Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.904
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 37: 225-246, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30566366

ABSTRACT

Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.


Subject(s)
Antibodies, Protozoan/metabolism , Antibody Formation , Immunoglobulins/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/physiology , Animals , Host Specificity/genetics , Host-Pathogen Interactions , Humans , Life Cycle Stages
2.
Annu Rev Cell Dev Biol ; 40(1): 265-281, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39356809

ABSTRACT

Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 (LAIR1) gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 (LILRB1) gene that is located in close proximity to LAIR1. A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.


Subject(s)
Exons , V(D)J Recombination , Humans , V(D)J Recombination/genetics , Exons/genetics , Animals , Antibodies/immunology , Antibodies/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Antibody Diversity/genetics
3.
Genes Dev ; 34(23-24): 1680-1696, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33184220

ABSTRACT

Gene duplication and divergence is a major driver in the emergence of evolutionary novelties. How variations in amino acid sequences lead to loss of ancestral activity and functional diversification of proteins is poorly understood. We used cross-species functional analysis of Drosophila Labial and its mouse HOX1 orthologs (HOXA1, HOXB1, and HOXD1) as a paradigm to address this issue. Mouse HOX1 proteins display low (30%) sequence similarity with Drosophila Labial. However, substituting endogenous Labial with the mouse proteins revealed that HOXA1 has retained essential ancestral functions of Labial, while HOXB1 and HOXD1 have diverged. Genome-wide analysis demonstrated similar DNA-binding patterns of HOXA1 and Labial in mouse cells, while HOXB1 binds to distinct targets. Compared with HOXB1, HOXA1 shows an enrichment in co-occupancy with PBX proteins on target sites and exists in the same complex with PBX on chromatin. Functional analysis of HOXA1-HOXB1 chimeric proteins uncovered a novel six-amino-acid C-terminal motif (CTM) flanking the homeodomain that serves as a major determinant of ancestral activity. In vitro DNA-binding experiments and structural prediction show that CTM provides an important domain for interaction of HOXA1 proteins with PBX. Our findings show that small changes outside of highly conserved DNA-binding regions can lead to profound changes in protein function.


Subject(s)
Amino Acid Motifs/genetics , Drosophila Proteins/genetics , Evolution, Molecular , Homeodomain Proteins/genetics , Animals , Drosophila melanogaster/classification , Drosophila melanogaster/genetics , Genome-Wide Association Study , Mice , Models, Molecular , Protein Binding/genetics , Protein Domains , Structure-Activity Relationship
4.
Proc Natl Acad Sci U S A ; 121(10): e2305228121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38394215

ABSTRACT

We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness in Calochortus (Liliaceae, 74 spp.). Calochortus occupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades-inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)-began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.


Subject(s)
Biological Evolution , Liliaceae , Phylogeny , Ecosystem , Chromosomes , Genetic Speciation
5.
Trends Immunol ; 44(7): 519-529, 2023 07.
Article in English | MEDLINE | ID: mdl-37277233

ABSTRACT

In acute immune responses to infection, memory T cells develop that can spawn recall responses. This process has not been observable directly in vivo. Here we highlight the utility of mathematical inference to derive quantitatively testable models of mammalian CD8+ T cell memory development from complex experimental data. Previous inference studies suggested that precursors of memory T cells arise early during the immune response. Recent work has both validated a crucial prediction of this T cell diversification model and refined the model. While multiple developmental routes to distinct memory subsets might exist, a branch point occurs early in proliferating T cell blasts, from which separate differentiation pathways emerge for slowly dividing precursors of re-expandable memory cells and rapidly dividing effectors.


Subject(s)
CD8-Positive T-Lymphocytes , Memory T Cells , Humans , Animals , Cell Differentiation , Lymphocyte Activation , Immunologic Memory , T-Lymphocyte Subsets , Mammals
6.
Trends Immunol ; 44(10): 782-791, 2023 10.
Article in English | MEDLINE | ID: mdl-37640588

ABSTRACT

The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.


Subject(s)
Antibodies , DNA Breaks, Double-Stranded , DNA Repair , Tumor Suppressor p53-Binding Protein 1 , Animals , Humans , Mice , Antibodies/genetics , Immunoglobulin Class Switching/genetics , Lymphocytes , Mammals
7.
Proc Natl Acad Sci U S A ; 120(29): e2102408120, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37428929

ABSTRACT

Although climate change has been implicated as a major catalyst of diversification, its effects are thought to be inconsistent and much less pervasive than localized climate or the accumulation of species with time. Focused analyses of highly speciose clades are needed in order to disentangle the consequences of climate change, geography, and time. Here, we show that global cooling shapes the biodiversity of terrestrial orchids. Using a phylogeny of 1,475 species of Orchidoideae, the largest terrestrial orchid subfamily, we find that speciation rate is dependent on historic global cooling, not time, tropical distributions, elevation, variation in chromosome number, or other types of historic climate change. Relative to the gradual accumulation of species with time, models specifying speciation driven by historic global cooling are over 700 times more likely. Evidence ratios estimated for 212 other plant and animal groups reveal that terrestrial orchids represent one of the best-supported cases of temperature-spurred speciation yet reported. Employing >2.5 million georeferenced records, we find that global cooling drove contemporaneous diversification in each of the seven major orchid bioregions of the Earth. With current emphasis on understanding and predicting the immediate impacts of global warming, our study provides a clear case study of the long-term impacts of global climate change on biodiversity.


Subject(s)
Biodiversity , Cold Temperature , Animals , Phylogeny , Temperature , Geography , Genetic Speciation
8.
Proc Natl Acad Sci U S A ; 120(20): e2220672120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37159475

ABSTRACT

The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.


Subject(s)
Biodiversity , Biological Evolution , Phylogeny , Dissent and Disputes , Fossils
9.
Proc Natl Acad Sci U S A ; 120(2): e2211974120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595684

ABSTRACT

Landscape dynamics are widely thought to govern the tempo and mode of continental radiations, yet the effects of river network rearrangements on dispersal and lineage diversification remain poorly understood. We integrated an unprecedented occurrence dataset of 4,967 species with a newly compiled, time-calibrated phylogeny of South American freshwater fishes-the most species-rich continental vertebrate fauna on Earth-to track the evolutionary processes associated with hydrogeographic events over 100 Ma. Net lineage diversification was heterogeneous through time, across space, and among clades. Five abrupt shifts in net diversification rates occurred during the Paleogene and Miocene (between 30 and 7 Ma) in association with major landscape evolution events. Net diversification accelerated from the Miocene to the Recent (c. 20 to 0 Ma), with Western Amazonia having the highest rates of in situ diversification, which led to it being an important source of species dispersing to other regions. All regional biotic interchanges were associated with documented hydrogeographic events and the formation of biogeographic corridors, including the Early Miocene (c. 23 to 16 Ma) uplift of the Serra do Mar and Serra da Mantiqueira and the Late Miocene (c. 10 Ma) uplift of the Northern Andes and associated formation of the modern transcontinental Amazon River. The combination of high diversification rates and extensive biotic interchange associated with Western Amazonia yielded its extraordinary contemporary richness and phylogenetic endemism. Our results support the hypothesis that landscape dynamics, which shaped the history of drainage basin connections, strongly affected the assembly and diversification of basin-wide fish faunas.


Subject(s)
Fishes , Fresh Water , Animals , Phylogeny , Fishes/genetics , Rivers , South America , Biodiversity , Phylogeography
10.
Proc Natl Acad Sci U S A ; 120(7): e2208851120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36757894

ABSTRACT

The birth-death model is commonly used to infer speciation and extinction rates by fitting the model to phylogenetic trees with exclusively extant taxa. Recently, it was demonstrated that speciation and extinction rates are not identifiable if the rates are allowed to vary freely over time. The group of birth-death models that have the same likelihood is called a congruence class, and there is no statistical evidence to favor one model over the other. This issue has led researchers to question if and what patterns can reliably be inferred from phylogenies of only extant taxa and whether time-variable birth-death models should be fitted at all. We explore the congruence class in the context of several empirical phylogenies as well as hypothetical scenarios. For these empirical phylogenies, we assume that we inferred the true congruence class. Thus, our conclusions apply to any empirical phylogeny for which we robustly inferred the true congruence class. When we summarize shared patterns in the congruence class, we show that strong directional trends in speciation and extinction rates are shared among most models. Therefore, we conclude that the inference of strong directional trends is robust. Conversely, estimates of constant rates or gentle slopes are not robust and must be treated with caution. Interestingly, the space of valid speciation rates is narrower and more limited in contrast to extinction rates, which are less constrained. These results provide further evidence and insights that speciation rates can be estimated more reliably than extinction rates.


Subject(s)
Extinction, Biological , Parturition , Female , Pregnancy , Humans , Phylogeny , Probability , Genetic Speciation
11.
Proc Natl Acad Sci U S A ; 120(14): e2205794120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972432

ABSTRACT

As climate changes in sub-Saharan Africa (SSA), Africa's "forgotten" food crops offer a wide range of options to diversify major staple production as a key measure toward achieving zero hunger and healthy diets. So far, however, these forgotten food crops have been neglected in SSA's climate-change adaptation strategies. Here, we quantified their capacity to adapt cropping systems of SSA's major staples of maize, rice, cassava, and yams to changing climates for the four subregions of West, Central, East, and Southern Africa. We used climate-niche modeling to explore their potential for crop diversification or the replacement of these major staples by 2070, and assessed the possible effects on micronutrient supply. Our results indicated that approximately 10% of the present production locations of these four major staples in SSA may experience novel climate conditions in 2070, ranging from a high of almost 18% in West Africa to a low of less than 1% in Southern Africa. From an initial candidate panel of 138 African forgotten food crops embracing leafy vegetables, other vegetables, fruits, cereals, pulses, seeds and nuts, and roots and tubers, we selected those that contributed most to covering projected future and contemporary climate conditions of the major staples' production locations. A prioritized shortlist of 58 forgotten food crops, able to complement each other in micronutrient provision, was determined, which covered over 95% of assessed production locations. The integration of these prioritized forgotten food crops in SSA's cropping systems will support the "double-win" of more climate-resilient and nutrient-sensitive food production in the region.


Subject(s)
Crops, Agricultural , Diet, Healthy , Africa South of the Sahara , Vegetables , Micronutrients , Climate Change , Agriculture/methods , Food Supply
12.
Semin Cell Dev Biol ; 145: 13-21, 2023 08.
Article in English | MEDLINE | ID: mdl-35277332

ABSTRACT

Historically, the empirical study of phenotypic diversification has fallen into two rough camps; (1) "structuralist approaches" focusing on developmental constraint, bias, and innovation (with evo-devo at the core); and (2) "adaptationist approaches" focusing on adaptation, and natural selection. Whilst debates, such as that surrounding the proposed "Extended" Evolutionary Synthesis, often juxtapose these two positions, this review focuses on the grey space in between. Specifically, here I present a novel analysis of structuralism which enables us to take a more nuanced look at the motivations behind the structuralist and adaptationist positions. This makes clear how the two approaches can conflict, and points of potential commensurability. The review clarifies (a) the value of the evo-devo approach to phenotypic diversity, but also (b) how it properly relates to other predominant approaches to the same issues in evolutionary biology more broadly.


Subject(s)
Biological Evolution , Friends , Humans
13.
Mol Biol Evol ; 41(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39150953

ABSTRACT

The relative importance of genetic drift and local adaptation in facilitating speciation remains unclear. This is particularly true for seabirds, which can disperse over large geographic distances, providing opportunities for intermittent gene flow among distant colonies that span the temperature and salinity gradients of the oceans. Here, we delve into the genomic basis of adaptation and speciation of banded penguins, Galápagos (Spheniscus mendiculus), Humboldt (Spheniscus humboldti), Magellanic (Spheniscus magellanicus), and African penguins (Spheniscus demersus), by analyzing 114 genomes from the main 16 breeding colonies. We aim to identify the molecular mechanism and genomic adaptive traits that have facilitated their diversifications. Through positive selection and gene family expansion analyses, we identified candidate genes that may be related to reproductive isolation processes mediated by ecological thermal niche divergence. We recover signals of positive selection on key loci associated with spermatogenesis, especially during the recent peripatric divergence of the Galápagos penguin from the Humboldt penguin. High temperatures in tropical habitats may have favored selection on loci associated with spermatogenesis to maintain sperm viability, leading to reproductive isolation among young species. Our results suggest that genome-wide selection on loci associated with molecular pathways that underpin thermoregulation, osmoregulation, hypoxia, and social behavior appears to have been crucial in local adaptation of banded penguins. Overall, these results contribute to our understanding of how the complexity of biotic, but especially abiotic, factors, along with the high dispersal capabilities of these marine species, may promote both neutral and adaptive lineage divergence even in the presence of gene flow.


Subject(s)
Selection, Genetic , Spheniscidae , Animals , Spheniscidae/genetics , Genomics , Genetic Speciation , Gene Flow , Genome , Reproductive Isolation
14.
Mol Biol Evol ; 41(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38717941

ABSTRACT

Prokaryotes dominate the Tree of Life, but our understanding of the macroevolutionary processes generating this diversity is still limited. Habitat transitions are thought to be a key driver of prokaryote diversity. However, relatively little is known about how prokaryotes successfully transition and persist across environments, and how these processes might vary between biomes and lineages. Here, we investigate biome transitions and specialization in natural populations of a focal bacterial phylum, the Myxococcota, sampled across a range of replicated soils and freshwater and marine sediments in Cornwall (UK). By targeted deep sequencing of the protein-coding gene rpoB, we found >2,000 unique Myxococcota lineages, with the majority (77%) classified as biome specialists and with only <5% of lineages distributed across the salt barrier. Discrete character evolution models revealed that specialists in one biome rarely transitioned into specialists in another biome. Instead, evolved generalism mediated transitions between biome specialists. State-dependent diversification models found variation in speciation rates across the tree, but this variation was independent of biome association or specialization. Our findings were robust to phylogenetic uncertainty, different levels of species delineation, and different assumed amounts of unsampled diversity resulting in an incomplete phylogeny. Overall, our results are consistent with a "jack-of-all-trades" tradeoff where generalists suffer a cost in any individual environment, resulting in rapid evolution of niche specialists and shed light on how bacteria could transition between biomes.


Subject(s)
Biological Evolution , Myxococcales , Myxococcales/genetics , Ecosystem , Phylogeny , Genetic Speciation
15.
Eur J Immunol ; 54(7): e2451056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593351

ABSTRACT

COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Somatic Hypermutation, Immunoglobulin , SARS-CoV-2/immunology , Humans , Somatic Hypermutation, Immunoglobulin/genetics , COVID-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Memory B Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal/immunology , B-Lymphocytes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunologic Memory/immunology , COVID-19 Vaccines/immunology
16.
J Virol ; 98(2): e0182523, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289105

ABSTRACT

Unspliced HIV-1 RNAs function as messenger RNAs for Gag or Gag-Pol polyproteins and progeny genomes packaged into virus particles. Recently, it has been reported that fate of the RNAs might be primarily determined, depending on transcriptional initiation sites among three consecutive deoxyguanosine residues (GGG tract) downstream of TATA-box in the 5' long terminal repeat (LTR). Although HIV-1 RNA transcription starts mostly from the first deoxyguanosine of the GGG tract and often from the second or third deoxyguanosine, RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine, were predominant in HIV-1 particles. Despite selective packaging of G1-form RNAs into virus particles, its biological impact during viral replication remains to be determined. In this study, we revealed that G1-form RNAs are primarily selected as a template for provirus DNA rather than other RNAs. In competitions between HIV-1 and lentiviral vector transcripts in virus-producing cells, approximately 80% of infectious particles were found to generate provirus using HIV-1 transcripts, while lentiviral vector transcripts were conversely selected when we used HIV-1 mutants in which the third deoxyguanosine in the GGG tract was replaced with deoxythymidine or deoxycytidine (GGT or GGC mutants, respectively). In the other analyses of proviral sequences after infection with an HIV-1 mutant in which the GGG tract in 3' LTR was replaced with TTT, most proviral sequences of the GGG-tract region in 5' LTR were found to be TTG, which is reasonably generated using the G1-form transcripts. Our results indicate that the G1-form RNAs serve as a dominant genome to establish provirus DNA.IMPORTANCESince the promoter for transcribing HIV-1 RNA is unique, all viral elements including genomic RNA and viral proteins have to be generated by the unique transcripts through ingenious mechanisms including RNA splicing and frameshifting during protein translation. Previous studies suggested a new mechanism for diversification of HIV-1 RNA functions by heterogeneous transcriptional initiation site usage; HIV-1 RNAs whose transcription initiates from a certain nucleotide were predominant in virus particles. In this study, we established two methods to analyze heterogenous transcriptional initiation site usage by HIV-1 during viral infection and showed that RNAs beginning with one guanosine (G1-form RNAs), whose transcription initiates from the third deoxyguanosine of the GGG tract in 5' LTR, were primarily selected as viral genome in infectious particles and thus are used as a template to generate provirus for continuous replication. This study provides insights into the mechanism for diversification of unspliced RNA functions and requisites of lentivirus infectivity.


Subject(s)
HIV-1 , Proviruses , Deoxyguanosine/genetics , Guanosine/genetics , HIV Long Terminal Repeat/genetics , HIV-1/physiology , Proviruses/genetics , RNA, Viral/genetics , Terminal Repeat Sequences
17.
Plant Physiol ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351808

ABSTRACT

Coat protein complex II (COPII) vesicles play crucial roles in mediating the endoplasmic reticulum (ER) exit of newly synthesized proteins to the Golgi in eukaryotic cells. However, the molecular functions of COPII components and their functional diversifications in plant seeds remain obscure. Here, we showed that the rice (Oryza sativa) glutelin precursor accumulation12 (gpa12) mutant is defective in storage protein export from the ER, resulting in the formation of aggregated protein bodies. Map-based cloning revealed that GPA12 encodes a COPII outer layer protein, Sec13a, that mainly localizes to endoplasmic reticulum exit sites (ERES) and partially localizes to the Golgi. Biochemical experiments verified that Sec13a physically interacts with Sec31 and Sec16, and mutation in Sec13 compromises its interaction with Sec31 and Sec16, thereby affecting the membrane association of the inner complex components Sar1b and Sec23c. Apart from Sec13a, the rice genome encodes two other Sec13 isoforms, Sec13b and Sec13c. Notably, we observed an abnormal accumulation of globular ER structures in the sec13bc double mutant but not in the single mutants, suggesting a functional redundancy of Sec13b and Sec13c in modulating ER morphology. Taken together, our results substantiated that Sec13a plays an important role in regulating storage protein export from the ER, while Sec13b and Sec13c are required for maintaining ER morphology in rice endosperm cells. Our findings provide insights into the functional diversification of COPII components in plants.

18.
Annu Rev Microbiol ; 74: 587-606, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32680450

ABSTRACT

Quorum sensing is a process in which bacteria secrete and sense a diffusible molecule, thereby enabling bacterial groups to coordinate their behavior in a density-dependent manner. Quorum sensing has evolved multiple times independently, utilizing different molecular pathways and signaling molecules. A common theme among many quorum-sensing families is their wide range of signaling diversity-different variants within a family code for different signal molecules with a cognate receptor specific to each variant. This pattern of vast allelic polymorphism raises several questions-How do different signaling variants interact with one another? How is this diversity maintained? And how did it come to exist in the first place? Here we argue that social interactions between signaling variants can explain the emergence and persistence of signaling diversity throughout evolution. Finally, we extend the discussion to include cases where multiple diverse systems work in concert in a single bacterium.


Subject(s)
Bacteria/genetics , Bacterial Physiological Phenomena , Evolution, Molecular , Genetic Variation , Quorum Sensing , Signal Transduction/genetics , Bacteria/classification , Bacteria/metabolism , Signal Transduction/physiology
19.
Syst Biol ; 73(3): 506-520, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38597146

ABSTRACT

Crater lake fishes are common evolutionary model systems, with recent studies suggesting a key role for gene flow in promoting rapid adaptation and speciation. However, the study of these young lakes can be complicated by human-mediated extinctions. Museum genomics approaches integrating genetic data from recently extinct species are, therefore, critical to understanding the complex evolutionary histories of these fragile systems. Here, we examine the evolutionary history of an extinct Southern Hemisphere crater lake endemic, the rainbowfish Melanotaenia eachamensis. We undertook a comprehensive sampling of extant rainbowfish populations of the Atherton Tablelands of Australia alongside historical museum material to understand the evolutionary origins of the extinct crater lake population and the dynamics of gene flow across the ecoregion. The extinct crater lake species is genetically distinct from all other nearby populations due to historic introgression between 2 proximate riverine lineages, similar to other prominent crater lake speciation systems, but this historic gene flow has not been sufficient to induce a species flock. Our results suggest that museum genomics approaches can be successfully combined with extant sampling to unravel complex speciation dynamics involving recently extinct species.


Subject(s)
Extinction, Biological , Genomics , Lakes , Museums , Animals , Gene Flow , Australia , Smegmamorpha/genetics , Smegmamorpha/classification , Phylogeny , Genetic Speciation , Hybridization, Genetic
20.
Syst Biol ; 73(2): 343-354, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38289860

ABSTRACT

How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.


Subject(s)
Biological Evolution , Phylogeny , Pigmentation , Animals , Pigmentation/genetics , Pigmentation/physiology , Passeriformes/classification , Passeriformes/genetics , Passeriformes/physiology , Color
SELECTION OF CITATIONS
SEARCH DETAIL