Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Clin Immunol ; 242: 109082, 2022 09.
Article in English | MEDLINE | ID: mdl-35901921

ABSTRACT

Although C-type lectin domain family 9A (Clec9A) on conventional type 1 dendritic cells (cDC1s) plays a critical role in cytotoxic CD8+ T cell response in cancers and viral infections, its role in chronic obstructive pulmonary disease (COPD) is unknown. We measured the expression of Clec9A in sera, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from controls and COPD patients. The percentages of Clec9A+ DC and cytotoxic CD8+ T cell in the BALF were determined by flow cytometry between patients with COPD and non-obstructive chronic bronchitis (NOCB). Compared with healthy individuals, the serum levels of Clec9A were increased at different stages of COPD patients, and the mRNA and protein levels of Clec9A were both increased in COPD patients at GOLD stages III-IV. The percentage of Clec9A+ DCs was also increased in the BALF of COPD patients compared with NOCB patients. Moreover, enhanced Clec9A+ DCs recruitment was positively correlated with cytotoxic CD8+ T cell response in the BALF of COPD patients. This study suggests that Clec9A+ DCs participate in the CD8+ T cell-mediated chronic airway inflammation in COPD.


Subject(s)
Lectins, C-Type , Leukocytes, Mononuclear , Pulmonary Disease, Chronic Obstructive , Receptors, Mitogen , Bronchoalveolar Lavage Fluid , CD8-Positive T-Lymphocytes/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Leukocytes, Mononuclear/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Receptors, Mitogen/genetics , Receptors, Mitogen/metabolism , T-Lymphocytes, Cytotoxic
2.
Biomaterials ; 305: 122470, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228027

ABSTRACT

The efficacy of radiotherapy has not yet achieved optimal results, partially due to insufficient priming and infiltration of effector immune cells within the tumor microenvironment (TME), which often exhibits suppressive phenotypes. In particular, the infiltration of X-C motif chemokine receptor 1 (XCR1)-expressing conventional type-1 dendritic cells (cDC1s), which are critical in priming CD8+ cytotoxic T cells, within the TME is noticeably restricted. Hence, we present a facile methodology for the efficient fabrication of a calcium phosphate hydrogel loaded with X-C motif chemokine ligand 1 (XCL1) to selectively recruit cDC1s. Manganese phosphate microparticles were also loaded into this hydrogel to reprogram the TME via cGAS-STING activation, thereby facilitating the priming of cDC1s propelled specific CD8+ T cells. They also polarize tumor-associated macrophages towards the M1 phenotype and reduce the proportion of regulatory cells, effectively reversing the immunosuppressive TME into an immune-active one. The yielded XCL1@CaMnP gel exhibits significant efficacy in enhancing the therapeutic outcomes of radiotherapy, particularly when concurrently administered with postoperative radiotherapy, resulting in an impressive 60 % complete response rate. Such XCL1@CaMnP gel, which recruits cDC1s to present tumor antigens generated in situ, holds great potential as a versatile platform for enhanced cancer treatment through modulating the immunosuppressive TME.


Subject(s)
CD8-Positive T-Lymphocytes , Cross-Priming , T-Lymphocytes, Cytotoxic , Dendritic Cells , Hydrogels/pharmacology , Tumor Microenvironment
3.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786101

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized, at least in part, by autoimmunity through amplified T helper 1 and 17 (Th1 and Th17) immune responses. The loss of immune tolerance controlled by programmed death-ligand 1 (PD-L1) may contribute to this. OBJECTIVES: We studied the tolerogenic role of PD-L1+ dendritic cells (DCs) and their subtypes in relation to specific T cell immunity and the clinical phenotypes of COPD. METHODS: We used flow cytometry to analyze PD-L1 expression by the DCs and their subtypes in the peripheral blood mononuclear cells (PBMCs) from normal participants and those with COPD. T cell proliferation and the signature cytokines of T cell subtypes stimulated with elastin as autoantigens were measured using flow cytometry and enzyme-linked immunosorbent assays (ELISA), respectively. MEASUREMENT AND MAIN RESULTS: A total of 83 participants were enrolled (normal, n = 29; COPD, n = 54). A reduced PD-L1+ conventional dendritic cell 1 (cDC1) ratio in the PBMCs of the patients with COPD was shown (13.7 ± 13.7%, p = 0.03). The decrease in the PD-L1+ cDC1 ratio was associated with a rapid decline in COPD (p = 0.02) and correlated with the CD4+ T cells (r = -0.33, p = 0.02). This is supported by the NCBI GEO database accession number GSE56766, the researchers of which found that the gene expressions of PD-L1 and CD4, but not CD8 were negatively correlated from PBMC in COPD patients (r = -0.43, p = 0.002). Functionally, the PD-L1 blockade enhanced CD4+ T cell proliferation stimulated by CD3/elastin (31.2 ± 22.3%, p = 0.04) and interleukin (IL)-17A production stimulated by both CD3 (156.3 ± 54.7, p = 0.03) and CD3/elastin (148 ± 64.9, p = 0.03) from the normal PBMCs. The PD-L1 blockade failed to increase IL-17A production in the cDC1-depleted PBMCs. By contrast, there was no significant change in interferon (IFN)-γ, IL-4, or IL-10 after the PD-L1 blockade. Again, these findings were supported by the NCBI GEO database accession number GSE56766, the researchers of which found that only the expression of RORC, a master transcription factor driving the Th17 cells, was significantly negatively correlated to PD-L1 (r = -0.33, p = 0.02). CONCLUSIONS: Circulating PD-L1+ cDC1 was reduced in the patients with COPD, and the tolerogenic role was suppressed with susceptibility to self-antigens and linked to rapid decline caused by Th17-skewed chronic inflammation.


Subject(s)
B7-H1 Antigen , Dendritic Cells , Immune Tolerance , Pulmonary Disease, Chronic Obstructive , Female , Humans , Male , B7-H1 Antigen/metabolism , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Pulmonary Disease, Chronic Obstructive/immunology
4.
Bio Protoc ; 13(22): e4881, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38023788

ABSTRACT

Cancer cells evade the immune system by downregulating antigen presentation. Although immune checkpoint inhibitors (ICI) and adoptive T-cell therapies revolutionized cancer treatment, their efficacy relies on the intrinsic immunogenicity of tumor cells and antigen presentation by dendritic cells. Here, we describe a protocol to directly reprogram murine and human cancer cells into tumor-antigen-presenting cells (tumor-APCs), using the type 1 conventional dendritic cell (cDC1) transcription factors PU.1, IRF8, and BATF3 delivered by a lentiviral vector. Tumor-APCs acquire a cDC1 cell-like phenotype, transcriptional and epigenetic programs, and function within nine days (Zimmermannova et al., 2023). Tumor-APCs express the hematopoietic marker CD45 and acquire the antigen presentation complexes MHC class I and II as well as co-stimulatory molecules required for antigen presentation to T cells, but do not express high levels of negative immune checkpoint regulators. Enriched tumor-APCs present antigens to Naïve CD8+ and CD4+ T cells, are targeted by activated cytotoxic T lymphocytes, and elicit anti-tumor responses in vivo. The tumor-APC reprogramming protocol described here provides a simple and robust method to revert tumor evasion mechanisms by increasing antigen presentation in cancer cells. This platform has the potential to prime antigen-specific T-cell expansion, which can be leveraged for developing new cancer vaccines, neoantigen discovery, and expansion of tumor-infiltrating lymphocytes. Key features • This protocol describes the generation of antigen-presenting cells from cancer cells by direct reprogramming using lineage-instructive transcription factors of conventional dendritic cells type I. • Verification of reprogramming efficiency by flow cytometry and functional assessment of tumor-APCs by antigen presentation assays.

5.
Pharmaceutics ; 12(2)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075343

ABSTRACT

Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.

6.
Front Immunol ; 10: 9, 2019.
Article in English | MEDLINE | ID: mdl-30809220

ABSTRACT

Dendritic cells (DCs) are endowed with a unique potency to prime T cells, as well as to orchestrate their expansion, functional polarization and effector activity in non-lymphoid tissues or in their draining lymph nodes. The concept of harnessing DC immunogenicity to induce protective responses in cancer patients was put forward about 25 years ago and has led to a multitude of DC-based vaccine trials. However, until very recently, objective clinical responses were below expectations. Conventional type 1 DCs (cDC1) excel in the activation of cytotoxic lymphocytes including CD8+ T cells (CTLs), natural killer (NK) cells, and NKT cells, which are all critical effector cell types in antitumor immunity. Efforts to investigate whether cDC1 might orchestrate immune defenses against cancer are ongoing, thanks to the recent blossoming of tools allowing their manipulation in vivo. Here we are reporting on these studies. We discuss the mouse models used to genetically deplete or manipulate cDC1, and their main caveats. We present current knowledge on the role of cDC1 in the spontaneous immune rejection of tumors engrafted in syngeneic mouse recipients, as a surrogate model to cancer immunosurveillance, and how this process is promoted by type I interferon (IFN-I) effects on cDC1. We also discuss cDC1 implication in promoting the protective effects of immunotherapies in mouse preclinical models, especially for adoptive cell transfer (ACT) and immune checkpoint blockers (ICB). We elaborate on how to improve this process by in vivo reprogramming of certain cDC1 functions with off-the-shelf compounds. We also summarize and discuss basic research and clinical data supporting the hypothesis that the protective antitumor functions of cDC1 inferred from mouse preclinical models are conserved in humans. This analysis supports potential applicability to cancer patients of the cDC1-targeting adjuvant immunotherapies showing promising results in mouse models. Nonetheless, further investigations on cDC1 and their implications in anti-cancer mechanisms are needed to determine whether they are the missing key that will ultimately help switching cold tumors into therapeutically responsive hot tumors, and how precisely they mediate their protective effects.


Subject(s)
Dendritic Cells/immunology , Immunity , Immunologic Surveillance , Neoplasms/immunology , Animals , Antigen-Presenting Cells , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Dendritic Cells/metabolism , Disease Models, Animal , Humans , Immunocompromised Host , Immunotherapy , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Tumor Escape/immunology
SELECTION OF CITATIONS
SEARCH DETAIL