Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
New Phytol ; 243(4): 1610-1619, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924134

ABSTRACT

The homology of the single cotyledon of grasses and the ontogeny of the scutellum and coleoptile as the initial, highly modified structures of the grass embryo are investigated using leaf developmental genetics and targeted transcript analyses in the model grass Zea mays subsp. mays. Transcripts of leaf developmental genes are identified in both the initiating scutellum and the coleoptile, while mutations disrupting mediolateral leaf development also disrupt scutellum and coleoptile morphology, suggesting that these grass-specific organs are modified leaves. Higher-order mutations in WUSCHEL-LIKE HOMEOBOX3 (WOX3) genes, involved in mediolateral patterning of plant lateral organs, inform a model for the fusion of coleoptilar margins during maize embryo development. Genetic, RNA-targeting, and morphological evidence supports models for cotyledon evolution where the scutellum and coleoptile, respectively, comprise the distal and proximal domains of the highly modified, single grass cotyledon.


Subject(s)
Cotyledon , Gene Expression Regulation, Plant , Mutation , Seeds , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/anatomy & histology , Seeds/growth & development , Seeds/genetics , Mutation/genetics , Cotyledon/genetics , Cotyledon/growth & development , Plant Leaves/growth & development , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Models, Biological
2.
J Exp Bot ; 75(13): 3862-3876, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38571323

ABSTRACT

Rapid elongation of coleoptiles from rice seeds to reach the water surface enables plants to survive submergence stress and therefore plays a crucial role in allowing direct seeding in rice cultivation. Gibberellin (GA) positively influences growth in rice, but the molecular mechanisms underlying its regulation of coleoptile elongation under submerged conditions remain unclear. In this study, we performed a weighted gene co-expression network analysis to conduct a preliminarily examination of the mechanisms. Four key modules were identified with high correlations to the GA regulation of submergence tolerance. The genes within these modules were mainly involved in the Golgi apparatus and carbohydrate metabolic pathways, suggesting their involvement in enhancing submergence tolerance. Further analysis of natural variation revealed that the specific hub genes Os03g0337900, Os03g0355600, and Os07g0638400 exhibited strong correlations with subspecies divergence of the coleoptile elongation phenotype. Consistent with this analysis, mutation of Os07g0638400 resulted in a lower germination potential and a stronger inhibition of coleoptile elongation under submerged conditions. The hub genes identified in this study provide new insights into the molecular mechanisms underlying GA-dependent tolerance to submergence stress in rice, and a potential basis for future modification of rice germplasm to allow for direct seeding.


Subject(s)
Cotyledon , Germination , Gibberellins , Oryza , Seeds , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Gibberellins/metabolism , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/physiology , Germination/genetics , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant , Plant Growth Regulators/metabolism
3.
Plant Biotechnol J ; 21(4): 806-818, 2023 04.
Article in English | MEDLINE | ID: mdl-36587283

ABSTRACT

The green revolution was based on genetic modification of the gibberellin (GA) hormone system with "dwarfing" gene mutations that reduces GA signals, conferring shorter stature, thus enabling plant adaptation to modern farming conditions. Strong GA-related mutants with shorter stature often have reduced coleoptile length, discounting yield gain due to their unsatisfactory seedling emergence under drought conditions. Here we present gibberellin (GA) 3-oxidase1 (GA3ox1) as an alternative semi-dwarfing gene in barley that combines an optimal reduction in plant height without restricting coleoptile and seedling growth. Using large-scale field trials with an extensive collection of barley accessions, we showed that a natural GA3ox1 haplotype moderately reduced plant height by 5-10 cm. We used CRISPR/Cas9 technology, generated several novel GA3ox1 mutants and validated the function of GA3ox1. We showed that altered GA3ox1 activities changed the level of active GA isoforms and consequently increased coleoptile length by an average of 8.2 mm, which could provide essential adaptation to maintain yield under climate change. We revealed that CRISPR/Cas9-induced GA3ox1 mutations increased seed dormancy to an ideal level that could benefit the malting industry. We conclude that selecting HvGA3ox1 alleles offers a new opportunity for developing barley varieties with optimal stature, longer coleoptile and additional agronomic traits.


Subject(s)
Gibberellins , Hordeum , Cotyledon , Hordeum/genetics , CRISPR-Cas Systems/genetics , Oxidoreductases/genetics , Alleles , Gene Editing , Seedlings/genetics
4.
Transgenic Res ; 32(4): 339-349, 2023 08.
Article in English | MEDLINE | ID: mdl-37318700

ABSTRACT

Genetic modification of rice is mainly carried out by Agrobacterium-mediated transformation of callus accompanied by tissue culture. It is time consuming, laborious and unapplicable for cultivars unable to induce callus. In this study, we have reported a novel gene transfer protocol that involves pulling out primary leaf from coleoptile and injection of Agrobacterium culture into the empty channel. Out of 25 plants survived after injection of Agrobacterium tumefaciens EHA105 culture harboring pCAMBIA1301-RD29A-AtDREB1A, 8 T0 plants revealed the expected size of around 811 bp corresponding to AtDREB1A gene and Southern blotting analysis on 18 T1 plants suggested introgression of AtDREB1A. 3 T2 lines (7-9, 12-3, 18-6) exhibited accumulation of free proline and soluble sugars, yet increase of chlorophyll content, but decrease of electrolyte leakage and methane dicarboxylic aldehyde under cold stress condition at the vegetative growth stage. Yield components investigation on T2 lines showed earlier heading date and no yield loss compared to wild type plants grown under normal condition. GUS expression analysis and integrated transgene detection in T0 and T1 plants followed by evaluation of cold stress tolerance in T2 lines suggest the advantage of this in planta transformation protocol to obtain transgenic rice.


Subject(s)
Oryza , Oryza/genetics , Cotyledon , Plants, Genetically Modified/genetics , Agrobacterium tumefaciens/genetics , Transgenes , Transformation, Genetic
5.
Mol Breed ; 43(2): 9, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37313132

ABSTRACT

Increasing numbers of rice farmers are adopting methods of direct seeding in flooded paddy fields to save costs associated with labor and transplanting. Successful seedling establishment under anoxic conditions requires rapid coleoptile growth to access oxygen near the water surface. It is important to identify relevant genetic loci for coleoptile growth in rice. In this study, the coleoptile length (CL), coleoptile surface area (CSA), coleoptile volume (CV), and coleoptile diameter (CD) of a germplasm collection consisting of 200 cultivars growing in a low-oxygen environment for 6 days varied extensively. A genome-wide association study (GWAS) was performed using 161,657 high-quality single nucleotide polymorphisms (SNPs), which were obtained via genotyping by sequencing (GBS). A total of 96 target trait-associated loci were detected, of which 14 were detected repeatedly in both the wet and dry seasons. For these 14 loci, 384 genes were located within a 200-kb genomic region (± 100 kb from the peak SNP). In addition, 12,084 differentially expressed genes (DEGs) were identified using transcriptome expression profiling. Based on the GWAS and expression profiling, we further narrowed the candidate genes down to 111. Among the 111 candidate DEGs, Os02g0285300, Os02g0639300, Os04g0671300, Os06g0702600, Os06g0707300, and Os12g0145700 were the most promising candidates associated with anaerobic germination. In addition, we performed a detailed analysis of OsTPP7 sequences from 29 samples in our panel containing 200 diverse germplasms. A total of 11 mutation sites were identified, and four haplotypes were obtained. We found that 7 varieties with the OsTPP7-1 haplotype had higher phenotypic values. This work broadens our understanding of the genetic control of germination tolerance of anaerobic conditions. This study also provides a material basis for breeding superior direct-seeded rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01345-1.

6.
Int J Mol Sci ; 24(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38069387

ABSTRACT

Serotonin (5-HT), an indoleamine compound, has been known to mediate many physiological responses of plants under environmental stress. The deep-seeding (≥20 cm) of maize seeds is an important cultivation strategy to ensure seedling emergence and survival under drought stress. However, the role of 5-HT in maize deep-seeding tolerance remains unexplored. Understanding the mechanisms and evaluating the optimal concentration of 5-HT in alleviating deep-seeding stress could benefit maize production. In this study, two maize inbred lines were treated with or without 5-HT at both sowing depths of 20 cm and 3 cm, respectively. The effects of different concentrations of 5-HT on the growth phenotypes, physiological metabolism, and gene expression of two maize inbred lines were examined at the sowing depths of 20 cm and 3 cm. Compared to the normal seedling depth of 3 cm, the elongation of the mesocotyl (average elongation 3.70 cm) and coleoptile (average elongation 0.58 cm), secretion of indole-3-acetic acid (IAA; average increased 3.73 and 0.63 ng g-1 FW), and hydrogen peroxide (H2O2; average increased 1.95 and 0.63 µM g-1 FW) in the mesocotyl and coleoptile were increased under 20 cm stress, with a concomitant decrease in lignin synthesis (average decreased 0.48 and 0.53 A280 g-1). Under 20 cm deep-seeding stress, the addition of 5-HT activated the expression of multiple genes of IAA biosynthesis and signal transduction, including Zm00001d049601, Zm00001d039346, Zm00001d026530, and Zm00001d049659, and it also stimulated IAA production in both the mesocotyl and coleoptile of maize seedlings. On the contrary, 5-HT suppressed the expression of genes for lignin biosynthesis (Zm00001d016471, Zm00001d005998, Zm00001d032152, and Zm00001d053554) and retarded the accumulation of H2O2 and lignin, resulting in the elongation of the mesocotyl and coleoptile of maize seedlings. A comprehensive evaluation analysis showed that the optimum concentration of 5-HT in relieving deep-seeding stress was 2.5 mg/L for both inbred lines, and 5-HT therefore could improve the seedling emergence rate and alleviate deep-seeding stress in maize seedlings. These findings could provide a novel strategy for improving maize deep-seeding tolerance, thus enhancing yield potential under drought and water stress.


Subject(s)
Cotyledon , Seedlings , Seedlings/metabolism , Cotyledon/metabolism , Zea mays/metabolism , Serotonin/metabolism , Lignin/metabolism , Hydrogen Peroxide/metabolism , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism
7.
Int J Mol Sci ; 24(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37047743

ABSTRACT

Synergetic elongation of mesocotyl and coleoptile are crucial in governing maize seedlings emergence, especially for the maize sown in deep soil. Studying the genomic regions controlling maize deep-sowing tolerance would aid the development of new varieties that are resistant to harsh conditions, such as drought and low temperature during seed germination. Using 346 F2:3 maize population families from W64A × K12 cross at three sowing depths, we identified 33 quantitative trait loci (QTLs) for the emergence rate, mesocotyl, coleoptile, and seedling lengths via composite interval mapping (CIM). These loci explained 2.89% to 14.17% of phenotypic variation in a single environment, while 12 of 13 major QTLs were identified at two or more sowing environments. Among those, four major QTLs in Bin 1.09, Bin 4.08, Bin 6.01, and Bin 7.02 supported pleiotropy for multiple deep-sowing tolerant traits. Meta-analysis identified 17 meta-QTLs (MQTLs) based on 130 original QTLs from present and previous studies. RNA-Sequencing of mesocotyl and coleoptile in both parents (W64A and K12) at 3 cm and 20 cm sowing environments identified 50 candidate genes expressed differentially in all major QTLs and MQTLs regions: six involved in the circadian clock, 27 associated with phytohormones biosynthesis and signal transduction, seven controlled lignin biosynthesis, five regulated cell wall organization formation and stabilization, three were responsible for sucrose and starch metabolism, and two in the antioxidant enzyme system. These genes with highly interconnected networks may form a complex molecular mechanism of maize deep-sowing tolerance. Findings of this study will facilitate the construction of molecular modules for deep-sowing tolerance in maize. The major QTLs and MQTLs identified could be used in marker-assisted breeding to develop elite maize varieties.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/genetics , Chromosome Mapping , Quantitative Trait Loci/genetics , Phenotype , Seedlings/genetics , RNA
8.
BMC Plant Biol ; 22(1): 389, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35922781

ABSTRACT

BACKGROUND: In this study, we investigated the effect of an electric field, with an intensity similar to that of the Earth's field, on plant cells growth. The molecular mechanism underlying this effect remains unclear. RESULTS: It was found that the electric field, depending on the applied voltage, its duration and the polarization of the maize seedlings, stimulated or inhibited the growth of the seedling organs (root, mesocotyl and coleoptile). Moreover, it was also noticed that the gravitropic response of maize seedlings was inhibited at all voltages studied. Simultaneous measurements of growth and external medium pH show that auxin(IAA, indole-3-acetic acid)- and fusicoccin(FC)-induced elongation growth and proton extrusion of maize coleoptile segments were significantly inhibited at higher voltages. The ionic current flowing through the single coleoptile segment during voltage application was 1.7-fold lower in segments treated with cation channel blocker tetraethylammonium chloride (TEA-Cl) and 1.4-fold higher with IAA compared to the control. The electrophysiological experiments show that the electric field caused the depolarization of the membrane potential of parenchymal coleoptile cells, which was not reversible over 120 min. CONCLUSION: It is suggested that a DC electric field inhibits the plasma membrane H+ pump activity and K+ uptake through voltage-dependent, inwardly rectifying ZMK1 channels (Zea mays K+ channel 1). The data presented here are discussed, taking into account the "acid growth hypothesis" of the auxin action and the mechanism of gravitropic response induction.


Subject(s)
Cotyledon , Zea mays , Indoleacetic Acids/metabolism , Membrane Potentials , Protons , Seedlings/metabolism , Zea mays/metabolism
9.
Int J Mol Sci ; 23(17)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36077554

ABSTRACT

Plants frequently experience hypoxia due to flooding caused by intensive rainfall or irrigation, when they are partially or completely submerged under a layer of water. In the latter case, some resistant plants implement a hypoxia avoidance strategy by accelerating shoot elongation, which allows lifting their leaves above the water surface. This strategy is achieved due to increased water uptake by shoot cells through water channels (aquaporins, AQPs). It remains a puzzle how an increased flow of water through aquaporins into the cells of submerged shoots can be achieved, while it is well known that hypoxia inhibits the activity of aquaporins. In this review, we summarize the literature data on the mechanisms that are likely to compensate for the decline in aquaporin activity under hypoxic conditions, providing increased water entry into cells and accelerated shoot elongation. These mechanisms include changes in the expression of genes encoding aquaporins, as well as processes that occur at the post-transcriptional level. We also discuss the involvement of hormones, whose concentration changes in submerged plants, in the control of aquaporin activity.


Subject(s)
Aquaporins , Aquaporins/genetics , Aquaporins/metabolism , Gene Expression Regulation, Plant , Hypoxia , Plant Development/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Water/metabolism
10.
New Phytol ; 229(1): 85-93, 2021 01.
Article in English | MEDLINE | ID: mdl-32609884

ABSTRACT

Rice coleoptile elongation under submergence guarantees fast seedling establishment in the field. We investigated the role of auxin in influencing the capacity of rice to produce a long coleoptile under water. In order to explore the complexity of auxin's role in coleoptile elongation, we used gene expression analysis, confocal microscopy of an auxin-responsive fluorescent reporter, gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), and T-DNA insertional mutants of an auxin transport protein. We show that a higher auxin availability in the coleoptile correlates with the final coleoptile length under submergence. We also identified the auxin influx carrier AUX1 as a component influencing this trait under submergence. The coleoptile tip is involved in the final length of rice varieties harbouring a long coleoptile. Our experimental results indicate that auxin biosynthesis and transport underlies the differential elongation between short and long coleoptile-harbouring japonica rice varieties.


Subject(s)
Oryza , Cotyledon , Indoleacetic Acids , Oryza/genetics , Seedlings , Tandem Mass Spectrometry
11.
New Phytol ; 229(1): 36-41, 2021 01.
Article in English | MEDLINE | ID: mdl-31880324

ABSTRACT

Most crops cannot germinate underwater. Rice exhibits certain degrees of tolerance to oxygen deficiency for anaerobic germination (AG) and anaerobic seedling development (ASD). Direct rice seeding, whereby seeds are sown into soil rather than transplanting seedlings from the nursery, becomes an increasingly popular cultivation method due to labor shortages and opportunities for sustainable cultivation. Flooding is common under direct seeding, but most rice varieties have poor capability of AG/ASD, which is a major obstacle to broad adoption of direct seeding. A better understanding of the physiological basis and molecular mechanisms regulating AG/ASD should facilitate rice breeding for enhanced seedling vigor under flooding. This review highlights recent advances on molecular and physiological mechanisms and future breeding strategies of rice AG/ASD.


Subject(s)
Oryza , Germination , Oxygen , Plant Breeding , Seedlings
12.
Plant Cell Environ ; 44(5): 1468-1485, 2021 05.
Article in English | MEDLINE | ID: mdl-33377203

ABSTRACT

Responses of rice seedlings to UV-B radiation (UV-B) were investigated, aiming to establish rice as a model plant for UV-B signalling studies. The growth of japonica rice coleoptiles, grown under red light, was inhibited by brief irradiation with UV-B, but not with blue light. The effective UV-B fluences (10-1 -103 µmol m-2 ) were much lower than those reported in Arabidopsis. The response was much less in indica rice cultivars and its extent varied among Oryza species. We next identified UV-B-specific anthocyanin accumulation in the first leaf of purple rice and used this visible phenotype to isolate mutants. Some isolated mutants were further characterized, and one was found to have a defect in the growth response. Using microarrays, we identified a number of genes that are regulated by low-fluence-rate UV-B in japonica coleoptiles. Some up-regulated genes were analysed by real-time PCR for UV-B specificity and the difference between japonica and indica. More than 70% of UV-B-regulated rice genes had no homologs in UV-B-regulated Arabidopsis genes. Many UV-B-regulated rice genes are related to plant hormones and especially to jasmonate biosynthetic and responsive genes in apparent agreement with the growth response. Possible involvement of two rice homologs of UVR8, a UV-B photoreceptor, is discussed.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Mutation/genetics , Signal Transduction/genetics , Signal Transduction/radiation effects , Ultraviolet Rays , Anthocyanins/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Cotyledon/growth & development , Cotyledon/radiation effects , Oryza/genetics , Oryza/radiation effects , Seedlings/metabolism , Up-Regulation/genetics , Up-Regulation/radiation effects
13.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652568

ABSTRACT

Two arguments against the "acid growth theory" of auxin-induced growth were re-examined. First, the lack of a correlation between the IAA-induced growth and medium acidification, which is mainly due to the cuticle, which is a barrier for proton diffusion. Second, acid- and the IAA-induced growth are additive processes, which means that acid and the IAA act via different mechanisms. Here, growth, medium pH, and membrane potential (in some experiments) were simultaneously measured using non-abraded and non-peeled segments but with the incubation medium having access to their lumen. Using such an approach significantly enhances both the IAA-induced growth and proton extrusion (similar to that of abraded segments). Staining the cuticle on the outer and inner epidermis of the coleoptile segments showed that the cuticle architecture differs on both sides of the segments. The dose-response curves for the IAA-induced growth and proton extrusion were bell-shaped with the maximum at 10-4 M over 10 h. The kinetics of the IAA-induced hyperpolarisation was similar to that of the rapid phase of the IAA-induced growth. It is also proposed that the K+/H+ co-transporters are involved in acid-induced growth and that the combined effect of the K+ channels and K+/ H+ co-transporters is responsible for the IAA-induced growth. These findings support the "acid growth theory" of auxin action.


Subject(s)
Cotyledon/metabolism , Indoleacetic Acids/metabolism , Zea mays/growth & development , Hydrogen-Ion Concentration , Kinetics , Membrane Potentials/physiology , Models, Biological
14.
Int J Mol Sci ; 22(9)2021 May 09.
Article in English | MEDLINE | ID: mdl-34065110

ABSTRACT

The fungal toxin fusicoccin (FC) induces rapid cell elongation, proton extrusion and plasma membrane hyperpolarization in maize coleoptile cells. Here, these three parameters were simultaneously measured using non-abraded and non-peeled segments with the incubation medium having access to their lumen. The dose-response curve for the FC-induced growth was sigmoidal shaped with the maximum at 10-6 M over 10 h. The amplitudes of the rapid growth and proton extrusion were significantly higher for FC than those for indole-3-acetic acid (IAA). The differences between the membrane potential changes that were observed in the presence of FC and IAA relate to the permanent membrane hyperpolarization for FC and transient hyperpolarization for IAA. It was also found that the lag times of the rapid growth, proton extrusion and membrane hyperpolarization were shorter for FC compared to IAA. At 30 °C, the biphasic kinetics of the IAA-induced growth rate could be changed into a monophasic (parabolic) one, which is characteristic for FC-induced rapid growth. It has been suggested that the rates of the initial phase of the FC- and IAA-induced growth involve two common mechanisms that consist of the proton pumps and potassium channels whose contribution to the action of both effectors on the rapid growth is different.


Subject(s)
Cotyledon/drug effects , Cotyledon/physiology , Glycosides/pharmacology , Membrane Potentials/drug effects , Plant Development/drug effects , Protons , Zea mays/drug effects , Zea mays/physiology , Hydrogen-Ion Concentration , Kinetics , Plant Growth Regulators/metabolism , Temperature
15.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925031

ABSTRACT

According to current opinion, the first step of benzoxazinoids (BXs) synthesis, that is, the conversion of indole-3-glycerol phosphate to indole, occurs exclusively in the photosynthesising parts of plants. However, the results of our previous work and some other studies suggest that this process may also occur in the roots. In this study, we provide evidence that the first step of BXs synthesis does indeed occur in the roots of rye seedlings. We detected ScBx1 transcripts, BX1 enzyme, and six BXs (2-hydroxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-1,4-benzoxazin-3-one, (2R)-2-O-ß-d-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one glucoside, 2,4-dihydroxy- 7-methoxy-1,4-benzoxazin-3-one, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside, and 6-methoxy-2-benzoxazolinone) in the roots developed from seeds deprived of the coleoptile at 2 days after sowing (i.e., roots without contact with aerial parts). In roots regenerated in vitro, both ScBx1 transcripts and BX1 enzyme were detected at a low but still measurable levels. Thus, BXs are able to be synthesised in both the roots and above-ground parts of rye plants.


Subject(s)
Benzoxazines/metabolism , Secale/metabolism , Amino Acid Sequence , Benzoxazines/chemistry , Biosynthetic Pathways/genetics , Computational Biology , Gene Expression , Genes, Plant , Immunohistochemistry , Indole-3-Glycerol-Phosphate Synthase/genetics , Indole-3-Glycerol-Phosphate Synthase/metabolism , Microscopy, Immunoelectron , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plastids/genetics , Plastids/metabolism , Plastids/ultrastructure , Secale/genetics , Seedlings/metabolism , Sequence Homology, Amino Acid
16.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199500

ABSTRACT

In the search of new alternatives for weed control, spices appear as an option with great potential. They are rich in bioactive natural products and edible, which might minimize toxicity hazard. Marjoram (Origanum majorana L.) is an aromatic herb that has been widely employed as a seasoning herb in Mediterranean countries. Although marjoram boasts a plethora of therapeutic properties (painkiller, antibiotic, treatment for intestinal disorders, etc.), the potential for its extracts for weed control is still to be more thoroughly explored. In order to determine their phytotoxic potential, marjoram leaves were subjected to different bioguided extraction processes, using water, ethyl acetate, acetone or methanol. The most active extract (acetone) was sequentially fractionated to identify its most active compounds. This fractionation led to the isolation and identification of 25 compounds that were classified as monoterpenes, diterpenes or flavonoids. Among them, a new compound named majoradiol and several compounds are described in marjoram for the first time. The phytotoxicity of the major compounds to etiolated wheat coleoptiles was compared against that of the commercial herbicide (Logran®), with similar or higher activity in some cases. These results confirm the extraordinary potential of the extracts from this edible plant to develop safer and more environmentally friendly herbicides.


Subject(s)
Herbicides/pharmacology , Origanum/chemistry , Phytochemicals/pharmacology , Chemical Fractionation , Flavonoids/chemistry , Flavonoids/pharmacology , Herbicides/chemistry , Mediterranean Region , Molecular Structure , Phytochemicals/chemistry , Plant Leaves/chemistry , Sulfonylurea Compounds/pharmacology , Terpenes/chemistry , Terpenes/pharmacology , Weed Control
17.
BMC Plant Biol ; 20(1): 346, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32698771

ABSTRACT

BACKGROUND: Drought is projected to become more frequent and severe in a changing climate, which requires deep sowing of crop seeds to reach soil moisture. Coleoptile length is a key agronomic trait in cereal crops such as barley, as long coleoptiles are linked to drought tolerance and improved seedling establishment under early water-limited growing conditions. RESULTS: In this study, we detected large genetic variation in a panel of 328 diverse barley (Hordeum vulgare L.) accessions. To understand the overall genetic basis of barley coleoptile length, all accessions were germinated in the dark and phenotyped for coleoptile length after 2 weeks. The investigated barleys had significant variation for coleoptile length. We then conducted genome-wide association studies (GWASs) with more than 30,000 molecular markers and identified 8 genes and 12 intergenic loci significantly associated with coleoptile length in our barley panel. The Squamosa promoter-binding-like protein 3 gene (SPL3) on chromosome 6H was identified as a major candidate gene. The missense variant on the second exon changed serine to alanine in the conserved SBP domain, which likely impacted its DNA-binding activity. CONCLUSION: This study provides genetic loci for seedling coleoptile length along with candidate genes for future potential incorporation in breeding programmes to enhance early vigour and yield potential in water-limited environments.


Subject(s)
Cotyledon/genetics , Hordeum/genetics , Plant Proteins/genetics , Americas , Australia , Chromosome Mapping , Cotyledon/physiology , Europe , Genetic Markers , Genetics, Population , Genome-Wide Association Study , Germination , Linkage Disequilibrium , Quantitative Trait Loci
18.
J Exp Bot ; 71(6): 1985-2004, 2020 03 25.
Article in English | MEDLINE | ID: mdl-31872216

ABSTRACT

This study aimed to gain insights into the molecular mechanisms underlying the role of ethylene in regulating germination and seedling growth in wheat by combining pharmacological, molecular, and metabolomics approaches. Our study showed that ethylene does not affect radicle protrusion but controls post-germination endospermic starch degradation through transcriptional regulation of specific α-amylase and α-glucosidase genes, and this effect is mediated by alteration of endospermic bioactive gibberellin (GA) levels, and GA sensitivity via expression of the GA signaling gene, TaGAMYB. Our data implicated ethylene as a positive regulator of embryo axis and coleoptile growth through transcriptional regulation of specific TaEXPA genes. These effects were associated with modulation of GA levels and sensitivity, through expression of GA metabolism (TaGA20ox1, TaGA3ox2, and TaGA2ox6) and signaling (TaGAMYB) genes, respectively, and/or the abscisic acid (ABA) level and sensitivity, via expression of specific ABA metabolism (TaNCED2 or TaCYP707A1) and signaling (TaABI3) genes, respectively. Ethylene appeared to regulate the expression of TaEXPA3 and thereby root growth through its control of coleoptile ABA metabolism, and root ABA signaling via expression of TaABI3 and TaABI5. These results show that spatiotemporal modulation of ABA/GA balance mediates the role of ethylene in regulating post-germination storage starch degradation and seedling growth in wheat.


Subject(s)
Abscisic Acid , Germination , Ethylenes , Gene Expression Regulation, Plant , Gibberellins , Plant Growth Regulators , Seedlings/genetics , Seeds , Triticum/genetics
19.
J Exp Bot ; 71(16): 4742-4750, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32449515

ABSTRACT

Regulation of plant height and stem elongation has contributed significantly to improvement of cereal productivity by reducing lodging and improving distribution of assimilates to the inflorescence and grain. In wheat, genetic control of height has been largely contributed by the Reduced height-1 alleles that confer gibberellin insensitivity; the beneficial effects of these alleles are associated with less favourable effects involving seedling emergence, grain quality, and inflorescence architecture that have driven new research investigating genetic variation of stem growth. Here, we show that TEOSINTE BRANCHED1 (TB1) regulates height of wheat, with TB1 being expressed at low levels in nodes of the main culm prior to elongation, and increased dosage of TB1 restricting elongation of stem internodes. The effect of TB1 on stem growth is not accompanied by poor seedling emergence, as transgenic lines with increased activity of TB1 form longer coleoptiles than null transgenic controls. Analysis of height in a multiparent mapping population also showed that allelic variation for TB1 on the B genome influences height, with plants containing the variant TB-B1b allele being taller than those with the wild-type TB-B1a allele. Our results show that TB1 restricts height and stem elongation in wheat, suggesting that variant alleles that alter the expression or function of TB1 could be used as a new source of genetic diversity for optimizing architecture of wheat in breeding programmes.


Subject(s)
Triticum , Zea mays , Alleles , Bread , Phenotype , Plant Breeding , Plant Proteins/genetics , Triticum/genetics , Zea mays/genetics
20.
Int J Mol Sci ; 21(4)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075118

ABSTRACT

Cultivating rice in wet or water direct seeding systems is simple and time and labor efficient. Rice (Oryza sativa) seeds are a unique cereal that can germinate not only when submerged, but also in anoxic conditions. Many complicated hormone signals interact in submerged seed germination. Ethylene is involved in rice coleoptile elongation, but little is known regarding the role of auxin signaling under submergence. This study demonstrated that the coleoptile is shorter and curlier when submerged with 2,3,5-triiodobenzoic acid (TIBA). In transcriptomic analysis, 3448 of the 31,860 genes were upregulated, and 4360 genes were downregulated with submergence and TIBA treatment. The Gene Ontology function classification results demonstrated that upregulated differentially expressed genes (DEGs) were mainly involved in redox, stress, and signal transduction, whereas the down-regulated DEGs were mainly involved in RNA transcription, stress, and development. Furthermore, auxin signaling involved in the carbohydrate metabolism pathway was demonstrated while using transcriptomic analysis and confirmed in a quantitative real-time polymerase chain reaction. In addition, the transcript levels of development-related genes and mitochondria-electron- transport-related genes were regulated by auxin signaling under submergence. Auxin signaling was not only involved in regulating rice coleoptile elongation and development, but also regulated secondary metabolism, carbohydrate metabolism, and mitochondria electron transport under submergence. Our results presented that auxin signaling plays an important role during rice coleoptile elongation upon the submergence condition and improving the advance of research of direct rice seeding system.


Subject(s)
Gene Expression Profiling/methods , Indoleacetic Acids/metabolism , Oryza/genetics , Carbohydrate Metabolism/genetics , Cotyledon/drug effects , Cotyledon/growth & development , Cotyledon/metabolism , Down-Regulation/drug effects , Electron Transport/genetics , Mitochondria/genetics , Mitochondria/metabolism , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Signal Transduction/drug effects , Triiodobenzoic Acids/pharmacology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL