elements in the Cu-tolerant promoter only. This work provides insights into the regulatory role of SA in CWIN gene expression and offers an explanation for differences in CWIN expression between E. haichowensis populations.


Subject(s)
Cell Wall/genetics , Lamiaceae/genetics , beta-Fructofuranosidase/genetics , Arabidopsis/genetics , Cell Wall/metabolism , Copper/metabolism , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Lamiaceae/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Salicylic Acid/metabolism , beta-Fructofuranosidase/metabolism
20.
Plant J ; 99(6): 1192-1202, 2019 09.
Article in English | MEDLINE | ID: mdl-31112314

ABSTRACT

Seed germination is a fundamental process in the plant life cycle and is regulated by functionally opposing internal and external inputs. Here we explored the role of a negative regulator of photomorphogenesis, a B-box-containing protein (BBX19), as a molecular link between the inhibitory action of the phytohormone abscisic acid (ABA) and the promoting role of light in germination. We show that seeds of BBX19-overexpressing lines, in contrast to those of BBX19 RNA interference lines, display ABA hypersensitivity, albeit independently of elongated hypocotyl 5 (HY5). Moreover, we establish that BBX19 functions neither via perturbation of GA signaling, the ABA antagonistic phytohormone, nor through interference with the DELLA protein germination repressors. Rather, BBX19 functions as an inducer of ABA INSENSITIVE5 (ABI5) by binding to the light-responsive GT1 motifs in the gene promoter. In summary, we identify BBX19 as a regulatory checkpoint, directing diverse developmental processes and tailoring adaptive responses to distinct endogenous and exogenous signals.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Germination/genetics , Seeds/metabolism , Transcription Factors/metabolism , Abscisic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Plant/genetics , Germination/drug effects , Gibberellins/metabolism , Light , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic/drug effects , Protein Binding , Seedlings/drug effects , Seedlings/embryology , Seedlings/genetics , Seedlings/metabolism , Seeds/drug effects , Seeds/embryology , Seeds/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Nicotiana/metabolism , Transcription Factors/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL