Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
Add more filters

Publication year range
1.
Appl Environ Microbiol ; : e0017724, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254318

ABSTRACT

The study aimed to explore the antimicrobial efficacy of grape seed extract (GSE) and cold atmospheric plasma (CAP) individually or in combination against L. monocytogenes and E. coli wild type (WT) and their isogenic mutants in environmental stress genes. More specifically, we examined the effects of 1% (wt/vol) GSE, 4 min of CAP treatment, and their combined effect on L. monocytogenes 10403S WT and its isogenic mutants ΔsigB, ΔgadD1, ΔgadD2, ΔgadD3, as well as E. coli K12 and its isogenic mutants ΔrpoS, ΔoxyR, and ΔdnaK. In addition, the sequence of the combined treatments was tested. A synergistic effect was achieved for all L. monocytogenes strains when exposure to GSE was followed by CAP treatment. However, the same effect was observed against E. coli strains, only for the reversed treatment sequence. Additionally, L. monocytogenes ΔsigB was more sensitive to the individual GSE and the combined GSE/CAP treatment, whereas ΔgadD2 was more sensitive to CAP, as compared to the rest of the mutants under study. Individual GSE exposure was unable to inhibit E. coli strains, and individual CAP treatment resulted in higher inactivation of E. coli in comparison to L. monocytogenes with the strain ΔrpoS appearing the most sensitive among all studied strains. Our findings provide a step toward a better understanding of the mechanisms playing a role in the tolerance/sensitivity of our model Gram-positive and Gram-negative bacteria toward GSE, CAP, and their combination. Therefore, our results contribute to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.IMPORTANCEAlternative approaches to conventional sterilization are gaining interest from the food industry, driven by (i) the consumer demand for minimally processed products and (ii) the need for sustainable, environmentally friendly processing interventions. However, as such alternative approaches are milder than conventional heat sterilization, bacterial pathogens might not be entirely killed by them, which means that they could survive and grow, causing food contamination and health hazards. In this manuscript, we performed a systematic study of the impact of antimicrobials derived from fruit industry waste (grape seed extract) and cold atmospheric plasma on the inactivation/killing as well as the damage of bacterial pathogens and their genetically modified counterparts, for genes linked to the response to environmental stress. Our work provides insights into genes that could be responsible for the bacterial capability to resist/survive those novel treatments, therefore, contributing to the development of more effective and targeted antimicrobial strategies for sustainable decontamination.

2.
Mol Cell Biochem ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861100

ABSTRACT

Cancer is still one of the most arduous challenges in the human society, even though humans have found many ways to try to conquer it. With our incremental understandings on the impact of sugar on human health, the clinical relevance of glycosylation has attracted our attention. The fact that altered glycosylation profiles reflect and define different health statuses provide novel opportunities for cancer diagnosis and therapeutics. By reviewing the mechanisms and critical enzymes involved in protein, lipid and glycosylation, as well as current use of glycosylation for cancer diagnosis and therapeutics, we identify the pivotal connection between glycosylation and cellular redox status and, correspondingly, propose the use of redox modulatory tools such as cold atmospheric plasma (CAP) in cancer control via glycosylation editing. This paper interrogates the clinical relevance of glycosylation on cancer and has the promise to provide new ideas for laboratory practice of cold atmospheric plasma (CAP) and precision oncology therapy.

3.
Article in English | MEDLINE | ID: mdl-38429978

ABSTRACT

BACKGROUND AND HYPOTHESIS: An estimated 80% of individuals with chronic kidney disease (CKD) experience concomitant skin disorders, yet experimental research that elucidates the pathological changes in CKD-affected skin is limited. Cold atmospheric plasma (CAP) has shown promise in regulating keratinocyte proliferation, skin barrier function, and anti-inflammatory activity. We hypothesize that CAP emerges as a promising therapeutic avenue for CKD-related skin diseases. METHODS: Male and female C57/BL6 mice were administered a 0.2% adenine diet to generate a CKD mouse model. Skin samples from dialysis patients were also collected. These models were used to investigate the pathological alterations in the renal glomeruli, tubules, and epidermis. Subsequently, the potential impact of CAP on the stratum corneum, keratinocytes, skin hydration, and inflammation in mice with CKD were examined. RESULTS: Renal biopsies revealed glomerular and tubular atrophy, epithelial degeneration and necrosis in uriniferous tubules, and significant renal interstitial fibrosis. Skin biopsies from patients with CKD and mice showed stratum corneum thickening, epidermis atrophy, skin hydration dysfunction, and excessive inflammation. CAP attenuated skin atrophy, hydration dysfunction, and inflammation in mice with CKD, as evidenced by the activated level of YAP1/ß-catenin and Nrf-2/OH-1, enhanced expression of K5 and Ki67, increased levels of AQP3, collagen I, and GLUT1, reduced infiltration of CD3+ T cells, and diminished levels of IL-6 and TNF-α. CONCLUSION: This study provides valuable insights into the pathological changes in skin associated with CKD in both patients and animal models. It also establishes that CAP has the potential to effectively mitigate skin atrophy, hydration dysfunction, and inflammation, suggesting a novel therapeutic avenue for the treatment of CKD-related skin disorders.

4.
Mol Biol Rep ; 51(1): 518, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622261

ABSTRACT

BACKGROUND: Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS: The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS: These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.


Subject(s)
Carcinoma, Squamous Cell , Plasma Gases , Skin Neoplasms , Animals , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Reactive Oxygen Species/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Plasma Gases/pharmacology , Proliferating Cell Nuclear Antigen/genetics , bcl-2-Associated X Protein , Apoptosis , Cell Line, Tumor , Cell Proliferation
5.
Artif Organs ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301839

ABSTRACT

BACKGROUND: Cold atmospheric plasma (CAP) therapy has been recognized as effective treatment option for reducing bacterial load in chronic wounds, such as adult ventricular assist device (VAD) driveline exit-site infections. Currently, there have been no reports on the safety and efficacy of CAP therapy for pediatric cannula infections and inflammations in paracorporeal pulsatile VADs. METHODS: The mechanical strength of Berlin Heart EXCOR cannulas were tested both before and after CAP treatment (SteriPlas, Adtec Healthcare Limited, UK) to prove material safety. A ring tensile test of 20 untreated and 20 CAP-treated (5 min) EXCOR cannulas (Ø12mm), assessed the force at the breaking point of the cannulas (Fmax), at 25% (F25%) and 50% (F50%) of the maximum displacement. Additionally, the scanning electron microscope (SEM) micrographs for both groups examined any surface changes. Finally, the case of a 13-year-old male EXCOR patient with cannula infections, treated with CAP over 100 days, is presented. RESULTS: The in vitro measurements revealed no statistically significant differences in mechanical strength between the control and CAP group for F25% (8.18 ± 0.36 N, vs. 8.02 ± 0.43 N, p = 0.21), F50% (16.87 ± 1.07 N vs. 16.38 ± 1.32 N, p = 0.21), and FMAX (44.55 ± 3.24 N vs. 42.83 ± 4.32 N, p = 0.16). No surface structure alterations were identified in the SEM micrographs. The patient's cannula exit-sites showed a visible improvement in DESTINE wound staging, reduction in bacterial load and inflammatory parameters after CAP treatment without any side effects. CONCLUSION: Overall, CAP therapy proved to be a safe and effective for treating EXCOR cannula exit-site wound healing disorders in one pediatric patient, but further studies should investigate this therapy in more detail.

6.
Oral Dis ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39314203

ABSTRACT

OBJECTIVE: Cold atmospheric plasma (CAP) is a novel approach for cancer treatment. It can be used to treat liquids-plasma-activated media (PAM)-which are then transferred to the target as an exogenous source of reactive oxygen and nitrogen species (RONS). The present study aimed at chemically characterizing different PAM and assessing their in vitro selectivity against head and neck cancer cells (HNC). METHODS: PAM were obtained by exposing 2 and 5 mL of cell culture medium to CAP for 5, 10 and 20 min at a 6 mm working distance. Anions kinetics was evaluated by ion chromatography. Cell proliferation inhibition, apoptosis occurrence, and cell cycle modifications were assessed by MTS and flow cytometry, on human epidermal keratinocyte (HaCaT) and HNC cell lines HSC3, HSC4 and A253. RESULTS: The 2 mL conditions showed a significant reduction in cell proliferation whereas for the 5 mL the effect was milder, but the time-dependence was more evident. HaCaT were unaffected by the 5 mL PAM, indicating a selectivity for cancer cells. CONCLUSIONS: The media chemical composition modified by CAP exposure influenced cell proliferation by modulating cell cycle and inducing apoptosis in cancer cells, without affecting normal cells.

7.
Skin Res Technol ; 30(1): e13544, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38174746

ABSTRACT

BACKGROUND: Cold atmospheric plasma (CAP), is a technology based on non-thermal ionized gas that is used for cancer therapy in research. We evaluated the effect of CAP on malignant melanoma cancer cell line (B16) in comparison with normal cells (L929). METHODS: The effect of CAP on the cytotoxicity of B16 and L929 cell lines was assayed by the MTT method and inverted microscopy. The induction of apoptosis in cells was evaluated using a fluorescence microscope. FTIR monitored the CAP effect in biomacromolecules changes in these cell lines. QPCR assayed gene expression of BAX, BCL-2, and Caspase-3 (CASP-3). RESULTS: The results of the MTT test showed CAP has a cytotoxic effect on the B16 cancer cell line more than L929 normal cells (p < 0.0001). The results of invert and fluorescence microscopy showed CAP-induced apoptotic morphology on cancerous cells. FTIR spectroscopy indicated CAP changes biomacromolecules structure. Evaluation of gene expression showed CAP increased BAX and CASP-3 gene expression. Also, it decreased BCL-2 gene expression. CONCLUSIONS: Taken together, CAP may change biomacromolecule structures involved in apoptosis pathways, decrease proliferation and induce apoptosis in cancer cells.


Subject(s)
Melanoma , Plasma Gases , Humans , Melanoma/pathology , Cell Line, Tumor , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/pharmacology , Plasma Gases/pharmacology , Apoptosis , Proto-Oncogene Proteins c-bcl-2/pharmacology
8.
Skin Res Technol ; 30(7): e13850, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979986

ABSTRACT

BACKGROUND: Current treatment options for Malassezia folliculitis (MF) are limited. Recent research has demonstrated the inhibitory effect of cold atmospheric plasma (CAP) on the growth of Malassezia pachydermatis in vitro, suggesting CAP as a potential therapeutic approach for managing MF. OBJECTIVES: The objective of our study is to assess the in vitro antifungal susceptibility of Malassezia yeasts to CAP. Additionally, we aim to evaluate the efficacy and tolerability of CAP in treating patients with MF. METHODS: We initially studied the antifungal effect of CAP on planktonic and biofilm forms of Malassezia yeasts, using well-established techniques such as zone of inhibition, transmission electron microscopy, colony count assay and 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt assay. Subsequently, a randomized (1:1 ratio), active comparator-controlled, observer-blind study was conducted comparing daily CAP therapy versus itraconazole 200 mg/day for 2 weeks in 50 patients with MF. Efficacy outcomes were measured by success rate, negative microscopy rate and changes in Dermatology Life Quality Index (DLQI) and Global Aesthetic Improvement Scale (GAIS) scores. Safety was assessed by monitoring adverse events (AEs) and local tolerability. RESULTS: In laboratory investigations, CAP time-dependently inhibited the growth of Malassezia yeasts in both planktonic and biofilm forms. Forty-nine patients completed the clinical study. At week 2, success was achieved by 40.0% of subjects in the CAP group versus 58.3% in the itraconazole group (p = 0.199). The negative direct microscopy rates of follicular samples were 56.0% in the CAP group versus 66.7% in the itraconazole group (p = 0.444). No significant differences were found in the proportion of subjects achieving DLQI scores of 0/1 (p = 0.456) or in the GAIS responder rates (p = 0.588) between the two groups. Three patients in the CAP group and one patient in the itraconazole group reported mild AEs. CONCLUSION: CAP demonstrated significant antifungal activity against Malassezia yeasts in vitro and exhibited comparable efficacy to itraconazole in treating MF patients. Without the associated adverse effects of oral antifungal drugs, CAP can be considered a promising and safe treatment modality for MF.


Subject(s)
Antifungal Agents , Dermatomycoses , Folliculitis , Malassezia , Plasma Gases , Malassezia/drug effects , Humans , Folliculitis/drug therapy , Folliculitis/microbiology , Plasma Gases/pharmacology , Plasma Gases/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Adult , Female , Male , Middle Aged , Dermatomycoses/drug therapy , Dermatomycoses/microbiology , Itraconazole/therapeutic use , Itraconazole/pharmacology , Young Adult , Treatment Outcome , Biofilms/drug effects
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34916286

ABSTRACT

Therapy resistance is responsible for most cancer-related death and is mediated by the unique ability of cancer cells to leverage metabolic conditions, signaling molecules, redox status, and other pathways for their survival. Interestingly, many cancer survival pathways are susceptible to disturbances in cellular reactive oxygen species (ROS) and may therefore be disrupted by exogenous ROS. Here, we explore whether trident cold atmospheric plasma (Tri-CAP), a gas discharge with exceptionally low-level ROS, could inhibit multiple cancer survival pathways together in a murine cell line model of therapy-resistant chronic myeloid leukemia (CML). We show that Tri-CAP simultaneously disrupts three cancer survival pathways of redox deregulation, glycolysis, and proliferative AKT/mTOR/HIF-1α signaling in this cancer model. Significantly, Tri-CAP blockade induces a very high rate of apoptotic death in CML cell lines and in primary CD34+ hematopoietic stem and progenitor cells from CML patients, both harboring the therapy-resistant T315I mutation. In contrast, nonmalignant controls are minimally affected by Tri-CAP, suggesting it selectively targets resistant cancer cells. We further demonstrate that Tri-CAP elicits similar lethality in human melanoma, breast cancer, and CML cells with disparate, resistant mechanisms and that it both reduces tumor formation in two mouse models and improves survival of tumor-bearing mice. For use in patients, administration of Tri-CAP may be extracorporeal for hematopoietic stem cell transplantation therapy, transdermal, or through its activated solution for infusion therapy. Collectively, our results suggest that Tri-CAP represents a potent strategy for disrupting cancer survival pathways and overcoming therapy resistance in a variety of malignancies.


Subject(s)
Leukemia, Experimental/therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Plasma Gases/therapeutic use , Animals , Carcinogenesis , Cell Line, Tumor , Humans , Lactic Acid/metabolism , Leukemia, Experimental/mortality , Mice , Oxidation-Reduction
10.
Sensors (Basel) ; 24(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38894309

ABSTRACT

In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample. By adjusting the dimensions of the sample to resonate at the excitation frequency of the probe, we can achieve high vibrational velocities, enabling further mechanical analysis. In contrast with traditional vibration excitation techniques such as electrodynamical shakers and hammer impact excitation, a plasma probe can offer distinct advantages without altering the structure's dynamics since it is contactless. Furthermore, in comparison with laser excitation, plasma excitation provides a higher power level. Additionally, while pressurized air systems are applicable for limited low frequencies, plasma probes can perform at higher frequencies. Our findings in this study suggest that CAP is comparable with acoustic excitation, indicating its potential as an effective mechanical excitation method.

11.
Vet Dermatol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140276

ABSTRACT

BACKGROUND: Cold atmospheric plasma (CAP) is a new therapeutic tool used to treat various skin diseases in humans and animals. OBJECTIVE: To evaluate the effect of CAP in the treatment of canine acute otitis externa (AOE). ANIMALS: Four client-owned golden retriever dogs with bilateral AOE. METHODS AND MATERIALS: After cleaning with a commercial ear cleanser, right ears (STANDARD group) were treated with an antibiotic/antifungal/corticosteroid combination and left ears (CAP group) were treated with CAP every three days for a total of four treatments. Cytological score and otitis index score (OTIS)3 were recorded for each ear on Day (D)0, D10 and D15. At D10 and D15, owners and investigators recorded an overall assessment. RESULTS: In both groups, OTIS3 and cytological score decreased over the study period. The overall assessment scale ranged from moderate to excellent in both groups. CONCLUSIONS AND CLINICAL RELEVANCE: Cold atmospheric plasma treatment showed equal therapeutic effect compared with a commercial topical anti-inflammatory and antimicrobial ear treatment.

12.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928343

ABSTRACT

Increasing the number of resistant bacteria resistant to treatment is one of the leading causes of death worldwide. These bacteria are created in wounds and injuries and can be transferred through hospital equipment. Various attempts have been made to treat these bacteria in recent years, such as using different drugs and new sterilization methods. However, some bacteria resist drugs, and other traditional methods cannot destroy them. In the meantime, various studies have shown that cold atmospheric plasma can kill these bacteria through different mechanisms, making cold plasma a promising tool to deactivate bacteria. This new technology can be effectively used in the food industry because it has the potential to inactivate microorganisms such as spores and microbial toxins and increase the wettability and printability of polymers to pack fresh and dried food. It can also increase the shelf life of food without leaving any residue or chemical effluent. This paper investigates cold plasma's potential, advantages, and disadvantages in the food industry and sterilization.


Subject(s)
Food Packaging , Plasma Gases , Food Packaging/methods , Plasma Gases/pharmacology , Sterilization/methods , Atmospheric Pressure , Food Preservation/methods , Bacteria/drug effects
13.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000064

ABSTRACT

Chondrosarcoma (CS) is a rare malignant bone sarcoma that primarily affects cartilage cells in the femur and pelvis. While most subtypes exhibit slow growth with a very good prognosis, some aggressive subtypes have a poorer overall survival. CS is known for its resistance to chemotherapy and radiotherapy, leaving surgery as the sole effective therapeutic option. Cold physical plasma (CPP) has been explored in vitro as a potential therapy, demonstrating positive anti-tumor effects on CS cells. This study investigated the synergistic effects of combining CPP with cytostatics on CS cells. The chemotherapeutic agents cisplatin, doxorubicin, and vincristine were applied to two CS cell lines (CAL-78 and SW1353). After determining their IC20 and IC50, they were combined with CPP in both cell lines to assess their impact on the cell proliferation, viability, metabolism, and apoptosis. This combined approach significantly reduced the cell proliferation and viability while increasing the apoptosis signals compared to cytostatic therapy alone. The combination of CPP and chemotherapeutic drugs shows promise in targeting chemoresistant CS cells, potentially improving the prognosis for patients in clinical settings.


Subject(s)
Apoptosis , Bone Neoplasms , Cell Proliferation , Cell Survival , Chondrosarcoma , Doxorubicin , Plasma Gases , Chondrosarcoma/drug therapy , Chondrosarcoma/pathology , Humans , Plasma Gases/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/therapy , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Vincristine/pharmacology , Combined Modality Therapy
14.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542225

ABSTRACT

Breast cancer is a growing disease, with a high worldwide incidence and mortality rate among women. Among the various types, the treatment of triple-negative breast cancer (TNBC) remains a challenge. Considering the recent advances in cold atmospheric plasma (CAP) cancer research, our goal was to evaluate efficacy data from studies based on chemotherapy and CAP in TNBC cell lines and animal models. A search of the literature was carried out in the PubMed, Web of Science, Cochrane Library, and Embase databases. Of the 10,999 studies, there were fifty-four in vitro studies, three in vivo studies, and two in vitro and in vivo studies included. MDA-MB-231 cells were the most used. MTT, MTS, SRB, annexin-V/propidium iodide, trypan blue, and clonogenic assay were performed to assess efficacy in vitro, increasing the reliability and comprehensiveness of the data. There was found to be a decrease in cell proliferation after both chemotherapy and CAP; however, different protocol settings, including an extensive range of drug doses and CAP exposure times, were reported. For both therapies, a considerable reduction in tumor volume was observed in vivo compared with that of the untreated group. The treatment of TNBC cell lines with CAP proved successful, with apoptosis emerging as the predominant type of cellular death. This systematic review presents a comprehensive overview of the treatment landscape in chemotherapy and CAP regarding their efficacy in TNBC cell lines.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Female , Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Reproducibility of Results , Triple Negative Breast Neoplasms/pathology
15.
Molecules ; 29(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275117

ABSTRACT

This study proposes an affordable plasma device that utilizes a parallel-plate dielectric barrier discharge geometry with a metallic mesh electrode, featuring a straightforward 3D-printed design. Powered by a high-voltage supply adapted from a cosmetic plasma device, it operates on atmospheric air, eliminating the need for gas flux. Surface modification of polyethylene treated with this device was characterized and showed that the elemental composition after 15 min of plasma treatment decreased the amount of C to ~80 at% due to the insertion of O (~15 at%). Tested against Candida albicans and Staphylococcus aureus, the device achieved a reduction of over 99% in microbial load with exposure times ranging from 1 to 10 min. Simultaneously, the Vero cell viability remained consistently high, namely between 91% and 96% across exposure times. These results highlight this device's potential for the surface modification of materials and various infection-related applications, boasting affordability and facilitating effective antimicrobial interventions.


Subject(s)
Candida albicans , Plasma Gases , Staphylococcus aureus , Surface Properties , Candida albicans/drug effects , Plasma Gases/chemistry , Plasma Gases/pharmacology , Staphylococcus aureus/drug effects , Animals , Vero Cells , Chlorocebus aethiops , Microbial Viability/drug effects , Polymers/chemistry
16.
Arch Biochem Biophys ; 747: 109757, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37742933

ABSTRACT

Glioblastoma (GBM) is one of the most aggressive and challenging cancers to treat. Despite extensive research on dozens of cancer cells, including GBM, the effect of cold atmospheric plasma (CAP) on the invasive migration of GBM cells has received limited attention, and the underlying mechanisms remain poorly understood. This study aims to investigate the potential molecular mechanism of ns-CAPJ in inhibiting the invasive migration of human GBM cells. The findings indicate that ns-CAPJ significantly reduces GBM cell invasion and migration, and induces apoptosis in GBM cells. Further mechanistic studies demonstrate a direct correlation between the suppression of the epithelial-mesenchymal transition (EMT) signaling pathway and ns-CAPJ's inhibitory effect on GBM cell invasion and migration. Additionally, combined with the N-acetyl cysteine (NAC, a ROS inhibitor) assay, we found that the ROS stimulated by the ns-CAPJ plays an important role in suppressing the EMT process. This work is expected to provide new insight into understanding the molecular mechanisms of how ns-CAPJ inhibits the proliferation and migration of human GBM cells.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Epithelial-Mesenchymal Transition , Reactive Oxygen Species , Apoptosis , Cell Proliferation , Cell Line, Tumor , Cell Movement , Brain Neoplasms/metabolism
17.
Exp Eye Res ; 237: 109692, 2023 12.
Article in English | MEDLINE | ID: mdl-37884203

ABSTRACT

Bacterial keratitis is a vision-threatening infection of the cornea that is typically treated with antibiotics. However, antibiotics sometimes fail to eradicate the infection and do not prevent or repair the damage caused directly by the bacteria or the host immune response to the infection. Our group previously demonstrated that treatment of Pseudomonas aeruginosa keratitis in rabbits with innovative cold atmospheric plasma (iCAP) resulted in reduced edema, ulcer formation, and bacterial load. In this study, we investigated the efficacy of iCAP treatment in methicillin-resistant Staphylococcus aureus (MRSA). New Zealand white rabbits were infected intrastromally with MRSA then treated with iCAP, moxifloxacin, vancomycin, or combination of iCAP with each antibiotic to assess the safety and efficacy of iCAP treatment compared to untreated controls and antibiotics. iCAP treatment significantly reduced bacterial loads and inflammation, improved anterior chamber clarity, and prevented corneal ulceration compared to untreated controls and antibiotic treatment. Safety assessments of grimace test scores and tear production showed that iCAP was not significantly different from either antibiotic treatment in terms of distress or tear production. Combination iCAP/antibiotic treatment did not appear to provide significant added benefit over iCAP alone. Our findings suggest that the addition of iCAP may be a viable tool in reducing damage to the cornea and anterior chamber of the eye following S. aureus keratitis.


Subject(s)
Corneal Ulcer , Eye Infections, Bacterial , Keratitis , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Rabbits , Animals , Corneal Ulcer/drug therapy , Corneal Ulcer/microbiology , Bacterial Load , Staphylococcus aureus , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Keratitis/drug therapy , Keratitis/prevention & control , Keratitis/microbiology , Anti-Bacterial Agents/therapeutic use , Eye Infections, Bacterial/drug therapy , Eye Infections, Bacterial/prevention & control , Eye Infections, Bacterial/microbiology
18.
Int Arch Allergy Immunol ; 184(12): 1184-1197, 2023.
Article in English | MEDLINE | ID: mdl-37703833

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease. Microbial infection, immune system dysfunction, and skin barrier defunctionalization have been regarded as the central events in AD pathogenesis. Cold atmospheric plasma (CAP) is an unbound system composed of many free electrons, ions, and neutral particles, with macroscopic time and spatial scales. Based on dielectric barrier discharge, glow discharge, corona discharge, or arch discharge, CAP is generated at normal atmospheric pressure. Its special physical properties maintain its temperature at 20°C-40°C, combining the advantages of high safety and strong ionic activity. CAP has been tentatively used in inflammatory or pruritic skin disorders such as psoriasis, pruritus, and ichthyosis. Increasing data suggest that CAP can attack the microbial structure due to its unique effects, such as heat, ultraviolet radiation, and free radicals, resulting in its inactivation. Meanwhile, CAP regulates reactive oxygen species and reactive nitrogen species in and out of the cells, thereby improving cell immunocompetence. In addition, CAP has a beneficial effect on the skin barrier function via changing the skin lipid contents and increasing the skin permeability to drugs. This review summarizes the potential effects of CAP on the major pathogenic causes of AD and discusses the safety of CAP application in dermatology in order to expand the clinical application value of CAP to AD.


Subject(s)
Dermatitis, Atopic , Plasma Gases , Skin Diseases , Humans , Dermatitis, Atopic/therapy , Plasma Gases/therapeutic use , Plasma Gases/chemistry , Ultraviolet Rays , Skin
19.
Wound Repair Regen ; 31(3): 415-417, 2023.
Article in English | MEDLINE | ID: mdl-36861202

ABSTRACT

Radiation injury has a complex pathophysiology and can result in long-term impediment of the dermal barrier function. Historically, its treatment has been no different to that of thermal burns and it is not always possible to prevent an unpredictable and uncontrolled extension of the radiation-induced reactions. Non-invasive physical plasma (NIPP), a highly energised gas encompassing a combination of various reactive species, positively affects the key players involved in wound healing and proves to be a promising treatment option for chronic wounds and inflammatory skin disorders. Recent clinical evidence also suggests preliminary efficacy in radiation injury following therapeutic irradiation as a part of cancer therapy. Further research is warranted to also investigate the clinical value of NIPP in the context of unplanned or accidental radiation exposure, either as a topical treatment or possibly as an intraoperative procedure, to potentially improve the dermatological outcome and reduce symptoms in radiation victims.


Subject(s)
Burns , Radiation Injuries , Humans , Wound Healing/radiation effects , Skin/radiation effects , Radiation Injuries/therapy , Burns/therapy , Administration, Topical
20.
Cell Biol Int ; 47(2): 327-340, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36342241

ABSTRACT

The serious problems of conventional breast cancer therapy strategies such as drug resistance, severe side effects, and lack of selectivity prompted the development of various cold atmospheric plasma (CAP) devices. Due to its advanced technology, CAP can produce a unique environment rich in reactive oxygen and nitrogen species (RONS), photons, charged ions, and an electric field, making it a promising revolutionary platform for cancer therapy. Despite substantial technological successes, CAP-based therapeutic systems are encounter with distinct limitations, including low control of the generated RONS, poor knowledge about its anticancer mechanisms, and challenges concerning designing, manufacturing, clinical translation, and commercialization, which must be resolved. The latest developments in CAP-based therapeutic systems for breast cancer treatment are discussed in this review. More significantly, the integration of CAP-based medicine approaches with other breast cancer therapies, including chemo- and nanotherapy is thoroughly addressed.


Subject(s)
Breast Neoplasms , Plasma Gases , Humans , Female , Breast Neoplasms/drug therapy , Plasma Gases/therapeutic use , Reactive Oxygen Species , Reactive Nitrogen Species , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL