Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters

Publication year range
1.
Neuroimage ; : 120793, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39153520

ABSTRACT

Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.

2.
Ultrasound Obstet Gynecol ; 61(3): 346-355, 2023 03.
Article in English | MEDLINE | ID: mdl-36565437

ABSTRACT

OBJECTIVES: Hemodynamic abnormalities and brain development disorders have been reported previously in fetuses and infants with transposition of the great arteries and intact ventricular septum (TGA-IVS). A ventricular septal defect (VSD) is thought to be an additional risk factor for adverse neurodevelopment, but literature describing this population is sparse. The objectives of this study were to assess fetal cardiac hemodynamics throughout pregnancy, to monitor cerebral hemodynamics and oxygen metabolism in neonates, and to compare these data between patients with TGA-IVS, those with TGA-VSD and age-matched controls. METHODS: Cardiac hemodynamics were assessed in TGA-IVS and TGA-VSD fetuses and compared with healthy controls matched for gestational age (GA) during three periods: ≤ 22 + 5 weeks (GA1), 27 + 0 to 32 + 5 weeks (GA2) and ≥ 34 + 5 weeks (GA3). Left (LVO), right (RVO) and combined (CVO) ventricular outputs, ductus arteriosus flow (DAF, sum of ante- and retrograde flow in systole and diastole), diastolic DAF, transpulmonary flow (TPF) and foramen ovale diameter were measured. Aortic (AoF) and main pulmonary artery (MPAF) flows were derived as a percentage of CVO. Fetal middle cerebral artery and umbilical artery (UA) pulsatility indices (PI) were measured and the cerebroplacental ratio (CPR) was derived. Bedside optical brain monitoring was used to measure cerebral hemoglobin oxygen saturation (SO2 ) and an index of microvascular cerebral blood flow (CBFi ), along with peripheral arterial oxygen saturation (SpO2 ), in TGA-IVS and TGA-VSD neonates. Using hemoglobin (Hb) concentration measurements, these parameters were used to derive cerebral oxygen delivery and extraction fraction (OEF), as well as an index of cerebral oxygen metabolism (CMRO2i ). These data were acquired in the early preoperative period (within 3 days after birth and following balloon atrial septostomy) and compared with those of age-matched healthy controls, and repeat measurements were collected before discharge when vital signs were stable. RESULTS: LVO was increased in both TGA groups compared with controls throughout pregnancy. Compared with controls, TPF was increased and diastolic DAF was decreased in TGA-IVS fetuses throughout pregnancy, but only during GA1 and GA2 in TGA-VSD fetuses. Compared with controls, DAF was decreased in TGA-IVS fetuses throughout pregnancy and in TGA-VSD fetuses at GA2 and GA3. At GA2, AoF was higher in TGA-IVS and TGA-VSD fetuses than in controls, while MPAF was lower. At GA3, RVO and CVO were higher in the TGA-IVS group than in the TGA-VSD group. In addition, UA-PI was lower at GA2 and CPR higher at GA3 in TGA-VSD fetuses compared with TGA-IVS fetuses. Within 3 days after birth, SpO2 and SO2 were lower in both TGA groups than in controls, while Hb, cerebral OEF and CMRO2i were higher. Preoperative SpO2 was also lower in TGA-VSD neonates than in those with TGA-IVS. From preoperative to predischarge periods, SpO2 and OEF increased in both TGA groups, but CBFi and CMRO2i increased only in the TGA-VSD group. During the predischarge period, SO2 was higher in TGA-IVS than in TGA-VSD neonates, while CBFi was lower. CONCLUSIONS: Fetal cardiac and neonatal cerebral hemodynamic/metabolic differences were observed in both TGA groups compared with controls. Compared to those with TGA-IVS, fetuses with TGA-VSD had lower RVO and CVO in late gestation. A higher level of preoperative hypoxemia was observed in the TGA-VSD group. Postsurgical cerebral adaptive mechanisms probably differ between TGA groups. Patients with TGA-VSD have a specific physiology that warrants further study to improve neonatal care and neurodevelopmental outcome. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
Ductus Arteriosus , Heart Septal Defects, Ventricular , Transposition of Great Vessels , Infant , Infant, Newborn , Female , Humans , Pregnancy , Heart Septal Defects, Ventricular/surgery , Hemodynamics/physiology , Pulmonary Artery , Oxygen , Hemoglobins
3.
Sensors (Basel) ; 23(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067711

ABSTRACT

Diffuse correlation spectroscopy is a non-invasive optical modality used to measure cerebral blood flow in real time, and it has important potential applications in clinical monitoring and neuroscience. As such, many research groups have recently been investigating methods to improve the signal-to-noise ratio, imaging depth, and spatial resolution of diffuse correlation spectroscopy. Such methods have included multispeckle, long wavelength, interferometric, depth discrimination, time-of-flight resolution, and acousto-optic detection strategies. In this review, we exhaustively appraise this plethora of recent advances, which can be used to assess limitations and guide innovation for future implementations of diffuse correlation spectroscopy that will harness technological improvements in the years to come.

4.
Sensors (Basel) ; 22(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35161643

ABSTRACT

Non-invasive measurement of the arterial blood speed gives important health information such as cardio output and blood supplies to vital organs. The magnitude and change in arterial blood speed are key indicators of the health conditions and development and progression of diseases. We demonstrated a simple technique to directly measure the blood flow speed in main arteries based on the diffused light model. The concept is demonstrated with a phantom that uses intralipid hydrogel to model the biological tissue and an embedded glass tube with flowing human blood to model the blood vessel. The correlation function of the measured photocurrent was used to find the electrical field correlation function via the Siegert relation. We have shown that the characteristic decorrelation rate (i.e., the inverse of the decoherent time) is linearly proportional to the blood speed and independent of the tube diameter. This striking property can be explained by an approximate analytic solution for the diffused light equation in the regime where the convective flow is the dominating factor for decorrelation. As a result, we have demonstrated a non-invasive method of measuring arterial blood speed without any prior knowledge or assumption about the geometric or mechanic properties of the blood vessels.


Subject(s)
Arteries , Hemodynamics , Blood Flow Velocity , Diagnostic Techniques, Cardiovascular , Humans , Phantoms, Imaging
5.
J Pediatr ; 236: 54-61.e1, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34004191

ABSTRACT

OBJECTIVE: To demonstrate that a novel noninvasive index of intracranial pressure (ICP) derived from diffuse optics-based techniques is associated with intracranial hypertension. STUDY DESIGN: We compared noninvasive and invasive ICP measurements in infants with hydrocephalus. Infants born term and preterm were eligible for inclusion if clinically determined to require cerebrospinal fluid (CSF) diversion. Ventricular size was assessed preoperatively via ultrasound measurement of the fronto-occipital (FOR) and frontotemporal (FTHR) horn ratios. Invasive ICP was obtained at the time of surgical intervention with a manometer. Intracranial hypertension was defined as invasive ICP ≥15 mmHg. Diffuse optical measurements of cerebral perfusion, oxygen extraction, and noninvasive ICP were performed preoperatively, intraoperatively, and postoperatively. Optical and ultrasound measures were compared with invasive ICP measurements, and their change in values after CSF diversion were obtained. RESULTS: We included 39 infants, 23 with intracranial hypertension. No group difference in ventricular size was found by FOR (P = .93) or FTHR (P = .76). Infants with intracranial hypertension had significantly higher noninvasive ICP (P = .02) and oxygen extraction fraction (OEF) (P = .01) compared with infants without intracranial hypertension. Increased cerebral blood flow (P = .005) and improved OEF (P < .001) after CSF diversion were observed only in infants with intracranial hypertension. CONCLUSIONS: Noninvasive diffuse optical measures (including a noninvasive ICP index) were associated with intracranial hypertension. The findings suggest that impaired perfusion from intracranial hypertension was independent of ventricular size. Hemodynamic evidence of the benefits of CSF diversion was seen in infants with intracranial hypertension. Noninvasive optical techniques hold promise for aiding the assessment of CSF diversion timing.


Subject(s)
Cerebrovascular Circulation/physiology , Hydrocephalus/diagnostic imaging , Hydrocephalus/physiopathology , Intracranial Hypertension/diagnosis , Cerebrospinal Fluid Shunts , Feasibility Studies , Female , Humans , Hydrocephalus/surgery , Infant, Newborn , Intracranial Hypertension/etiology , Intracranial Hypertension/physiopathology , Intracranial Pressure/physiology , Male , Optical Imaging , Pilot Projects , Reproducibility of Results , Spectrum Analysis
6.
BMC Neurol ; 21(1): 154, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33836684

ABSTRACT

BACKGROUND: The cortical microvascular cerebral blood flow response (CBF) to different changes in head-of-bed (HOB) position has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS) technique. However, the relationship between these relative ΔCBF changes and associated systemic blood pressure changes has not been studied, even though blood pressure is a major driver of cerebral blood flow. METHODS: Transcranial DCS data from four studies measuring bilateral frontal microvascular cerebral blood flow in healthy controls (n = 15), patients with asymptomatic severe internal carotid artery stenosis (ICA, n = 27), and patients with acute ischemic stroke (AIS, n = 72) were aggregated. DCS-measured CBF was measured in response to a short head-of-bed (HOB) position manipulation protocol (supine/elevated/supine, 5 min at each position). In a sub-group (AIS, n = 26; ICA, n = 14; control, n = 15), mean arterial pressure (MAP) was measured dynamically during the protocol. RESULTS: After elevated positioning, DCS CBF returned to baseline supine values in controls (p = 0.890) but not in patients with AIS (9.6% [6.0,13.3], mean 95% CI, p < 0.001) or ICA stenosis (8.6% [3.1,14.0], p = 0.003)). MAP in AIS patients did not return to baseline values (2.6 mmHg [0.5, 4.7], p = 0.018), but in ICA stenosis patients and controls did. Instead ipsilesional but not contralesional CBF was correlated with MAP (AIS 6.0%/mmHg [- 2.4,14.3], p = 0.038; ICA stenosis 11.0%/mmHg [2.4,19.5], p < 0.001). CONCLUSIONS: The observed associations between ipsilateral CBF and MAP suggest that short HOB position changes may elicit deficits in cerebral autoregulation in cerebrovascular disorders. Additional research is required to further characterize this phenomenon.


Subject(s)
Arterial Pressure , Carotid Stenosis/physiopathology , Cerebrovascular Circulation , Ischemic Stroke/physiopathology , Supine Position/physiology , Adult , Aged , Aged, 80 and over , Blood Flow Velocity/physiology , Blood Pressure , Brain Ischemia/physiopathology , Case-Control Studies , Female , Head-Down Tilt/physiology , Hemodynamics , Homeostasis , Humans , Male , Middle Aged , Stroke/physiopathology
7.
Adv Exp Med Biol ; 1269: 203-208, 2021.
Article in English | MEDLINE | ID: mdl-33966218

ABSTRACT

This is the first multimodal study of cerebral tissue metabolism and perfusion post-hypoxic-ischaemic (HI) brain injury using broadband near-infrared spectroscopy (bNIRS), diffuse correlation spectroscopy (DCS), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). In seven piglet preclinical models of neonatal HI, we measured cerebral tissue saturation (StO2), cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), changes in the mitochondrial oxidation state of cytochrome c oxidase (oxCCO), cerebral glucose metabolism (CMRglc) and tissue biochemistry (Lac+Thr/tNAA). At baseline, the parameters measured in the piglets that experience HI (not controls) were 64 ± 6% StO2, 35 ± 11 ml/100 g/min CBF and 2.0 ± 0.4 µmol/100 g/min CMRO2. After HI, the parameters measured were 68 ± 6% StO2, 35 ± 6 ml/100 g/min CBF, 1.3 ± 0.1 µmol/100 g/min CMRO2, 0.4 ± 0.2 Lac+Thr/tNAA and 9.5 ± 2.0 CMRglc. This study demonstrates the capacity of a multimodal set-up to interrogate the pathophysiology of HIE using a combination of optical methods, MRS, and PET.


Subject(s)
Hypoxia-Ischemia, Brain , Animals , Brain/diagnostic imaging , Cerebrovascular Circulation , Hypoxia-Ischemia, Brain/diagnostic imaging , Oxygen , Oxygen Consumption , Perfusion , Spectroscopy, Near-Infrared , Swine
8.
Acta Neurochir Suppl ; 131: 295-299, 2021.
Article in English | MEDLINE | ID: mdl-33839861

ABSTRACT

The critical closing pressure (CrCP) of the cerebral vasculature is the arterial blood pressure (ABP) at which cerebral blood flow (CBF) ceases. Because the ABP of preterm infants is low and close to the CrCP, there is often no CBF during diastole. Thus, estimation of CrCP may become clinically relevant in preterm neonates. Transcranial Doppler (TCD) ultrasound has been used to estimate CrCP in preterm infants. Diffuse correlation spectroscopy (DCS) is a continuous, noninvasive optical technique that measures microvascular CBF. Our objective was to compare and validate CrCP measured by DCS versus TCD ultrasound. Hemorrhagic shock was induced in 13 neonatal piglets, and CBF was measured continuously by both modalities. CrCP was calculated using a model of cerebrovascular impedance, and CrCP determined by the two modalities showed good correlation by linear regression, median r 2 = 0.8 (interquartile range (IQR) 0.71-0.87), and Bland-Altman analysis showed a median bias of -3.5 (IQR -4.6 to -0.28). This is the first comparison of CrCP determined by DCS versus TCD ultrasound in a neonatal piglet model of hemorrhagic shock. The difference in CrCP between the two modalities may be due to differences in vasomotor tone within the microvasculature of the cerebral arterioles versus the macrovasculature of a major cerebral artery.


Subject(s)
Spectrum Analysis , Animals , Blood Flow Velocity , Blood Pressure , Cerebrovascular Circulation , Intracranial Pressure , Swine , Ultrasonography, Doppler, Transcranial
9.
Sensors (Basel) ; 21(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525488

ABSTRACT

In this work, we present a new multi-distance diffuse correlation spectroscopy (DCS) device integrated with a compact state-of-the-art time domain near infrared spectroscopy (TD-NIRS) device. The hybrid DCS and TD-NIRS system allows to retrieve information on blood flow, tissue oxygenation, and oxygen metabolic rate. The DCS device performances were estimated in terms of stability, repeatability, ability in retrieving variations of diffusion coefficient, influence of the tissue optical properties, effect of varying count rates and depth sensitivity. Crosstalk between DCS and TD-NIRS optical signals was also evaluated. Finally, in vivo experiments (venous and arterial cuff occlusions on the arm) were conducted to test the ability of the hybrid system in measuring blood flow variations.


Subject(s)
Hemodynamics , Oxygen , Oxygen Consumption , Spectroscopy, Near-Infrared
10.
Hum Brain Mapp ; 41(2): 503-519, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31600024

ABSTRACT

The neonatal brain is an extremely dynamic organization undergoing essential development in terms of connectivity and function. Several functional imaging investigations of the developing brain have found neurovascular coupling (NVC) patterns that contrast with those observed in adults. These discrepancies are partly due to that NVC is still developing in the neonatal brain. To characterize the vascular response to spontaneous neuronal activations, a multiscale multimodal noninvasive approach combining simultaneous electrical, hemodynamic, and metabolic recordings has been developed for preterm infants. Our results demonstrate that the immature vascular network does not adopt a unique strategy to respond to spontaneous cortical activations. NVC takes on different forms in the same preterm infant during the same recording session in response to very similar types of neural activation. This includes (a) positive stereotyped hemodynamic responses (increases in HbO, decreases in HbR together with increases in rCBF and rCMRO2), (b) negative hemodynamic responses (increases in HbR, decreases in HbO together with decreases in rCBF and rCMRO2), and (c) Increases and decreases in both HbO-HbR and rCMRO2 together with no changes in rCBF. Age-related NVC maturation is demonstrated in preterm infants, which can contribute to a better understanding/prevention of cerebral hemodynamic risks in these infants.


Subject(s)
Brain/physiology , Child Development/physiology , Infant, Premature/physiology , Neuroimaging/methods , Neurovascular Coupling/physiology , Brain/growth & development , Electroencephalography , Female , Humans , Infant, Newborn , Male , Multimodal Imaging , Neuroimaging/instrumentation , Spectroscopy, Near-Infrared
11.
Exp Physiol ; 105(1): 201-210, 2020 01.
Article in English | MEDLINE | ID: mdl-31713942

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the characteristics of the time courses of blood flow in the brachial artery and microvascular beds of the skin and skeletal muscle following transient ischaemia? What is the main finding and its importance? Skeletal muscle blood flow was significantly slower than the transient increase in the cutaneous tissue, suggesting mechanistic differences between cutaneous and muscular blood flow distribution after transient ischaemia. These results challenge the use of the cutaneous circulation as globally representative of vascular function. ABSTRACT: Vascular function can be assessed by measuring post-occlusion hyperaemic responses along the arterial tree (vascular occlusion test; VOT). It is currently unclear if responses are similar across vascular beds following cuff release, given potential differences in compliance. To examine this, we compared laser Doppler-derived blood flux in the cutaneous circulation (LDFcut ) and skeletal muscle microvascular blood flux (BFI) using diffuse correlation spectroscopy (DCS), to brachial artery blood flow (BABF) during VOT. We hypothesized that during a VOT following cuff release, (1) BFI response would be delayed compared to the brachial artery response, and (2) time to peak blood flux in the cutaneous vasculature would be slower than both brachial artery and skeletal muscle responses. Seven healthy men (26 ± 4 years) performed three trials of a brachial artery VOT protocol with 10 min of rest between trials. A combined DCS and near-infrared spectroscopy probe provided BFI and oxygenation characteristics (total-[haem]), respectively, of skeletal muscle. BABF was determined via Doppler ultrasound and microvascular cutaneous blood flux was determined via LDFcut . Following cuff release, time to peak of BFI (32.3 ± 6.0 s) was significantly longer than BABF (7.3 ± 2.5 s), LDFcut (10.0 ± 6.4 s) and total-[haem] (14.2 ± 8.3 s) (all P < 0.001). However, time to peak of BABF, LDFcut and total-[haem] were not significantly different (P > 0.05). These results suggest mechanistic differences in control of cutaneous and muscular blood flow distribution after transient ischaemia.


Subject(s)
Brachial Artery/physiology , Microcirculation , Muscle, Skeletal/blood supply , Regional Blood Flow , Skin/blood supply , Adult , Constriction , Humans , Ischemia , Male , Spectroscopy, Near-Infrared , Spectrum Analysis , Young Adult
12.
Crit Care ; 24(1): 583, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32993753

ABSTRACT

BACKGROUND: Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first. METHODS: One-month-old piglets (n = 20) underwent asphyxia for 7 min, ventricular fibrillation, and CPR for 10-20 min. Epinephrine (20 mcg/kg) was administered at 2, 6, 10, 14, and 18 min of CPR. Invasive (laser Doppler, brain tissue oxygen tension [PbtO2]) and noninvasive (diffuse correlation spectroscopy and diffuse optical spectroscopy) measurements of CBF and cerebral tissue oxygenation were simultaneously recorded. Effects of subsequent epinephrine doses were compared to the first. RESULTS: With the first epinephrine dose during CPR, CBF and cerebral tissue oxygenation increased by > 10%, as measured by each of the invasive and noninvasive measures (p < 0.001). The effects of epinephrine on CBF and cerebral tissue oxygenation decreased with subsequent doses. By the fifth dose of epinephrine, there were no demonstrable increases in CBF of cerebral tissue oxygenation. Invasive and noninvasive CBF measurements were highly correlated during asphyxia (slope effect 1.3, p < 0.001) and CPR (slope effect 0.20, p < 0.001). CONCLUSIONS: This model suggests that epinephrine increases CBF and cerebral tissue oxygenation, but that effects wane following the third dose. Noninvasive measurements of neurological health parameters hold promise for developing and directing resuscitation strategies.


Subject(s)
Cardiopulmonary Resuscitation/methods , Cerebrovascular Disorders/drug therapy , Epinephrine/pharmacology , Hemodynamics/drug effects , Animals , Blood Gas Analysis/methods , Blood Pressure/drug effects , Cardiopulmonary Resuscitation/instrumentation , Cardiopulmonary Resuscitation/standards , Cerebrovascular Disorders/physiopathology , Disease Models, Animal , Epinephrine/therapeutic use , Hemodynamics/physiology , Swine
13.
Neurocrit Care ; 30(1): 72-80, 2019 02.
Article in English | MEDLINE | ID: mdl-30030667

ABSTRACT

BACKGROUND: Diffuse correlation spectroscopy (DCS) noninvasively permits continuous, quantitative, bedside measurements of cerebral blood flow (CBF). To test whether optical monitoring (OM) can detect decrements in CBF producing cerebral hypoxia, we applied the OM technique continuously to probe brain-injured patients who also had invasive brain tissue oxygen (PbO2) monitors. METHODS: Comatose patients with a Glasgow Coma Score (GCS) < 8) were enrolled in an IRB-approved protocol after obtaining informed consent from the legally authorized representative. Patients underwent 6-8 h of daily monitoring. Brain PbO2 was measured with a Clark electrode. Absolute CBF was monitored with DCS, calibrated by perfusion measurements based on intravenous indocyanine green bolus administration. Variation of optical CBF and mean arterial pressure (MAP) from baseline was measured during periods of brain hypoxia (defined as a drop in PbO2 below 19 mmHg for more than 6 min from baseline (PbO2 > 21 mmHg). In a secondary analysis, we compared optical CBF and MAP during randomly selected 12-min periods of "normal" (> 21 mmHg) and "low" (< 19 mmHg) PbO2. Receiver operator characteristic (ROC) and logistic regression analysis were employed to assess the utility of optical CBF, MAP, and the two-variable combination, for discrimination of brain hypoxia from normal brain oxygen tension. RESULTS: Seven patients were enrolled and monitored for a total of 17 days. Baseline-normalized MAP and CBF significantly decreased during brain hypoxia events (p < 0.05). Through use of randomly selected, temporally sparse windows of low and high PbO2, we observed that both MAP and optical CBF discriminated between periods of brain hypoxia and normal brain oxygen tension (ROC AUC 0.761, 0.762, respectively). Further, combining these variables using logistic regression analysis markedly improved the ability to distinguish low- and high-PbO2 epochs (AUC 0.876). CONCLUSIONS: The data suggest optical techniques may be able to provide continuous individualized CBF measurement to indicate occurrence of brain hypoxia and guide brain-directed therapy.


Subject(s)
Arterial Pressure/physiology , Cerebrovascular Circulation/physiology , Hypoxia-Ischemia, Brain/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Neurophysiological Monitoring/methods , Adult , Brain Injuries/diagnostic imaging , Brain Injuries/physiopathology , Coma/diagnostic imaging , Coma/physiopathology , Female , Humans , Male , Middle Aged , Neuroimaging/methods , Neuroimaging/standards , Neurophysiological Monitoring/standards , Optical Imaging/methods , Optical Imaging/standards , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/standards
14.
J Stroke Cerebrovasc Dis ; 28(11): 104294, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31416759

ABSTRACT

GOALS: We quantified cerebral blood flow response to a 500 cc bolus of 0.9%% normal saline (NS) within 96 hours of acute ischemic stroke (AIS) using diffuse correlation spectroscopy (DCS). MATERIALS AND METHODS: Subjects with AIS in the anterior, middle, or posterior cerebral artery territory were enrolled within 96 hours of symptom onset. DCS measured relative cerebral blood flow (rCBF) in the bilateral frontal lobes for 15 minutes at rest (baseline), during a 30-minute infusion of 500 cc NS (bolus), and for 15 minutes after completion (post-bolus). Mean rCBF for each time period was calculated for individual subjects and median rCBF for the population was compared between time periods. Linear regression was used to evaluate for associations between rCBF and clinical features. RESULTS: Among 57 subjects, median rCBF (IQR) increased relative to baseline in the ipsilesional hemisphere by 17% (-2.0%, 43.1%), P< 0.001, and in the contralesional hemisphere by 13.3% (-4.3%, 36.0%), P < .004. No significant associations were found between ipsilesional changes in rCBF and age, race, infarct size, infarct location, presence of large vessel stenosis, NIH stroke scale, or symptom duration. CONCLUSION: A 500 cc bolus of .9% NS produced a measurable increase in rCBF in both the affected and nonaffected hemispheres. Clinical features did not predict rCBF response.


Subject(s)
Brain Ischemia/therapy , Cerebrovascular Circulation , Fluid Therapy , Saline Solution/administration & dosage , Stroke/therapy , Aged , Blood Flow Velocity , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Female , Humans , Infusions, Intravenous , Male , Middle Aged , Pilot Projects , Stroke/diagnostic imaging , Stroke/physiopathology , Time Factors , Treatment Outcome
15.
J Stroke Cerebrovasc Dis ; 28(6): 1483-1494, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30975462

ABSTRACT

INTRODUCTION: Mechanical thrombectomy is revolutionizing treatment of acute stroke due to large vessel occlusion (LVO). Unfortunately, use of the modified Thrombolysis in Cerebral Infarction score (mTICI) to characterize recanalization of the cerebral vasculature does not address microvascular perfusion of the distal parenchyma, nor provide more than a vascular "snapshot." Thus, little is known about tissue-level hemodynamic consequences of LVO recanalization. Diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) are promising methods for continuous, noninvasive, contrast-free transcranial monitoring of cerebral microvasculature. METHODS: Here, we use a combined DCS/DOS system to monitor frontal lobe hemodynamic changes during endovascular treatment of 2 patients with ischemic stroke due to internal carotid artery (ICA) occlusions. RESULTS AND DISCUSSION: The monitoring instrument identified a recanalization-induced increase in ipsilateral cerebral blood flow (CBF) with little or no concurrent change in contralateral CBF and extracerebral blood flow. The results suggest that diffuse optical monitoring is sensitive to intracerebral hemodynamics in patients with ICA occlusion and can measure microvascular responses to mechanical thrombectomy.


Subject(s)
Brain Ischemia/therapy , Cerebrovascular Circulation , Frontal Lobe/blood supply , Hemodynamics , Microcirculation , Optical Imaging/methods , Perfusion Imaging/methods , Stroke/therapy , Thrombectomy/methods , Aged , Aged, 80 and over , Blood Flow Velocity , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Female , Humans , Middle Aged , Predictive Value of Tests , Spectrum Analysis , Stroke/diagnostic imaging , Stroke/physiopathology , Time Factors , Treatment Outcome
16.
Am J Physiol Heart Circ Physiol ; 315(2): H242-H253, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29652542

ABSTRACT

We used diffuse correlation spectroscopy to investigate sympathetic vasoconstriction, local vasodilation, and integration of these two responses in the skeletal muscle microvasculature of 20 healthy volunteers. Diffuse correlation spectroscopy probes were placed on the flexor carpi radialis muscle or vastus lateralis muscle, and a blood flow index was derived continuously. We measured hemodynamic responses during sympathoexcitation induced by forehead cooling, after which the effects of the increased sympathetic tone on vasodilatory responses during postocclusive reactive hyperemia (PORH) were examined. PORH was induced by releasing arterial occlusion (3 min) in an arm or leg. To increase sympathetic tone during PORH, forehead cooling was begun 60 s before the occlusion release and ended 60 s after the release. During forehead cooling, mean arterial pressure rose significantly and was sustained at an elevated level. Significant vasoconstriction and decreases in blood flow index followed by gradual blunting of the vasoconstriction also occurred. The time course of these responses is in good agreement with previous observations in animals. The acute sympathoexcitation diminished the peak vasodilation during PORH only in the vastus lateralis muscle, but it hastened the decline in vasodilation after the peak in both the flexor carpi radialis muscle and vastus lateralis muscle. Consequently, the total vasodilatory response assessed as the area of the vascular conductance during the first minute of PORH was significantly diminished in both regions. We conclude that, in humans, the integrated effects of sympathetic vasoconstriction and local vasodilation have an important role in vascular regulation and control of perfusion in the skeletal muscle microcirculation. NEW & NOTEWORTHY We used diffuse correlation spectroscopy to demonstrate that acute sympathoexcitation constrains local vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. This finding indicates that integration of sympathetic vasoconstriction and local vasodilation is importantly involved in vascular regulation and the control of perfusion of the skeletal muscle microcirculation in humans.


Subject(s)
Hyperemia/physiopathology , Microvessels/physiology , Muscle, Skeletal/blood supply , Sympathetic Nervous System/physiology , Vasoconstriction , Vasodilation , Female , Humans , Male , Muscle, Skeletal/physiology , Regional Blood Flow , Young Adult
17.
Neuroimage ; 85 Pt 1: 51-63, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23770408

ABSTRACT

Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli.


Subject(s)
Brain/anatomy & histology , Cerebrovascular Circulation/physiology , Neuroimaging/methods , Spectroscopy, Near-Infrared/methods , Animals , Animals, Newborn , Biomarkers , Calibration , Humans , Infant, Newborn , Neuroimaging/instrumentation , Oxygen Consumption/physiology , Risk Assessment , Spectroscopy, Near-Infrared/instrumentation , Swine
18.
J Biomed Opt ; 29(1): 015004, 2024 01.
Article in English | MEDLINE | ID: mdl-38283935

ABSTRACT

Significance: Diffuse correlation spectroscopy (DCS) is a powerful, noninvasive optical technique for measuring blood flow. Traditionally the blood flow index (BFi) is derived through nonlinear least-square fitting the measured intensity autocorrelation function (ACF). However, the fitting process is computationally intensive, susceptible to measurement noise, and easily influenced by optical properties (absorption coefficient µa and reduced scattering coefficient µs') and scalp and skull thicknesses. Aim: We aim to develop a data-driven method that enables rapid and robust analysis of multiple-scattered light's temporal ACFs. Moreover, the proposed method can be applied to a range of source-detector distances instead of being limited to a specific source-detector distance. Approach: We present a deep learning architecture with one-dimensional convolution neural networks, called DCS neural network (DCS-NET), for BFi and coherent factor (ß) estimation. This DCS-NET was performed using simulated DCS data based on a three-layer brain model. We quantified the impact from physiologically relevant optical property variations, layer thicknesses, realistic noise levels, and multiple source-detector distances (5, 10, 15, 20, 25, and 30 mm) on BFi and ß estimations among DCS-NET, semi-infinite, and three-layer fitting models. Results: DCS-NET shows a much faster analysis speed, around 17,000-fold and 32-fold faster than the traditional three-layer and semi-infinite models, respectively. It offers higher intrinsic sensitivity to deep tissues compared with fitting methods. DCS-NET shows excellent anti-noise features and is less sensitive to variations of µa and µs' at a source-detector separation of 30 mm. Also, we have demonstrated that relative BFi (rBFi) can be extracted by DCS-NET with a much lower error of 8.35%. By contrast, the semi-infinite and three-layer fitting models result in significant errors in rBFi of 43.76% and 19.66%, respectively. Conclusions: DCS-NET can robustly quantify blood flow measurements at considerable source-detector distances, corresponding to much deeper biological tissues. It has excellent potential for hardware implementation, promising continuous real-time blood flow measurements.


Subject(s)
Deep Learning , Hemodynamics , Spectroscopy, Near-Infrared/methods , Regional Blood Flow/physiology , Scalp
19.
J Biomed Opt ; 29(2): 020501, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38322728

ABSTRACT

Significance: Diffuse correlation spectroscopy (DCS) permits non-invasive assessment of skeletal muscle blood flow but may misestimate changes in muscle perfusion. Aim: We aimed to highlight recent evidence that DCS blood flow index (BFI) misestimates changes in muscle blood flow during physiological perturbation and to introduce a novel approach that adjusts BFI for estimated changes in vasodilation. Approach: We measured changes in muscle BFI during quadriceps and forearm exercises using DCS, the latter of which were adjusted for estimated changes in microvascular flow area and then compared to Doppler ultrasound in the brachial artery. Then, we compared adjusted BFI- and arterial spin labeling (ASL) MRI measures of gastrocnemius blood flow during reactive hyperemia and plantar flexion exercise. Results: We observed little-to-no change in quadriceps BFI during maximal-effort exercise. Similarly, forearm BFI was modestly increased during handgrip exercise, but the magnitude was significantly lower than measured by Doppler ultrasound in the brachial artery. However, this difference was ameliorated after adjusting BFI for estimated changes in microvascular flow area. Similar observations were also observed in the gastrocnemius when directly comparing the adjusted BFI values to ASL-MRI. Conclusions: Adjusting BFI for estimated changes in microvascular flow area may improve DCS estimates of muscle blood flow, but further study is needed to validate these methods moving forward.


Subject(s)
Hand Strength , Perfusion Index , Regional Blood Flow/physiology , Muscle, Skeletal/physiology , Spectroscopy, Near-Infrared/methods , Perfusion , Blood Flow Velocity
20.
J Appl Physiol (1985) ; 136(5): 1053-1064, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482573

ABSTRACT

The physiological effects on blood flow and oxygen utilization in active muscles during and after involuntary contraction triggered by electrical muscle stimulation (EMS) remain unclear, particularly compared with those elicited by voluntary (VOL) contractions. Therefore, we used diffuse correlation and near-infrared spectroscopy (DCS-NIRS) to compare changes in local muscle blood flow and oxygen consumption during and after these two types of muscle contractions in humans. Overall, 24 healthy young adults participated in the study, and data were successfully obtained from 17 of them. Intermittent (2-s contraction, 2-s relaxation) isometric ankle dorsiflexion with a target tension of 20% of maximal VOL contraction was performed by EMS or VOL for 2 min, followed by a 6-min recovery period. DCS-NIRS probes were placed on the tibialis anterior muscle, and relative changes in local tissue blood flow index (rBFI), oxygen extraction fraction (rOEF), and metabolic rate of oxygen (rMRO2) were continuously derived. EMS induced more significant increases in rOEF and rMRO2 than VOL exercise but a comparable increase in rBFI. After EMS, rBFI and rMRO2 decreased more slowly than after VOL and remained significantly higher until the end of the recovery period. We concluded that EMS augments oxygen consumption in contracting muscles by enhancing oxygen extraction while increasing oxygen delivery at a rate similar to the VOL exercise. Under the conditions examined in this study, EMS demonstrated a more pronounced and/or prolonged enhancement in local muscle perfusion and aerobic metabolism compared with VOL exercise in healthy participants.NEW & NOTEWORTHY This is the first study to visualize continuous changes in blood flow and oxygen utilization within contracted muscles during and after electrical muscle stimulation (EMS) using combined diffuse correlation and near-infrared spectroscopy. We found that initiating EMS increases blood flow at a rate comparable to that during voluntary (VOL) exercise but enhances oxygen extraction, resulting in higher oxygen consumption. Furthermore, EMS increased postexercise muscle perfusion and oxygen consumption compared with that after VOL exercise.


Subject(s)
Electric Stimulation , Exercise , Muscle, Skeletal , Oxygen Consumption , Regional Blood Flow , Spectroscopy, Near-Infrared , Humans , Oxygen Consumption/physiology , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/physiology , Young Adult , Exercise/physiology , Electric Stimulation/methods , Regional Blood Flow/physiology , Female , Adult , Spectroscopy, Near-Infrared/methods , Oxygen/metabolism , Muscle Contraction/physiology , Isometric Contraction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL