Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 91: 599-628, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35287475

ABSTRACT

In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)-2'3'-cyclic GMP-AMP (cGAMP)-stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which thecGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases.


Subject(s)
Membrane Proteins , Nucleotides, Cyclic , DNA/genetics , Humans , Immunity, Innate/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotides, Cyclic/genetics , Nucleotidyltransferases/genetics
2.
Cell ; 184(5): 1314-1329.e10, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33626331

ABSTRACT

End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.


Subject(s)
RNA Polymerase III/metabolism , Recombinational DNA Repair , Cell Cycle , Cell Line, Tumor , DNA Breaks, Double-Stranded , Endodeoxyribonucleases/genetics , HEK293 Cells , Humans , MRE11 Homologue Protein/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Nucleic Acid Hybridization , RNA/chemistry
3.
Mol Cell ; 84(13): 2423-2435.e5, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38917796

ABSTRACT

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.


Subject(s)
Interferon Regulatory Factor-3 , Membrane Proteins , Protein Serine-Threonine Kinases , Signal Transduction , Ubiquitination , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Phosphorylation , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Animals , HEK293 Cells , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/virology , Immunity, Innate , Host-Pathogen Interactions , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Interferons/metabolism , Interferons/immunology , Interferons/genetics , Feedback, Physiological , Mice, Inbred C57BL , Exodeoxyribonucleases , Phosphoproteins
4.
Mol Cell ; 83(14): 2493-2508.e5, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37343553

ABSTRACT

Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.


Subject(s)
CRISPR-Associated Proteins , DNA , DNA/genetics , DNA, Single-Stranded/genetics , CRISPR-Cas Systems , CRISPR-Associated Proteins/metabolism
5.
Proc Natl Acad Sci U S A ; 120(22): e2221127120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216515

ABSTRACT

CRISPR/Cas9 genome-editing tools have tremendously boosted our capability of manipulating the eukaryotic genomes in biomedical research and innovative biotechnologies. However, the current approaches that allow precise integration of gene-sized large DNA fragments generally suffer from low efficiency and high cost. Herein, we developed a versatile and efficient approach, termed LOCK (Long dsDNA with 3'-Overhangs mediated CRISPR Knock-in), by utilizing specially designed 3'-overhang double-stranded DNA (odsDNA) donors harboring 50-nt homology arm. The length of the 3'-overhangs of odsDNA is specified by the five consecutive phosphorothioate modifications. Compared with existing methods, LOCK allows highly efficient targeted insertion of kilobase-sized DNA fragments into the mammalian genomes with low cost and low off-target effects, yielding >fivefold higher knock-in frequencies than conventional homologous recombination-based approaches. This newly designed LOCK approach based on homology-directed repair is a powerful tool suitable for gene-sized fragment integration that is urgently needed for genetic engineering, gene therapies, and synthetic biology.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Base Sequence , Gene Editing/methods , DNA/genetics , Homologous Recombination , Mammals/genetics
6.
Genes Dev ; 32(23-24): 1472-1484, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30463905

ABSTRACT

Modification of mRNA by N6-adenosine methylation (m6A) on internal bases influences gene expression in eukaryotes. How the dynamic genome-wide landscape of m6A-modified mRNAs impacts virus infection and host immune responses remains poorly understood. Here, we show that type I interferon (IFN) production triggered by dsDNA or human cytomegalovirus (HCMV) is controlled by the cellular m6A methyltrasferase subunit METTL14 and ALKBH5 demethylase. While METTL14 depletion reduced virus reproduction and stimulated dsDNA- or HCMV-induced IFNB1 mRNA accumulation, ALKBH5 depletion had the opposite effect. Depleting METTL14 increased both nascent IFNB1 mRNA production and stability in response to dsDNA. In contrast, ALKBH5 depletion reduced nascent IFNB1 mRNA production without detectably influencing IFN1B mRNA decay. Genome-wide transcriptome profiling following ALKBH5 depletion identified differentially expressed genes regulating antiviral immune responses, while METTL14 depletion altered pathways impacting metabolic reprogramming, stress responses, and aging. Finally, we determined that IFNB1 mRNA was m6A-modified within both the coding sequence and the 3' untranslated region (UTR). This establishes that the host m6A modification machinery controls IFNß production triggered by HCMV or dsDNA. Moreover, it demonstrates that responses to nonmicrobial dsDNA in uninfected cells, which shape host immunity and contribute to autoimmune disease, are regulated by enzymes controlling m6A epitranscriptomic changes.


Subject(s)
DNA/immunology , Gene Expression Regulation/genetics , Immune System/enzymology , Immunity, Innate/genetics , Interferon-beta/genetics , Methyltransferases/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Animals , Cell Line , Chlorocebus aethiops , Cytomegalovirus/immunology , Gene Expression Profiling , Humans , Interferon-beta/metabolism , RNA Stability/genetics , Vero Cells , Virus Replication/genetics
7.
Mol Ther ; 32(4): 1016-1032, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38327049

ABSTRACT

Chimeric antigen receptor (CAR) T cells are activated to trigger the lytic machinery after antigen engagement, and this has been successfully applied clinically as therapy. The mechanism by which antigen binding leads to the initiation of CAR signaling remains poorly understood. Here, we used a set of short double-stranded DNA (dsDNA) tethers with mechanical forces ranging from ∼12 to ∼51 pN to manipulate the mechanical force of antigen tether and decouple the microclustering and signaling events. Our results revealed that antigen-binding-induced CAR microclustering and signaling are mechanical force dependent. Additionally, the mechanical force delivered to the antigen tether by the CAR for microclustering is generated by autonomous cell contractility. Mechanistically, the mechanical-force-induced strong adhesion and CAR diffusion confinement led to CAR microclustering. Moreover, cytotoxicity may have a lower mechanical force threshold than cytokine generation. Collectively, these results support a model of mechanical-force-induced CAR microclustering for signaling.


Subject(s)
Receptors, Chimeric Antigen , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Antigens , Immunotherapy, Adoptive/methods
8.
Mol Biol Evol ; 40(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069639

ABSTRACT

Polintons are double-stranded DNA, virus-like self-synthesizing transposons widely found in eukaryotic genomes. Recent metagenomic discoveries of Polinton-like viruses are consistent with the hypothesis that Polintons invade eukaryotic host genomes through infectious viral particles. Nematode genomes contain multiple copies of Polintons and provide an opportunity to explore the natural distribution and evolution of Polintons during this process. We performed an extensive search of Polintons across nematode genomes, identifying multiple full-length Polinton copies in several species. We provide evidence of both ancient Polinton integrations and recent mobility in strains of the same nematode species. In addition to the major nematode Polinton family, we identified a group of Polintons that are overall closely related to the major family but encode a distinct protein-primed DNA polymerase B (pPolB) that is related to homologs from a different group of Polintons present outside of the Nematoda. Phylogenetic analyses on the pPolBs support the evolutionary scenarios in which these extrinsic pPolBs that seem to derive from Polinton families present in oomycetes and molluscs replaced the canonical pPolB in subsets of Polintons found in terrestrial and marine nematodes, respectively, suggesting interphylum horizontal gene transfers. The pPolBs of the terrestrial nematode and oomycete Polintons share a unique feature, an insertion of an HNH nuclease domain, whereas the pPolBs in the marine nematode Polintons share an insertion of a VSR nuclease domain with marine mollusc pPolBs. We hypothesize that horizontal gene transfer occurs among Polintons from widely different but cohabiting hosts.


Subject(s)
Nematoda , Viruses , Humans , Animals , Phylogeny , DNA Transposable Elements , DNA-Directed DNA Polymerase/genetics , Viruses/genetics , Nematoda/genetics
9.
J Autoimmun ; 145: 103205, 2024 May.
Article in English | MEDLINE | ID: mdl-38493673

ABSTRACT

Peptide ALW (ALWPPNLHAWVP) targeting anti-dsDNA antibodies has shown promising therapeutic effects in alleviating lupus nephritis, but is potentially limited by poor stability and non-kidney targeting. We recently developed a D-form modified ALW, called D-ALW, which has the capacity to widely inhibit pathogenic polyclonal anti-dsDNA antibody reactions. Further modification of D-ALW using PEG-PLGA nanoparticles to enhance good kidney-targeting ability and extend half-life. Here, we demonstrate that the D-form modified ALW maintains higher binding and inhibition efficiencies and achieves higher stability. Most importantly, D-ALW nanoparticles exhibit excellent kidney-targeting ability and prolong the half-life of the peptides in BALB/c mice. Additionally, compared to D-ALW, D-ALW nanoparticles significantly reduce the glomerular deposition of IgG and C3, improve renal histopathologies, such as glomerular proliferation and inflammatory cells infiltration, and markedly prolong lifespan in MRL/lpr lupus-prone mice. Overall, these results establish that the D-ALW nanoparticles offer synergistic benefits in both safety and efficacy, providing long-term renal preservation and treatment advantages in lupus nephritis.


Subject(s)
Antibodies, Antinuclear , Disease Models, Animal , Lupus Nephritis , Mice, Inbred MRL lpr , Nanoparticles , Animals , Lupus Nephritis/immunology , Lupus Nephritis/drug therapy , Mice , Antibodies, Antinuclear/immunology , Nanoparticles/chemistry , Female , Mice, Inbred BALB C , Kidney/pathology , Kidney/metabolism , Peptides/chemistry , Peptides/immunology , Immunoglobulin G/immunology , Humans
10.
Rheumatology (Oxford) ; 63(2): 525-533, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37208196

ABSTRACT

OBJECTIVE: Disease activity monitoring in SLE includes serial measurement of anti-double stranded-DNA (dsDNA) antibodies, but in patients who are persistently anti-dsDNA positive, the utility of repeated measurement is unclear. We investigated the usefulness of serial anti-dsDNA testing in predicting flare in SLE patients who are persistently anti-dsDNA positive. METHODS: Data were analysed from patients in a multinational longitudinal cohort with known anti-dsDNA results from 2013 to 2021. Patients were categorized based on their anti-dsDNA results as persistently negative, fluctuating or persistently positive. Cox regression models were used to examine longitudinal associations of anti-dsDNA results with flare. RESULTS: Data from 37 582 visits of 3484 patients were analysed. Of the patients 1029 (29.5%) had persistently positive anti-dsDNA and 1195 (34.3%) had fluctuating results. Anti-dsDNA expressed as a ratio to the normal cut-off was associated with the risk of subsequent flare, including in the persistently positive cohort (adjusted hazard ratio [HR] 1.56; 95% CI: 1.30, 1.87; P < 0.001) and fluctuating cohort (adjusted HR 1.46; 95% CI: 1.28, 1.66), both for a ratio >3. Both increases and decreases in anti-dsDNA more than 2-fold compared with the previous visit were associated with increased risk of flare in the fluctuating cohort (adjusted HR 1.33; 95% CI: 1.08, 1.65; P = 0.008) and the persistently positive cohort (adjusted HR 1.36; 95% CI: 1.08, 1.71; P = 0.009). CONCLUSION: Absolute value and change in anti-dsDNA titres predict flares, including in persistently anti-dsDNA positive patients. This indicates that repeat monitoring of dsDNA has value in routine testing.


Subject(s)
Antibodies, Antinuclear , Lupus Erythematosus, Systemic , Humans , DNA , Data Collection , Hematologic Tests
11.
Article in English | MEDLINE | ID: mdl-38460182

ABSTRACT

OBJECTIVES: In SLE, anti-dsDNA can co-occur with autoantibodies against other chromatin components, like histones and nucleosomes. These antibodies induce type-1 interferon production, a hallmark of SLE. We measured antinuclear antibody (ANA) sub-specificities and investigated their associations to inflammatory biomarkers including interferon-regulated chemokines. METHODS: We included 93 Sudanese and 480 Swedish SLE patients and matched controls (N = 104 + 192). Autoantibodies targeting ANA-subspecificites: dsDNA, Sm, Sm/U1RNPcomplex, U1RNP, SSA/Ro52, SSA/Ro60, SSB/La, ribosomal P, PCNA and histones were quantified in all subjects, anti-nucleosome only in the Swedish patients, with a bead-based multiplex immunoassay. Levels of 72 plasma biomarkers were determined with Proximity Extension Assay technique or ELISA. RESULTS: Among Sudanese patients, the investigated antibodies significantly associated with 9/72 biomarkers. Anti-histone antibodies showed the strongest positive correlations with MCP-3 and S100A12 as well as with interferon I-inducible factors MCP-1 and CXCL10. Anti-dsDNA antibodies associated with CXCL10 and S100A12, but in multivariate analyses, unlike anti-histone, associations lost significance.Among Swedish patients, MCP-1, CXCL10, SA100A12 also demonstrated stronger associations to anti-histone and anti-nucleosome antibodies, compared with anti-dsDNA and other ANA sub-specificities. In multiple regression models, anti-histone/nucleosome retained the strongest associations. When excluding anti-histone or anti-nucleosome positive patients, the associations between MCP-1/CXCL10 and anti-dsDNA were lost. In contrast, when excluding anti-dsDNA positive patients, associations with anti-histone and anti-nucleosome remained significant. CONCLUSION: In two cohorts of different ethnical origin, autoantibodies targeting chromatin correlate stronger with IFN-induced inflammatory biomarkers than anti-dsDNA or other ANA sub-specificities. Our results suggest that anti-histone/nucleosome autoantibodies may be main drivers of type-1 interferon activity in SLE.

12.
Rheumatology (Oxford) ; 63(1): 149-157, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37086435

ABSTRACT

OBJECTIVES: Nasal, paranasal sinus and mucosal disorders are common symptoms in autoimmune rheumatic diseases. Soft tissue changes and fluid accumulation in the osteomeatal complexes and paranasal sinuses manifest as opaqueness on radiological images which can be assessed using visual scoring and computational methods on CT scans, but their results do not always correlate. Using MRI, we investigate the applicability of different image analysis methods in SLE. METHODS: We assessed paranasal sinus opaqueness on MRI from 51 SLE patients, using three visual scoring systems and expert-delineated computational volumes, and examined their association with markers of disease activity, inflammation, endothelial dysfunction and common small vessel disease (SVD) indicators, adjusting for age and sex-at-birth. RESULTS: The average paranasal sinus volume occupation was 4.55 (6.47%) [median (interquartile range) = 0.67 (0.25-2.65) ml], mainly in the maxillary and ethmoid sinuses. It was highly correlated with Lund-Mackay (LM) scores modified at 50% opaqueness cut-off (Spearman's ρ: 0.71 maxillary and 0.618 ethmoids, P < 0.001 in all), and with more granular variations of the LM system. The modified LM scores were associated with SVD scores (0: B = 5.078, s.e. = 1.69, P = 0.0026; 2: B = -0.066, s.e. = 0.023, P = 0.0045) and disease activity (anti-dsDNA: B = 4.59, s.e. = 2.22, P = 0.045; SLEDAI 3-7: 2.86 < B < 4.30; 1.38 < s.e. < 1.63; 0.0083 ≤ P ≤ 0.0375). Computationally derived percent opaqueness yielded similar results. CONCLUSION: In patients with SLE, MRI computational assessment of sinuses opaqueness and LM scores modified at a 50% cut-off may be useful tools in understanding the relationships among paranasal sinus occupancy, disease activity and SVD markers.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Paranasal Sinuses , Sinusitis , Humans , Chronic Disease , Paranasal Sinuses/diagnostic imaging , Paranasal Sinuses/pathology , Magnetic Resonance Imaging , Autoimmune Diseases/pathology , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnostic imaging , Lupus Erythematosus, Systemic/pathology
13.
Brain Behav Immun ; 121: 29-42, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39025416

ABSTRACT

Pain is often one of the initial indicators of a viral infection, yet our understanding of how viruses induce pain is limited. Immune cells typically recognize viral nucleic acids, which activate viral receptors and signaling, leading to immunity. Interestingly, these viral receptors and signals are also present in nociceptors and are associated with pain. Here, we investigate the response of nociceptors to nucleic acids during viral infections, specifically focusing on the role of the viral signal, Stimulator of Interferon Genes (STING). Our research shows that cytosolic double-stranded DNA (dsDNA) from viruses, like herpes simplex virus 1 (HSV-1), triggers pain responses through STING expression in nociceptors. In addition, STING agonists alone can elicit pain responses. Notably, these responses involve the direct activation of STING in nociceptors through TRPV1. We also provided a proof-of-concept showing that STING and TRPV1 significantly contribute to the mechanical hypersensitivity induced by HSV-1 infection. These findings suggest that STING could be a potential therapeutic target for relieving pain during viral infections.

14.
Lupus ; 33(9): 986-997, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853349

ABSTRACT

OBJECTIVES: The predominant determinant of an unfavorable prognosis among Systemic Lupus Erythematosus (SLE) patients resides in the irreversible organ damage. This prospective cohort study aimed to identify the additional value of anti-nucleosome antibodies on organ damage accumulation in SLE patients. METHODS: Based on the Chinese SLE Treatment and Research group (CSTAR) registry, demographic characteristics, autoantibodies profiles, and clinical manifestations were collected at baseline. Follow-up data were collected by reviewing clinical records. RESULTS: Of 2481 SLE patients with full follow-up data, 663 (26.7%) were anti-nucleosome antibodies positive and 1668 (68.0%) were anti-dsDNA antibodies positive. 764 (30.8%) patients developed new organ damage during a mean follow-up of 4.31 ± 2.60 years. At baseline, patients with positive anti-nucleosome antibodies have a higher rate of lupus nephritis (50.7% vs 36.2%, p < .001). According to the multivariable Cox regression analysis, both anti-nucleosome (HR = 1.30, 95% CI, 1.09-1.54, p < .001) and anti-dsDNA antibodies (HR=1.68, 95% CI, 1.38-2.05, p < .001) were associated with organ damage accumulation. Anti-nucleosome (HR = 2.51, 95% CI, 1.81-3.46, p < .001) and anti-dsDNA antibodies (HR = 1.69, 95% CI, 1.39-2.06, p < .001) were independent predictors for renal damage. Furthermore, the combination of the two antibodies can provide more accurate information about renal damage in overall SLE patients (HR = 3.19, 95% CI, 2.49-4.10, p < .001) and patients with lupus nephritis at baseline (HR = 2.86, 95% CI, 2.29-3.57, p < .001). CONCLUSION: Besides anti-dsDNA antibodies, anti-nucleosome antibodies can also provide information about organ damage accrual during follow-up. The ability of co-positivity of anti-nucleosome and anti-dsDNA antibodies in predicting renal damage may lead to additional benefits in the follow-up of these patients.


Subject(s)
Antibodies, Antinuclear , Lupus Erythematosus, Systemic , Lupus Nephritis , Nucleosomes , Humans , Female , Male , Adult , Nucleosomes/immunology , Prospective Studies , Antibodies, Antinuclear/immunology , Antibodies, Antinuclear/blood , Lupus Nephritis/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/complications , Middle Aged , Prognosis , Proportional Hazards Models , Young Adult , Autoantibodies/blood , Autoantibodies/immunology , Registries , China , Kidney/immunology , Kidney/pathology , Multivariate Analysis , Follow-Up Studies
15.
Acta Pharmacol Sin ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822084

ABSTRACT

Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.

16.
Rheumatol Int ; 44(7): 1185-1196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38512479

ABSTRACT

Rhupus, in the broad sense, refers to an overlap between rheumatoid arthritis (RA) and lupus. However, there is a paucity of data on the appropriate diagnostic/classification criteria that should be used to define rhupus. Hence, we undertook this narrative review to analyze the clinical characteristics, radiology, and treatment with a focus on diagnostic challenges and defining features of rhupus. The databases of Medline/PubMed, Scopus, and DOAJ were searched for relevant articles using the following keywords: ("Rhupus"), ("lupus" AND "erosive" AND "arthritis"), and ("lupus" AND "rheumatoid arthritis" AND "overlap"). Studies have used a variety of classification criteria for rhupus of which a combination of the latest classification criteria for RA and lupus along with positive anti-cyclic citrullinated peptide, anti-Smith, and anti-dsDNA antibodies seem most relevant. The majority of rhupus cohorts report the onset of the disease as RA (two-thirds of rhupus patients) followed by the development of features of lupus at an average interval of 3-11.3 years. The radiographic features and distribution of erosions are similar to RA. However, ultrasonography and MRI reveal erosions in pure lupus related arthritis as well. This makes the reliability of radiologic tools for the evaluation of rhupus supportive at the most. Extra-articular features in rhupus are mild with major organ involvement in the form of neuropsychiatric lupus and lupus nephritis being rare. We have further discussed the fallacies of the various classification criteria and proposed a theme for classifying rhupus which needs to be tested and validated in future studies. Our current state of understanding supports rhupus as an overlap of SLE and RA with articular disease similar to RA with the extra-articular disease being milder than SLE. Developing standardized classification criteria for rhupus will help in the early diagnosis and prevention of articular damage in patients with rhupus.


Subject(s)
Arthritis, Rheumatoid , Lupus Erythematosus, Systemic , Humans , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/classification , Lupus Erythematosus, Systemic/classification , Lupus Erythematosus, Systemic/diagnostic imaging , Diagnosis, Differential , Predictive Value of Tests , Radiography , Prognosis
17.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673811

ABSTRACT

Despite conventional therapy, lupus nephritis (LN) remains a significant contributor to short- and long-term morbidity and mortality. B cell abnormalities and the production of autoantibodies against nuclear complexes like anti-dsDNA are recognised as key players in the pathogenesis of LN. To address the challenges of chronic immunosuppression associated with current therapies, we have engineered T cells to express chimeric autoantibody receptors (DNA-CAART) for the precise targeting of B cells expressing anti-dsDNA autoantibodies. T cells from LN patients were transduced using six different CAAR vectors based on their antigen specificity, including alpha-actinin, histone-1, heparan sulphate, or C1q. The cytotoxicity, cytokine production, and cell-cell contact of DNA-CAART were thoroughly investigated in co-culture experiments with B cells isolated from patients, both with and without anti-dsDNA positivity. The therapeutic effects were further evaluated using an in vitro immune kidney LN organoid. Among the six proposed DNA-CAART, DNA4 and DNA6 demonstrated superior selectively cytotoxic activity against anti-dsDNA+ B cells. Notably, DNA4-CAART exhibited improvements in organoid morphology, apoptosis, and the inflammatory process in the presence of IFNα-stimulated anti-dsDNA+ B cells. Based on these findings, DNA4-CAART emerge as promising candidates for modulating autoimmunity and represent a novel approach for the treatment of LN.


Subject(s)
Autoantigens , B-Lymphocytes , Lupus Nephritis , T-Lymphocytes , Humans , Lupus Nephritis/immunology , Lupus Nephritis/therapy , Lupus Nephritis/pathology , B-Lymphocytes/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Autoantigens/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/genetics , Female , Antibodies, Antinuclear/immunology , Autoantibodies/immunology , Adult , Male , Cytokines/metabolism
18.
Br J Haematol ; 202(3): 550-565, 2023 08.
Article in English | MEDLINE | ID: mdl-37226519

ABSTRACT

Lymphocyte proliferation and tumourigenesis are dependent on nucleotide synthesis to support DNA, RNA and phospholipid synthesis. Here, we identified that reprogramming of nucleotide metabolism as an important factor divides mantle cell lymphoma (MCL) into two groups with different transcriptional signalling pathways and varying prognoses. We establish a nucleotide metabolism-related prognostic model that includes six genes with different regression coefficients, which significantly predicts prognosis for MCL patients (p < 0.0001). Of these six genes, de novo CTP synthesis pathway enzyme CTPS1 whose inhibitor (STP938) is already in clinical trials for relapsed/refractory lymphomas (NCT05463263) has the highest regression coefficient. An increase in CTPS1 expression predicts adverse overall survival and progression-free survival with independent prognostic significance in 105 primary MCL samples and GEO database (GSE93291). CRISPR CTPS1 knockout causes DNA damage and proliferation defects in MCL. Additionally, MYC positively regulates CTPS1 expression, and TP53-aberrant and ibrutinib-resistant MCL cells also rely on cytidine metabolism. Furthermore, besides the obvious decreased CTP pool caused by CTPS1 deficiency, CTPS1 inhibition may also induce immune-related responses via activating dsDNA-cGAS-STING pathway, which plays a crucial role in impeding tumour growth in MCL patients.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/drug therapy , Drug Resistance, Neoplasm , Cytidine/therapeutic use , Nucleotidyltransferases , Nucleotides/therapeutic use
19.
J Virol ; 96(24): e0117322, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36448798

ABSTRACT

White spot syndrome virus (WSSV) is a major cause of disease in shrimp cultures worldwide. The infection process of this large circular double-stranded DNA virus has been well studied, but its entry mechanism remains controversial. The major virion envelope protein VP28 has been implicated in oral and systemic viral infection in shrimp. However, genetic analysis of viral DNA has shown the presence of a few genes related to proteins of per os infectivity factor (PIF) complex in baculoviruses. This complex is essential for the entry of baculoviruses, large terrestrial circular DNA viruses, into the midgut epithelial cells of insect larvae. In this study, we aimed to determine whether a PIF complex exists in WSSV, the components of this complex, whether it functions as an oral infectivity complex in shrimp, and the biochemical properties that contribute to its function in a marine environment. The results revealed a WSSV PIF complex (~720 kDa) comprising at least eight proteins, four of which were not identified as PIF homologs: WSV134, VP124 (WSV216), WSSV021, and WSV136. WSV134 is suggested to be a PIF4 homolog due to predicted structural similarity and amino acid sequence identity. The WSSV PIF complex is resistant to alkali, proteolysis, and high salt, properties that are important for maintaining infectivity in aquatic environments. Oral infection can be neutralized by PIF-specific antibodies but not by VP28-specific antibodies. These results indicate that the WSSV PIF complex is critical for WSSV entry into shrimp; the complex's evolutionary significance is also discussed. IMPORTANCE White spot disease, caused by the white spot syndrome virus (WSSV), is a major scourge in cultured shrimp production facilities worldwide. This disease is only effectively controlled by sanitation. Intervention strategies are urgently needed but are limited by a lack of appropriate targets. Our identification of a per os infectivity factor (PIF) complex, which is pivotal for the entry of WSSV into shrimp, could provide new targets for antibody- or dsRNA-based intervention strategies. In addition, the presence of a PIF complex with at least eight components in WSSV, which is ancestrally related to the PIF complex of invertebrate baculoviruses, suggests that this complex is structurally and functionally conserved in disparate virus taxa.


Subject(s)
Penaeidae , Virulence Factors , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/genetics , White spot syndrome virus 1/pathogenicity , Virulence Factors/genetics , Virus Internalization
20.
Article in English | MEDLINE | ID: mdl-38048608

ABSTRACT

OBJECTIVES: To assess the association between serological activity (SA) and clinical inactivity in SLE and to investigate whether SA predicts flare after clinically inactive disease (CID) and remission. METHODS: Longitudinal data of children from 3 paediatric rheumatology referral centres were retrospectively reviewed. CID was defined as clinical SLEDAI = 0 in patients with a prednisolone dose < 15 mg/day. A modified DORIS remission on treatment criteria was used to determine remission. RESULTS: Of the 124 patients included, 89.5% displayed SA at onset. Through follow-up, the rate of SA decreased to 43.3% at first CID and 12.1% at remission. Among patients with CID, 24 (20.7%) experienced a moderate to severe flare before the attainment ofremission. While previous proliferative lupus nephritis (OR : 10.2, p: 0.01) and autoimmune haemolytic anaemia (OR : 6.4, p: 0.02) were significantly associated with an increased odds of flare after CID, SA at CID was not associated with flare. In contrast, 21 (19.6%) patients experienced a flare in a median of 18 months after remission. Hypocomplementemia (OR : 9.8, p: 0.02) and a daily hydroxychloroquine dose < 5 mg/kg (OR : 5.8, p: 0.02) at remission significantly increased the odds of flare. CONCLUSION: SA increases the odds of flare at remission but not at CID. Suboptimal dosing of hydroxychloroquine should be avoided, especially in children with SA in remission to lower the risk of flares.

SELECTION OF CITATIONS
SEARCH DETAIL