Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(26): e2322926121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38885388

ABSTRACT

We find strong path dependence in the evolution of the Plio-Pleistocene glaciations using CLIMBER-2 Earth System Model simulations from the mid-Pliocene to modern preindustrial (3 My-0 My BP) driven by a gradual decrease in volcanic carbon dioxide outgassing and regolith removal from basal ice interaction. Path dependence and hysteresis are investigated by alternatively driving the model forward and backward in time. Initiating the model with preindustrial conditions and driving the model backward using time-reversed forcings, the increase in volcanic outgassing back-in-time (BIT) does not generate the high CO2 levels and relatively ice-free conditions of the late Pliocene seen in forward-in-time (FIT) simulations of the same model. This behavior appears to originate from nonlinearities and initial state dependence in the carbon cycle. A transition from low-amplitude sinusoidal obliquity (~41 ky) and precession (~23 ky) driven glacial/interglacial cycles to high-amplitude ~100 ky likely eccentricity-related sawtooth cycles seen between -1.25 My and -0.75 My BP (the Mid-Pleistocene transition or "MPT") in FIT simulations disappears in BIT integrations depending on the details of how the regolith removal process is treated. A transition toward depleted regolith and lowered atmospheric CO2 levels are both required to reproduce the MPT.

2.
Environ Monit Assess ; 196(4): 372, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489074

ABSTRACT

The increasing intensity and frequency of rainfall events, a critical aspect of climate change, pose significant challenges in the construction of intensity-duration-frequency (IDF) curves for climate projection. These curves are crucial for infrastructure development, but the non-stationarity of extreme rainfall raises concerns about their adequacy under future climate conditions. This research addresses these challenges by investigating the reasons behind the IPCC climate report's evidence about the validity that rainfall follows the Clausius-Clapeyron (CC) relationship, which suggests a 7% increase in precipitation per 1 °C increase in temperature. Our study provides guidelines for adjusting IDF curves in the future, considering both current and future climates. We calculate extreme precipitation changes and scaling factors for small urban catchments in Barranquilla, Colombia, a tropical region, using the bootstrapping method. This reveals the occurrence of a sub-CC relationship, suggesting that the generalized 7% figure may not be universally applicable. In contrast, our comparative analysis with Illinois, USA, an inland city in the north temperate zone, shows adherence to the CC relationship. This emphasizes the need for local parameter calculations rather than relying solely on the generalized 7% figure.


Subject(s)
Climate Change , Rain , Environmental Monitoring/methods , Cities , Temperature
3.
Environ Monit Assess ; 196(7): 614, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871960

ABSTRACT

Global warming upsets the environmental balance and leads to more frequent and severe climatic events. These extreme events include floods, droughts, and heatwaves. These widespread extreme events disrupt various sectors of ecosystems directly. However, among all these events, drought is one of the most prolonged climatic events that significantly destroys the ecosystem. Therefore, accurate and efficient assessment of droughts is necessary to mitigate their detrimental impacts. In recent years, several drought indices based on global climate models (GCMs) of Coupled Model Intercomparison Project Phase 6 (CMIP6) have been proposed to quantify and monitor droughts. However, each index has its advantages and limitations. As each index ensembles different models by using different statistical approaches, it is well known that the margin of error is always a part of statistics. Therefore, this study proposed a new drought index to reduce the uncertainty involved in the assessment of droughts. The proposed index named the Ridge Ensemble Standardized Drought Index (RESDI) is based on the innovative ensemble approach termed ridge parameters and distance-based weighting (RDW) scheme. And the development of this RDW scheme is based on two types of methods i.e., ridge regression and divergence-based method. In this research, we ensemble 18 different GCMs of CMIP6 using the RDW scheme. A comparative analysis of the RDW scheme is performed against the simple model average (SMA) and Bayesian model averaging (BMA) schemes at 32 locations on the Tibetan plateau. The comparison revealed that RDW has less mean absolute error (MAE) and root-mean-square error (RMSE). Therefore, the developed RESDI based on RDW is used to project drought properties under three distinct shared socioeconomic pathway (SSP) scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5, across seven different time scales (1, 3, 7, 9, 12, 24, and 48). The projected data is then standardized by using the K-components Gaussian mixture model (K-CGMM). In addition, the study employs steady-state probabilities (SSPs) to determine the long-term behavior of drought. The outcome of this research shows that "normal drought (ND)" has the highest probability of occurrence under all scenarios and time scales.


Subject(s)
Droughts , Environmental Monitoring , Environmental Monitoring/methods , Climate Change , Ecosystem , Models, Theoretical , Global Warming , Climate
4.
Environ Monit Assess ; 196(9): 809, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138752

ABSTRACT

Tea is a vital agricultural product in Taiwan. Due to global warming, the increasing extreme weather events have disrupted tea garden conditions and caused economic losses in agriculture. To address these challenges, a comprehensive tea garden risk assessment model, a Bayesian network (BN), was developed by considering various factors, including meteorological data, disaster events, tea garden environment (location, altitude, tea tree age, and soil characteristics), farming practices, and farmer interviews, and constructed risk assessment indicators for tea gardens based on the climate change risk analysis concept from the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). The results demonstrated an accuracy of over 92% in both validating and testing the model for tea tree damage and yield reduction. Sensitivity analysis revealed that tea tree damage and yield reduction were mutually influential, with weather, fertilization, and irrigation also impacting tea garden risk. Risk analysis under climate change scenarios from various global climate models (GCMs) indicated that droughts may pose the highest risk with up to 41% and 40% of serious tea tree growth damage and tea yield reduction, respectively, followed by cold events that most tea gardens may have less than 20% chances of serious impacts on tea tree growth and tea yield reduction. The impacts of heavy rains get the least concern because all five tea gardens may not be affected in terms of tea tree growth and tea yield with large chances of 67 to 85%. Comparing farming methods, natural farming showed lower disaster risk than conventional and organic approaches. The tea plantation risk assessment model can serve as a valuable resource for analyzing and offering recommendations for tea garden disaster management and is used to assess the impact of meteorological disasters on tea plantations in the future.


Subject(s)
Bayes Theorem , Climate Change , Tea , Taiwan , Risk Assessment , Altitude , Camellia sinensis/growth & development , Agriculture , Gardens , Environmental Monitoring/methods
5.
Environ Monit Assess ; 196(3): 298, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38396233

ABSTRACT

To anticipate disasters (drought, floods, etc.) caused by environmental forcing and reduce their impacts on its fragile economy, sub-Saharan Africa needs a good knowledge of the availability of current water resources and reliable hydroclimatic forecasts. This study has an objective to quantify the availability of water resources in the Nyong basin and predict its future evolution (2024-2050). For this, the SWAT (Soil and Water Assessment Tool) model was used. The performance of this model is satisfactory in calibration (2001-2005) and validation (2006-2010), with R2, NSE, and KGE greater than 0.64. Biases of - 11.8% and - 13.9% in calibration and validation also attest to this good performance. In the investigated basin, infiltration (GW_RCH), evapotranspiration (ETP), surface runoff (SURQ), and water yield (WYLD) are greater in the East, probably due to more abundant rainfall in this part. The flows and sediment load (SED) are greater in the middle zone and in the Southwest of the basin, certainly because of the flat topography of this part, which corresponds to the valley floor. Two climate models (CCCma and REMO) predict a decline in water resources in this basin, and two others (HIRHAM5 and RCA4) are the opposite. However, based on a statistical study carried out over the historical period (2001-2005), the CCCma model seems the most reliable. It forecasts a drop in precipitation and runoff, which do not exceed - 19% and - 18%, respectively, whatever the emission scenario (RCP4.5 or RCP8.5). Climate variability (CV) is the only forcing whose impact is visible in the dynamics of current and future flows, due to the modest current (increase of + 102 km2 in builds and roads) and future (increase of + 114 km2 in builds and roads) changes observed in the evolution of land use and land cover (LULC). The results of this study could contribute to improving water resource management in the basin studied and the region.


Subject(s)
Environmental Monitoring , Water Resources , Cameroon , Hydrology , Rivers , Forests , Climate Change , Water
6.
Ecol Appl ; 33(5): e2889, 2023 07.
Article in English | MEDLINE | ID: mdl-37212375

ABSTRACT

Translocation, often a management solution reserved for at-risk species, is a highly time-sensitive intervention in the face of a rapidly changing climate. The definition of abiotic and biotic habitat requirements is essential to the selection of appropriate release sites in novel environments. However, field-based approaches to gathering this information are often too time intensive, especially in areas of complex topography where common, coarse-scale climate models lack essential details. We apply a fine-scale remote sensing-based approach to study the 'akikiki (Oreomystis bairdi) and 'akeke'e (Loxops caeruleirostris), Hawaiian honeycreepers endemic to Kaua'i that are experiencing large-scale population declines due to warming-induced spread of invasive disease. We use habitat suitability modeling based on fine-scale light detection and ranging (lidar)-derived habitat structure metrics to refine coarse climate ranges for these species in candidate translocation areas on Maui. We found that canopy density was consistently the most important variable in defining habitat suitability for the two Kaua'i species. Our models also corroborated known habitat preferences and behavioral information for these species that are essential for informing translocation. We estimated a nesting habitat that will persist under future climate conditions on east Maui of 23.43 km2 for 'akikiki, compared to the current Kaua'i range of 13.09 km2 . In contrast, the novel nesting range for 'akeke'e in east Maui was smaller than its current range on Kaua'i (26.29 vs. 38.48 km2 , respectively). We were also able to assess detailed novel competitive interactions at a fine scale using models of three endemic Maui species of conservation concern: 'akohekohe (Palmeria dolei), Maui 'alauahio (Paroreomyza montana), and kiwikiu (Pseudonestor xanthophrys). Weighted overlap areas between the species from both islands were moderate (<12 km2 ), and correlations between Maui and Kaua'i bird habitat were generally low, indicating limited potential for competition. Results indicate that translocation to east Maui could be a viable option for 'akikiki but would be more uncertain for 'akeke'e. Our novel multifaceted approach allows for the timely analysis of both climate and vegetation structure at informative scales for the effective selection of appropriate translocation sites for at-risk species.


Subject(s)
Endangered Species , Passeriformes , Animals , Hawaii/epidemiology , Islands , Ecosystem
7.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220193, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37866378

ABSTRACT

The Atlantic Meridional Overturning Circulation (AMOC), a crucial element of the Earth's climate system, is projected to weaken over the course of the twenty-first century which could have far reaching consequences for the occurrence of extreme weather events, regional sea level rise, monsoon regions and the marine ecosystem. The latest IPCC report puts the likelihood of such a weakening as 'very likely'. As our confidence in future climate projections depends largely on the ability to model the past climate, we take an in-depth look at the difference in the twentieth century evolution of the AMOC based on observational data (including direct observations and various proxy data) and model data from climate model ensembles. We show that both the magnitude of the trend in the AMOC over different time periods and often even the sign of the trend differs between observations and climate model ensemble mean, with the magnitude of the trend difference becoming even greater when looking at the CMIP6 ensemble compared to CMIP5. We discuss possible reasons for this observation-model discrepancy and question what it means to have higher confidence in future projections than historical reproductions. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

8.
Environ Res ; 222: 115301, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36693468

ABSTRACT

A major part of the annual rainfall in most parts of India is received during the monsoon. The Chaliyar River Basin in the state of Kerala is no exception with more than 85% of the annual rainfall occurring during the monsoon season. Evidences pointing towards the influence of anthropogenic activities on climate change have been reported from all over the world in recent years. One of the major problems encountered in the projection of future climate is the accumulation of uncertainties arising from different sources. This, in turn, would result in uncertainties in the predicted future streamflows. In this work, uncertainties in the monsoon flow predictions for a future period (2070-2099), stemming from the use of different climate models, hydrological models, and representative concentration pathways are analyzed. Uncertainty due to each of these sources and their interactions are partitioned by performing three-way analysis of variance. Results of the study indicate that the major source of uncertainty in the monsoon flow predictions is uncertainty from the climate models, which is about 83.73% of the total uncertainty in future monsoon flow predictions. Hydrological models account for about 5.38% and RCPs account for about 4.3% of the total uncertainty. About 6.57% is attributed to interactions between these three factors. Evaluation of the uncertainties in future monsoon flow predictions would facilitate informed decision making while formulating strategies for water management in the future.


Subject(s)
Climate Change , Rivers , Uncertainty , Seasons , Forecasting
9.
Proc Natl Acad Sci U S A ; 117(41): 25302-25309, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989142

ABSTRACT

Falling atmospheric CO2 levels led to cooling through the Eocene and the expansion of Antarctic ice sheets close to their modern size near the beginning of the Oligocene, a period of poorly documented climate. Here, we present a record of climate evolution across the entire Oligocene (33.9 to 23.0 Ma) based on TEX86 sea surface temperature (SST) estimates from southwestern Atlantic Deep Sea Drilling Project Site 516 (paleolatitude ∼36°S) and western equatorial Atlantic Ocean Drilling Project Site 929 (paleolatitude ∼0°), combined with a compilation of existing SST records and climate modeling. In this relatively low CO2 Oligocene world (∼300 to 700 ppm), warm climates similar to those of the late Eocene continued with only brief interruptions, while the Antarctic ice sheet waxed and waned. SSTs are spatially heterogenous, but generally support late Oligocene warming coincident with declining atmospheric CO2 This Oligocene warmth, especially at high latitudes, belies a simple relationship between climate and atmospheric CO2 and/or ocean gateways, and is only partially explained by current climate models. Although the dominant climate drivers of this enigmatic Oligocene world remain unclear, our results help fill a gap in understanding past Cenozoic climates and the way long-term climate sensitivity responded to varying background climate states.

10.
J Environ Manage ; 334: 117495, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36801687

ABSTRACT

Climate change is contributing to an increasing frequency and intensity of floods in Korea. This study predicts areas with a high probability of flooding in coastal areas of South Korea owing to future climate change, which is likely to cause extreme rainfall and sea-level rise, using a spatiotemporal downscaled future climate change scenario with random forest, artificial neural network, and k-nearest neighbor techniques. In addition, the change in coastal flooding risk probability according to the application of different adaptation strategies (green spaces and seawalls) was identified. The results showed a clear difference in the risk probability distribution in the absence and presence of either adaptation strategy. Their effectiveness in moderating future flooding risks is subject to change owing to strategy type, geographic region, and urbanization intensity and the results show that green spaces are slightly more effective than seawalls when forecasting for 2050. This demonstrates the importance of a nature-based strategy. Moreover, this study highlights the need to prepare adaptation measures according to regional characteristics to mitigate the impact of climate change. Korea is surrounded by seas on three sides that have independent geophysical and climate characteristics. The south coast has a higher risk of coastal flooding than the east and west coasts. In addition, a higher urbanization rate is associated with a higher risk probability. This implies that climate change response strategies for coastal cities are necessary as the population and socioeconomic activities of coastal urban areas are likely to increase in the future.


Subject(s)
Acclimatization , Floods , Cities , Probability , Urbanization , Climate Change
11.
J Environ Manage ; 343: 118208, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37291019

ABSTRACT

The current transition toward added renewables into the power mix is essential to mitigate climate change effects, but the energy transition has environmental impacts outside the scope of greenhouse gas emissions that also need attention. One such impact is the water-energy dependency nexus, where water dependencies are also seen for non-fossil technologies such as concentrated solar power (CSP), bioenergy and hydropower and mitigation technologies such as carbon capture and storage (CCS). In this light, the selection of power production technologies can potentially affect long-term water resource renewability and dry summer conditions, causing, e.g., power plant shutdowns. In this study, we employ an established and validated scheme of water consumption and withdrawal rates across energy conversion technologies at the European scale to project corresponding water usage rates towards 2050 for EU30 countries. We further use the entire range of global- and regional climate model ensembles for low-, medium- and high-emission scenarios to project trends and robustness estimates of freshwater resources and availability at the distributed level for corresponding countries and years towards 2100. The results show a high sensitivity of water usage rates to the implementation of energy technologies such as CSP and CCS, as well as the decommissioning rates of fossil technologies and some scenarios generally show unaltered or even vastly increasing water consumption and withdrawal rates. Further, the assumptions on using CCS technologies, an evolving field, show a high impact. The assessment of hydro-climatic projections showed some degree of overlaps between decreasing water availabilities and increasing power sector water usage, especially for one power production scenario with a high share of CCS implementation. Further, a vast climate model spread in water availability was seen for both yearly means and summer minima, emphasising the need to include extremes in water management, and the water availability was highly dependent on the emission scenario in some regions.


Subject(s)
Greenhouse Gases , Water , Environment , Climate Change
12.
Environ Monit Assess ; 195(8): 928, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37432481

ABSTRACT

Climate change refers to long-term variations in climate parameters. Future climate information can be projected using a GCM (General Circulation Model). Identifying a particular GCM is crucial for climate impact studies. Researchers are perplexed about selecting a suitable GCM for downscaling to predict future climate parameters. Recent updates to CMIP6 global climate models have included shared socioeconomic pathways based on the IPCC (Intergovernmental Panel on Climate Change) Sixth Assessment Report (AR6). The performance of 24 CMIP6 GCMs in precipitation with a multi-model ensemble filter was compared to IMD (India Meteorological Department) 0.25 × 0.25 degrees rainfall data in Tamil Nadu. The performance was evaluated with the help of Compromise Programming (CP), which involves metrics such as R2 (Pearson correlation co-efficient), PBIAS (Percentage Bias), NRMSE (Normalized Root Mean Square Error), and NSE (Nash-Sutcliffe Efficiency). The GCM ranking was performed through Compromise programming by comparing the IMD data and GCM data. The results of the CP analyses of the statistical metrics suggest that the suitable GCMs for the North-East monsoon are CESM2 for Chennai, CAN-ESM5 for Vellore, MIROC6 for Salem, BCC-CSM2-MR for Thiruvannamalai, MPI-ESM-1-2-HAM for Erode, MPI-ESM1-2-LR for Tiruppur, MPI-ESM1-2-LR for Trichy, MPI-ESM1-2-LR for Pondicherry, MPI-ESM1-2-LR for Dindigul, CNRM-CM6-HR for Thanjavur, MPI-ESM1-2-LR for Thirunelveli and UKESM1-0-LL for Thoothukudi. The appropriate suitable GCMs for South-West monsoon as CESM2 is appropriate for Chennai, IPSL-CM6A-LR for Vellore, CESM2-WACCM-FV2 for Salem, CAMS-CSM1-0 for Thiruvannamalai, MPI-ESM-1-2-HR for Erode, MPI-ESM-1-2-HR for Tiruppur, EC- EARTH3 for Trichy, EC- EARTH3 for Pondicherry, MPI-ESM-1-2-HR for Dindigul, CESM2-FV2 for Thanjavur, ACCESS-CM2 for Thirunelveli and ACCESS-CM2 for Thoothukudi respectively. This study emphasizes the importance of selecting an appropriate GCM. Selecting a suitable GCM will be useful in climate change impact studies and there by suggesting necessary adaptation and mitigation strategies.


Subject(s)
Climate Models , Environmental Monitoring , India , Acclimatization
13.
Glob Chang Biol ; 28(2): 349-361, 2022 01.
Article in English | MEDLINE | ID: mdl-34558764

ABSTRACT

Anthropogenic activity is changing Earth's climate and ecosystems in ways that are potentially dangerous and disruptive to humans. Greenhouse gas concentrations in the atmosphere continue to rise, ensuring that these changes will be felt for centuries beyond 2100, the current benchmark for projection. Estimating the effects of past, current, and potential future emissions to only 2100 is therefore short-sighted. Critical problems for food production and climate-forced human migration are projected to arise well before 2100, raising questions regarding the habitability of some regions of the Earth after the turn of the century. To highlight the need for more distant horizon scanning, we model climate change to 2500 under a suite of emission scenarios and quantify associated projections of crop viability and heat stress. Together, our projections show global climate impacts increase significantly after 2100 without rapid mitigation. As a result, we argue that projections of climate and its effects on human well-being and associated governance and policy must be framed beyond 2100.


Subject(s)
Climate Change , Greenhouse Gases , Anthropogenic Effects , Atmosphere , Ecosystem , Humans
14.
Geophys Res Lett ; 49(3): e2021GL096191, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35845251

ABSTRACT

Mixed-phase clouds play an important role in determining Arctic warming, but are parametrized in models and difficult to constrain with observations. We use two satellite-derived cloud phase metrics to investigate the vertical structure of Arctic clouds in two global climate models that use the Community Atmosphere Model version 6 (CAM6) atmospheric component. We report a model error limiting ice nucleation, produce a set of Arctic-constrained model runs by adjusting model microphysical variables to match the cloud phase metrics, and evaluate cloud feedbacks for all simulations. Models in this small ensemble uniformly overestimate total cloud fraction in the summer, but have variable representation of cloud fraction and phase in the winter and spring. By relating modeled cloud phase metrics and changes in low-level liquid cloud amount under warming to longwave cloud feedback, we show that mixed-phase processes mediate the Arctic climate by modifying how wintertime and springtime clouds respond to warming.

15.
Environ Res ; 204(Pt A): 111895, 2022 03.
Article in English | MEDLINE | ID: mdl-34437852

ABSTRACT

This paper analyses the probabilistic future behaviour of heat-waves (HWs) in the city of Madrid in the twenty-first century, using maximum daily temperatures from twenty-one climate circulation models under two representative concentration pathways (RCP 8.5 & RCP 4.5). HWs are modelled considering three factors: number per annum, duration and intensity, characterised by three stochastic processes: Poisson, Gamma and truncated Gaussian, respectively. Potential correlations between these processes are also considered. The probabilistic temperature behaviour is combined with an epidemiological model with stochastic mortality risk following a generalized extreme value distribution (gev). The objective of this study is to obtain probability distributions of mortality and risk measures such as the mean value of the 5% of worst cases in the 21st century, in particular from 2025 to 2100. Estimates from stochastic models for characterising HWs and epidemiological impacts on human health can vary from one climate model to another, so relying on a single climate model can be problematic. For this reason, the calculations are carried out for 21 models and the average of the results is obtained. A sensitivity adaptation analysis is also performed. Under RCP 8.5 for 2100 for Madrid city a mean excess of 3.6 °C over the 38 °C temperature threshold is expected as the average of all models, with an expected attributable mortality of 1614 people, but these figures may be substantially exceeded in some cases if the highest-risk cases occur.


Subject(s)
Climate Models , Hot Temperature , Adaptation, Physiological , Climate Change , Epidemiological Models , Humans , Mortality
16.
Proc Natl Acad Sci U S A ; 116(49): 24390-24395, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31792170

ABSTRACT

Given the slow unfolding of what may become catastrophic changes to Earth's climate, many are understandably distraught by failures of public policy to rise to the magnitude of the challenge. Few in the science community would think to question the scientific response to the unfolding changes. However, is the science community continuing to do its part to the best of its ability? In the domains where we can have the greatest influence, is the scientific community articulating a vision commensurate with the challenges posed by climate change? We think not.

17.
Proc Biol Sci ; 288(1958): 20211357, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34521252

ABSTRACT

Climate dynamics are inextricably linked to processes in social systems that are highly unequal. This suggests a need for coupled social-climate models that capture pervasive real-world asymmetries in the population distribution of the consequences of anthropogenic climate change and climate (in)action. Here, we use evolutionary game theory to develop a social-climate model with group structure to investigate how anthropogenic climate change and population heterogeneity coevolve. We find that greater homophily and resource inequality cause an increase in the global peak temperature anomaly by as much as 0.7°C. Also, climate change can structure human populations by driving opinion polarization. Finally, climate mitigation achieved by reducing the cost of mitigation measures paid by individuals tends to be contingent upon socio-economic conditions, whereas policies that achieve communication between different strata of society show climate mitigation benefits across a broad socio-economic regime. We conclude that advancing climate change mitigation efforts can benefit from a social-climate systems perspective.


Subject(s)
Climate Change , Planets , Game Theory , Hot Temperature , Humans , Models, Theoretical
18.
Philos Trans A Math Phys Eng Sci ; 379(2195): 20190545, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33641458

ABSTRACT

We examine the resolution dependence of errors in extreme sub-daily precipitation in available high-resolution climate models. We find that simulated extreme precipitation increases as horizontal resolution increases but that appropriately constructed model skill metrics do not significantly change. We find little evidence that simulated extreme winter or summer storm processes significantly improve with the resolution because the model performance changes identified are consistent with expectations from scale dependence arguments alone. We also discuss the implications of these scale-dependent limitations on the interpretation of simulated extreme precipitation. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.

19.
Stud Hist Philos Sci ; 86: 103-113, 2021 04.
Article in English | MEDLINE | ID: mdl-33965659

ABSTRACT

Calls for research on climate engineering have increased in the last two decades, but there remains widespread agreement that many climate engineering technologies (in particular, forms involving global solar radiation management) present significant ethical risks and require careful governance. However, proponents of research argue, ethical restrictions on climate engineering research should not be imposed in early-stage work like in silico modeling studies. Such studies, it is argued, do not pose risks to the public, and the knowledge gained from them is necessary for assessing the risks and benefits of climate engineering technologies. I argue that this position, which I call the "broad research-first" stance, cannot be maintained in light of the entrance of nonepistemic values in climate modeling. I analyze the roles that can be played by nonepistemic political and ethical values in the design, tuning, and interpretation of climate models. Then, I argue that, in the context of early-stage climate engineering research, the embeddedness of values will lead to value judgments that could harm stakeholder groups or impose researcher values on non-consenting populations. I conclude by calling for more robust reflection on the ethics and governance of early-stage climate engineering research.


Subject(s)
Engineering , Research Personnel , Climate , Humans , Knowledge
20.
Stud Hist Philos Sci ; 88: 120-127, 2021 08.
Article in English | MEDLINE | ID: mdl-34166920

ABSTRACT

Non-epistemic values pervade climate modelling, as is now well documented and widely discussed in the philosophy of climate science. Recently, Parker and Winsberg have drawn attention to what can be termed "epistemic inequality": this is the risk that climate models might more accurately represent the future climates of the geographical regions prioritised by the values of the modellers. In this paper, we promote value management as a way of overcoming epistemic inequality. We argue that value management can be seriously considered as soon as the value-free ideal and inductive risk arguments commonly used to frame the discussions of value influence in climate science are replaced by alternative social accounts of objectivity. We consider objectivity in Longino's sense as well as strong objectivity in Harding's sense to be relevant options here, because they offer concrete proposals that can guide scientific practice in evaluating and designing so-called multi-model ensembles and, in fine, improve their capacity to quantify and express uncertainty in climate projections.


Subject(s)
Cultural Diversity , Philosophy , Climate , Climate Change , Philosophy/history , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL