Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brain Behav Immun ; 119: 36-50, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555991

ABSTRACT

This study aimed to elucidate the opioid mechanisms underlying dexamethasone-induced pain antihypersensitive effects in neuropathic rats. Dexamethasone (subcutaneous and intrathecal) and membrane-impermeable Dex-BSA (intrathecal) administration dose-dependently inhibited mechanical allodynia and thermal hyperalgesia in neuropathic rats. Dexamethasone and Dex-BSA treatments increased expression of dynorphin A in the spinal cords and primary cultured microglia. Dexamethasone specifically enhanced dynorphin A expression in microglia but not astrocytes or neurons. Intrathecal injection of the microglial metabolic inhibitor minocycline blocked dexamethasone-stimulated spinal dynorphin A expression; intrathecal minocycline, the glucocorticoid receptor antagonist Dex-21-mesylate, dynorphin A antiserum, and κ-opioid receptor antagonist GNTI completely blocked dexamethasone-induced mechanical antiallodynia and thermal antihyperalgesia. Additionally, dexamethasone elevated spinal intracellular cAMP levels, leading to enhanced phosphorylation of PKA, p38 MAPK and CREB. The specific adenylate cyclase inhibitor DDA, PKA inhibitor H89, p38 MAPK inhibitor SB203580 and CREB inhibitor KG-501 completely blocked dexamethasone-induced anti-neuropathic pain and increased microglial dynorphin A exprression. In conclusion, this study reveal that dexamethasone mitigateds neuropathic pain through upregulation of dynorphin A in spinal microglia, likely involving the membrane glucocorticoid receptor/cAMP/PKA/p38 MAPK/CREB signaling pathway.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Dexamethasone , Dynorphins , Microglia , Neuralgia , Rats, Sprague-Dawley , Signal Transduction , Spinal Cord , p38 Mitogen-Activated Protein Kinases , Animals , Microglia/metabolism , Microglia/drug effects , Cyclic AMP/metabolism , Spinal Cord/metabolism , Spinal Cord/drug effects , Male , Neuralgia/metabolism , Neuralgia/drug therapy , Dynorphins/metabolism , Rats , Cyclic AMP-Dependent Protein Kinases/metabolism , Dexamethasone/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hyperalgesia/metabolism , Hyperalgesia/drug therapy
2.
Front Neuroendocrinol ; 64: 100968, 2022 01.
Article in English | MEDLINE | ID: mdl-34808231

ABSTRACT

Accumulating findings during the past decades have demonstrated that the hypothalamic arcuate kisspeptin neurons are supposed to be responsible for pulsatile release of gonadotropin-releasing hormone (GnRH) to regulate gametogenesis and steroidogenesis in mammals. The arcuate kisspeptin neurons express neurokinin B (NKB) and dynorphin A (Dyn), thus, the neurons are also referred to as KNDy neurons. In the present article, we mainly focus on the cellular and molecular mechanisms underlying GnRH pulse generation, that is focused on the action of NKB and Dyn and an interaction between KNDy neurons and astrocytes to control GnRH pulse generation. Then, we also discuss the factors that modulate the activity of KNDy neurons and consequent pulsatile GnRH/LH release in mammals.


Subject(s)
Arcuate Nucleus of Hypothalamus , Gonadotropin-Releasing Hormone , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Dynorphins/metabolism , Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Mammals , Neurokinin B/metabolism , Neurons/metabolism
3.
Gen Comp Endocrinol ; 317: 113974, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34973969

ABSTRACT

Kisspeptin (KISS), a key hormone involved in the regulation of the hypothalamic-pituitary-ovarian (HPO) axis, has been localized in the anteroventral periventricular (AVPV) nucleus and the neighboring rostral periventricular nucleus (PeVN), and in the arcuate (ARC) nucleus of the mammalian hypothalamus. In the ARC, the KISS neurons that co-express neurokinin B (NKB) and dynorphin A (Dyn) are named KNDy cells. The South American plains vizcacha is a rodent with peculiar reproductive traits. Around mid-pregnancy, vizcacha shows the reactivation of its HPO axis with the pulsatile release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH), an essential event for the success of gestation. Considering the role of KISS system in GnRH modulation, the aim of this work was to study their neuroanatomical distribution in adult vizcachas. AVPV showed sexual dimorphism with a significant smaller area in males (t-Test, p < 0.05), and KISS immunoreactivity was detected in somas and varicosities homogenously distributed in the AVPV with a concordant sex-related expression pattern. NKB and Dyn expression was also observed in cytoplasm of neurons scattered in the AVPV. Three subpopulations of neurons were detected in the AVPV: neurons expressing Dyn and NKB (DyNK cells), neurons expressing KISS and NKB (KiNK cells), and single NKB expressing neurons. Strikingly, KISS and Dyn were always expressed in different cells. In addition, in the ARC nucleus, KNDy cells were detected. On the other hand, KISS and GnRH expression was detected in different subpopulations of neurons, GnRH cells showed KISS receptor (KISSR or GPR-54) expression, and KISS immunoreactive afferent contacts were detected making close appositions onto somas and dendrites of GnRH cells. These results show similarities and differences between the KISS system in the hypothalamus of the vizcacha and other mammals, and constitute crucial observations about KISS and GnRH relation. Considering the peculiarity of HPO axis regulation in this species, the present work provides a neuroanatomical framework for the further elucidation of molecular mechanisms underlying GnRH expression and secretion.


Subject(s)
Gonadotropin-Releasing Hormone , Kisspeptins , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Female , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Kisspeptins/metabolism , Male , Mammals/metabolism , Neurokinin B/metabolism , Pregnancy , South America
4.
Endocr J ; 68(8): 933-941, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-33867395

ABSTRACT

The brain mechanism responsible for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) is important for maintaining reproductive function in mammals. Accumulating evidence suggests that kisspeptin/neurokinin B/dynorphin A (KNDy) neurons in the hypothalamic arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH and subsequent gonadotropin secretion. Dynorphin A (Dyn) and its receptor, kappa-opioid receptor (KOR, encoded by Oprk1), have been shown to be involved in the suppression of pulsatile GnRH/luteinizing hormone (LH) release. On the other hand, it is still unclear whether the inhibitory Dyn signaling affects KNDy neurons or KOR-expressing non-KNDy cells in the ARC or other brain regions. We therefore aimed to clarify the role of ARC-specific Dyn-KOR signaling in the regulation of pulsatile GnRH/LH release by the ARC specific cell deletion of KOR-expressing cells using Dyn-conjugated-saporin (Dyn-SAP). Estrogen-primed ovariectomized female rats were administered Dyn-SAP to the ARC. In situ hybridization of Oprk1 showed that ARC Dyn-SAP administration significantly decreased the number of Oprk1-expressing cells in the ARC, but not in the ventromedial hypothalamic nucleus and paraventricular nucleus. The frequency of LH pulses significantly increased in animals bearing the ARC Dyn-SAP administration. The number of Kiss1-expressing cells in the ARC was not affected by ARC Dyn-SAP treatment. Dyn-KOR signaling within the ARC seems to mediate the suppression of the frequency of pulsatile GnRH/LH release, and ARC non-KNDy KOR neurons may be involved in the mechanism modulating GnRH/LH pulse generation.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Luteinizing Hormone/blood , Neurons/metabolism , Receptors, Opioid, kappa/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Dynorphins/administration & dosage , Female , Neurons/drug effects , Rats , Rats, Wistar , Saponins/administration & dosage
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502135

ABSTRACT

Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.


Subject(s)
Brain/metabolism , Estrogens/metabolism , Feedback, Physiological , Kisspeptins/metabolism , Ovulation , Animals , Brain/cytology , Brain/physiology , Female , Humans , Neurons/metabolism , Neurons/physiology , Receptors, Estrogen/metabolism , Signal Transduction
6.
Int J Mol Sci ; 22(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917474

ABSTRACT

There exist three main types of endogenous opioid peptides, enkephalins, dynorphins and ß-endorphin, all of which are derived from their precursors. These endogenous opioid peptides act through opioid receptors, including mu opioid receptor (MOR), delta opioid receptor (DOR) and kappa opioid receptor (KOR), and play important roles not only in analgesia, but also many other biological processes such as reward, stress response, feeding and emotion. The MOR gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms. One type of these splice variants, the full-length 7 transmembrane (TM) Carboxyl (C)-terminal variants, has the same receptor structures but contains different intracellular C-terminal tails. The pharmacological functions of several endogenous opioid peptides through the mouse, rat and human OPRM1 7TM C-terminal variants have been considerably investigated together with various mu opioid ligands. The current review focuses on the studies of these endogenous opioid peptides and summarizes the results from early pharmacological studies, including receptor binding affinity and G protein activation, and recent studies of ß-arrestin2 recruitment and biased signaling, aiming to provide new insights into the mechanisms and functions of endogenous opioid peptides, which are mediated through the OPRM1 7TM C-terminal splice variants.


Subject(s)
Alternative Splicing , Opioid Peptides/metabolism , RNA Precursors/metabolism , Receptors, Opioid, mu/metabolism , Animals , Humans , Protein Isoforms/metabolism
7.
J Neuroinflammation ; 17(1): 13, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924228

ABSTRACT

BACKGROUND: Isotalatizidine is a representative C19-diterpenoid alkaloid extracted from the lateral roots of Aconitum carmichaelii, which has been widely used to treat various diseases on account of its analgesic, anti-inflammatory, anti-rheumatic, and immunosuppressive properties. The aim of this study was to evaluate the analgesic effect of isotalatizidine and its underlying mechanisms against neuropathic pain. METHODS: A chronic constrictive injury (CCI)-induced model of neuropathic pain was established in mice, and the limb withdrawal was evaluated by the Von Frey filament test following isotalatizidine or placebo administration. The signaling pathways in primary or immortalized microglia cells treated with isotalatizidine were analyzed by Western blotting and immunofluorescence. RESULTS: Intrathecal injection of isotalatizidine attenuated the CCI-induced mechanical allodynia in a dose-dependent manner. At the molecular level, isotalatizidine selectively increased the phosphorylation of p38 and ERK1/2, in addition to activating the transcription factor CREB and increasing dynorphin A production in cultured primary microglia. However, the downstream effects of isotalatizidine were abrogated by the selective ERK1/2 inhibitor U0126-EtOH or CREB inhibitor of KG-501, but not by the p38 inhibitor SB203580. The results also were confirmed in in vivo experiments. CONCLUSION: Taken together, isotalatizidine specifically activates the ERK1/2 pathway and subsequently CREB, which triggers dynorphin A release in the microglia, eventually leading to its anti-nociceptive action.


Subject(s)
Aconitine/analogs & derivatives , Analgesics/pharmacology , Dynorphins/biosynthesis , Microglia/drug effects , Neuralgia/metabolism , Aconitine/pharmacology , Animals , Chronic Pain/metabolism , Cyclic AMP Response Element-Binding Protein/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dynorphins/drug effects , MAP Kinase Signaling System/drug effects , Mice , Microglia/metabolism , Signal Transduction/drug effects
8.
J Reprod Dev ; 65(5): 397-406, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31155522

ABSTRACT

Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70-80 g by 49 days of age. Then, animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus gonadotropin secretion and follicular development in female rats.


Subject(s)
Animal Feed , Enkephalins/metabolism , Kisspeptins/metabolism , Protein Precursors/metabolism , Sexual Maturation , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Brain/pathology , Female , Food Deprivation , Growth Disorders/physiopathology , Hypothalamus, Anterior/metabolism , Luteinizing Hormone/metabolism , Neurokinin B/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , Rats , Rats, Wistar , Uterus/metabolism
9.
Am J Physiol Regul Integr Comp Physiol ; 314(5): R716-R723, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29341829

ABSTRACT

Amphibian neuromuscular junctions (NMJs) become relatively more silent during the dry winter season in Australia. During the dry, calcium sensitivity is reduced, whereas calcium dependence remains unchanged. Endogenous opioid peptides play an important role in the regulation of the physiological functions of active and dormant vertebrates. Previous findings suggest that dynorphin-A is more potent than other opiates in decreasing evoked neurotransmission in amphibian NMJs. Dynorphin-A has been shown not to alter the amplitude or the frequency of miniature quantal neurotransmitter release. In the present study, we report that dynorphin-A exerted a more pronounced inhibitory effect on evoked neurotransmitter release during the dry (hibernating period) when compared with the wet (active period) season. Dynorphin-A increased the frequency and decreased the amplitude of miniature neurotransmitter release only at relatively high concentration during the dry season. In the present study, we propose that dynorphin-A suppresses evoked neurotransmitter release and thus contraction of skeletal muscles, while allowing subthreshold activation of the NMJ by miniature neurotransmission, thus preventing any significant neuromuscular remodeling. The inhibitory effect of dynorphin-A on evoked transmitter release is reduced by increasing the extracellular calcium concentration.


Subject(s)
Amphibian Proteins/metabolism , Bufo marinus/metabolism , Climate , Dynorphins/metabolism , Hibernation , Muscle Contraction , Muscle, Skeletal/innervation , Neuromuscular Junction/metabolism , Synaptic Transmission , Amphibian Proteins/pharmacology , Animals , Calcium/metabolism , Calcium Signaling , Dynorphins/pharmacology , Electric Stimulation , Miniature Postsynaptic Potentials , Muscle Contraction/drug effects , Neuromuscular Junction/drug effects , Synaptic Transmission/drug effects
10.
Bioorg Med Chem ; 26(6): 1157-1161, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29273415

ABSTRACT

Kappa (κ) opioid receptor selective antagonists are useful pharmacological tools in studying κ opioid receptors and have potential to be used as therapeutic agents for the treatment of a variety of diseases including mood disorders and drug addiction. Arodyn (Ac[Phe1-3,Arg4,d-Ala8]Dyn A-(1-11)NH2) is a linear acetylated dynorphin A (Dyn A) analog that is a potent and selective κ opioid receptor antagonist (Bennett et al. J Med Chem 2002;45:5617-5619) and prevents stress-induced reinstatement of cocaine-seeking behavior following central administration (Carey et al. Eur J Pharmacol 2007;569:84-89). To restrict its conformational mobility, explore possible bioactive conformations and potentially increase its metabolic stability we synthesized cyclic arodyn analogs on solid phase utilizing a novel ring-closing metathesis (RCM) reaction involving allyl-protected Tyr (Tyr(All)) residues. This approach preserves the aromatic functionality and directly constrains the side chains of one or more of the Phe residues. The novel cyclic arodyn analog 4 cyclized between Tyr(All) residues incorporated in positions 2 and 3 exhibited potent κ opioid receptor antagonism in the [35S]GTPγS assay (KB = 3.2 nM) similar to arodyn. Analog 3 cyclized between Tyr(All) residues in positions 1 and 2 also exhibited nanomolar κ opioid receptor antagonist potency (KB = 27.5 nM) in this assay. These are the first opioid peptides cyclized via RCM involving aromatic residues, and given their promising pharmacological activity represent novel lead peptides for further exploration.


Subject(s)
Analgesics, Opioid/chemical synthesis , Drug Design , Dynorphins/chemistry , Tyrosine/chemistry , Amino Acid Sequence , Analgesics, Opioid/chemistry , Analgesics, Opioid/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclization , Dynorphins/chemical synthesis , Dynorphins/metabolism , Protein Binding , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, kappa/metabolism , Structure-Activity Relationship
11.
Brain Behav Immun ; 62: 151-161, 2017 May.
Article in English | MEDLINE | ID: mdl-28126501

ABSTRACT

We show here that the intraplantar administration of CCL5 in mice produces hyperalgesia at low doses but activates compensatory antinociceptive mechanisms at doses slightly higher. Thus, the injection of 3-10ng of CCL5 evoked thermal hyperalgesia through the activation of CCR1 and CCR5 receptors, as demonstrated by the inhibitory effect exerted by the selective antagonists J113863 (0.01-0.1µg) and DAPTA (0.3-3µg), respectively. The prevention of this hyperalgesia by diclofenac (1-10µg), the inhibitors of COX-1 SC-560 (0.1-1µg) or COX-2 celecoxib (1-5µg), the TRPV1 antagonist capsazepine (0.03-0.3µg) or the TRPA1 antagonist HC030031 (10-50µg) demonstrates the involvement of prostaglandin synthesis and TRP sensitization in CCL5-evoked hyperalgesia. Doses of CCL5 higher than 17µg did not evoke hyperalgesia. However, this effect was restored by the administration of naloxone-methiodide (5µg), nor-binaltorphimine (10mg/kg) or an anti-dynorphin A antibody (0.62-2.5ng). The administration of 30ng of CCL5 also induced hyperalgesia in mice with reduced number of circulating white blood cells in response to cyclophosphamide or with selective neutrophil depletion induced by an anti-Ly6G antibody. In fact, the number of neutrophils present in paws treated with 30ng of CCL5 was greater than in paws receiving the administration of the hyperalgesic dose of 10ng. Finally, the expression of the endogenous opioid peptide dynorphin A was demonstrated by double immunofluorescence assays in these neutrophils attracted by CCL5. These results support previous data describing the hyperalgesic properties of CCL5 and constitute the first indication that a chemokine of the CC group can activate endogenous analgesic mechanisms.


Subject(s)
Chemokine CCL5 , Hyperalgesia/chemically induced , Receptors, CCR1/metabolism , Receptors, CCR5/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Celecoxib/administration & dosage , Celecoxib/therapeutic use , Cyclooxygenase 2 Inhibitors/administration & dosage , Cyclooxygenase 2 Inhibitors/therapeutic use , Diclofenac/administration & dosage , Diclofenac/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Male , Mice , Pain Measurement , Pain Threshold/drug effects
12.
J Neuroinflammation ; 13(1): 214, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27577933

ABSTRACT

BACKGROUND: Aconiti brachypodi Radix (Xue-shang-yi-zhi-hao) has been prescribed to manage chronic pain, arthritis, and traumatic injuries. Bullatine A, a C20-diterpenoid alkaloid, is one of its principle effective compounds. This study aimed to investigate the anti-hypersensitivity of bullatine A in a variety of rat pain models and explore its mechanisms of action. METHODS: Rat neuropathic pain, inflammatory pain, diabetic neuropathic pain, and bone cancer pain models were used. Dynorphin A and pro-inflammatory cytokines were measured in the spinal cord and cultured primary microglia. Double immunofluorescence staining of dynorphin A and glial and neuronal cellular markers was also measured in the spinal cord. RESULTS: Subcutaneous and intrathecal injection of bullatine A dose-dependently attenuated spinal nerve ligation-, complete Freud's adjuvant-, diabetes-, and bone cancer-induced mechanical allodynia and thermal hyperalgesia, with the efficacies of 45-70 % inhibition, and half-effective doses of 0.9-1.9 mg/kg for subcutaneous injection. However, bullatine A was not effective in blocking acute nociceptive response in the normal condition. Bullatine A specifically stimulated dynorphin A expression in microglia in the spinal cord in vivo and cultured primary microglia in vitro; the stimulatory effects were completely inhibited by the microglial inhibitor minocycline. In contrast, bullatine A did not have an inhibitory effect on peripheral nerve injury- or lipopolysaccharide-induced pro-inflammatory cytokine expression. The spinal anti-allodynic effects of bullatine A were entirely blocked by intrathecal injection of minocycline, the specific dynorphin A antiserum, and the selective k-opioid receptor antagonist. CONCLUSIONS: We, for the first time, demonstrate that bullatine A specifically attenuates pain hypersensitivity, regardless of the pain models employed. The results also suggest that stimulation of spinal microglial dynorphin A expression mediates bullatine A anti-nociception in pain hypersensitivity conditions.


Subject(s)
Alkaloids/therapeutic use , Disease Models, Animal , Diterpenes/therapeutic use , Dynorphins/biosynthesis , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Spinal Cord/metabolism , Alkaloids/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Animals, Newborn , Cells, Cultured , Diterpenes/pharmacology , Dose-Response Relationship, Drug , Dynorphins/genetics , Female , Gene Expression , Injections, Subcutaneous , Male , Neuralgia/drug therapy , Neuralgia/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar , Spinal Cord/drug effects
13.
Bioorg Med Chem Lett ; 26(22): 5513-5516, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27756562

ABSTRACT

Nerve injury and inflammation cause up-regulation of an endogenous opioid ligand, dynorphin A (Dyn A), in the spinal cord resulting in hyperalgesia via the interaction with bradykinin receptors (BRs). This is a non-opioid neuroexcitatory effect that cannot be blocked by opioid antagonists. Our systematic structure-activity relationships study on Dyn A identified lead ligands 1 and 4, along with the key structural feature (i.e. amphipathicity) for the BRs. However, the ligands showed very low metabolic stability in plasma (t1/2 <1h) and therefore, in order to improve their metabolic stabilities with retained biological activities, various modifications were performed. Cyclization of ligand 4 afforded a cyclic Dyn A analogue 5 that retained the same range of binding affinity as the linear ligand with improved metabolic stability (t1/2 >5h) and therefore possesses the potential as a pharmacophoric scaffold to be utilized for drug development.


Subject(s)
Analgesics, Non-Narcotic/chemistry , Analgesics, Non-Narcotic/pharmacology , Bradykinin Receptor Antagonists/chemistry , Bradykinin Receptor Antagonists/pharmacology , Dynorphins/chemistry , Dynorphins/pharmacology , Receptors, Bradykinin/metabolism , Amino Acid Sequence , Animals , Cyclization , Ligands , Rats , Structure-Activity Relationship
14.
Med Res Rev ; 35(3): 464-519, 2015 May.
Article in English | MEDLINE | ID: mdl-24894913

ABSTRACT

The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.


Subject(s)
Neuropeptides/chemistry , Peptidomimetics/chemistry , Analgesics, Opioid/chemistry , Angiotensin II/metabolism , Angiotensins/metabolism , Animals , Bradykinin/metabolism , Humans , Kallidin/metabolism , Ligands , Mice , Neuropeptide Y/metabolism , Nociception , Opioid Peptides/chemistry , Peptide Fragments , Peptides , Receptors, Neuropeptide/metabolism , Receptors, Opioid/metabolism , Tachykinins/metabolism , Nociceptin
15.
Bioorg Med Chem Lett ; 25(1): 30-3, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25434001

ABSTRACT

It has been shown that under chronic pain or nerve injury conditions, up-regulated dynorphin A (Dyn A) interacts with bradykinin receptors (BRs) to cause hyperalgesia in the spinal cord. Thus BRs antagonist can modulate hyperalgesia by blocking Dyn A's interaction with the BRs in the central nervous system. In our earlier structure-activity relationship (SAR) study, [des-Arg(7)]-Dyn A-(4-11) 13 was discovered as a minimum pharmacophore for rat brain BRs with its antagonist activity (anti-hyperalgesic effect) in in vivo tests using naïve or injured animals. We have pursued further modification on the [des-Arg(7)]-Dyn A analogues and identified a key insight into the pharmacophore of the rat brain BRs: amphipathicity.


Subject(s)
Brain/drug effects , Brain/metabolism , Dynorphins/chemistry , Dynorphins/metabolism , Receptors, Bradykinin/metabolism , Animals , Dynorphins/pharmacology , Rats , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 24(21): 4976-9, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25282551

ABSTRACT

In our earlier studies, bradykinin receptors (BRs) were identified as a potential target for the neuroexcitatory effects of dynorphin A (Dyn A) in the central nervous system (CNS), and [des-Arg(7)]-Dyn A-(4-11) (6) was discovered as a lead ligand to modulate Dyn A-(2-13) induced neuroexcitatory effects in the CNS as an antagonist. In an effort to gain insights into key structural features of the Dyn A for the BRs, we pursued further structure-activity relationships (SAR) study on the [des-Arg(7)]-Dyn A analogs and confirmed that all of the [des-Arg(7)]-Dyn A analogues showed good binding affinities at the BRs.


Subject(s)
Brain/drug effects , Dynorphins/chemistry , Dynorphins/pharmacology , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacology , Receptors, Bradykinin/metabolism , Animals , Brain/metabolism , Rats , Structure-Activity Relationship
17.
Front Physiol ; 15: 1372944, 2024.
Article in English | MEDLINE | ID: mdl-38911326

ABSTRACT

The neuropeptides kisspeptin, neurokinin B, and dynorphin A are imperative for the pulsatile secretion of gonadotropin-releasing hormone and luteinizing hormone to ultimately regulate reproductive cyclicity. A population of neurons co-expressing these neuropeptides, KNDy neurons, within the arcuate nucleus of the hypothalamus (ARC) are positioned to integrate energy status from afferent neuronal and glial cells. We hypothesized that KNDy-expressing neurons in the ARC of mature ewes are influenced by energy balance. To test this hypothesis, ovary-intact, mature ewes were fed to lose, maintain, or gain body weight and hypothalamic tissue harvested during the luteal phase of the estrous cycle. Fluorescent, multiplex immunohistochemistry with direct antibody conjugation was employed to identify and quantify neurons expressing a single neuropeptide, as well as for the first time report co-expression of kisspeptin, neurokinin B, and dynorphin A protein in the ARC. Previous reports using this population of ewes demonstrated that concentrations of insulin and leptin differed between ewes fed to achieve different body weights and that ewes fed to gain body weight had increased concentrations of progesterone. Moreover, within this population of ewes tanycyte density and cellular penetration into the ARC was increased in ewes fed to gain body weight. Within the current report we have revealed that the number of neurons in the ARC expressing kisspeptin, neurokinin B, and dynorphin A protein was increased in ewes fed to gain body weight. Moreover, the number of KNDy neurons in the ARC expressing all three neuropeptides within a single neuron was decreased in ewes fed to lose body weight and increased in ewes fed to gain body weight when compared to ewes fed to maintain body weight. The cumulative findings of this experimental model suggest that expression of kisspeptin, neurokinin B, and dynorphin A protein in the ARC during the luteal phase of the estrous cycle are influenced by energy balance-induced alterations in circulating concentrations of progesterone that drive changes in morphology and density of tanycytes to ultimately regulate central perception of global energy status. Moreover, these results demonstrate that changes in KNDy neurons within the ARC occur as an adaptation to energy balance, potentially regulated divergently by metabolic milieu via proopiomelanocortin afferents.

18.
J Neuroendocrinol ; 35(9): e13285, 2023 09.
Article in English | MEDLINE | ID: mdl-37232103

ABSTRACT

Uncovering the central mechanism underlying mammalian reproduction is warranted to develop new therapeutic approaches for reproductive disorders in humans and domestic animals. The present study focused on the role of arcuate kisspeptin neurones (also known as KNDy neurones) as an intrinsic gonadotropin-releasing hormone (GnRH) pulse generator, which plays a fundamental role in mammalian reproduction via the stimulation of pituitary gonadotropin synthesis and release and thereby in gametogenesis and steroidogenesis in the gonads of mammals. We also discuss the mechanism that inhibits pulsatile GnRH/gonadotropin release under a negative energy balance, considering that reproductive disorders often occur during malnutrition in humans and livestock.


Subject(s)
Dynorphins , Gonadotropin-Releasing Hormone , Animals , Humans , Gonadotropin-Releasing Hormone/metabolism , Dynorphins/metabolism , Neurokinin B/metabolism , Reproduction/physiology , Neurons/metabolism , Kisspeptins/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Mammals
19.
Neurosci Res ; 188: 75-87, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36368461

ABSTRACT

Panax notoginseng (Chinese ginseng, Sanqi), one of the major ginseng species, has been traditionally used to alleviate different types of chronic pain. The raw P. notoginseng powder is commonly available in China as a non-prescription drug to treat various aliments including arthritic pain. However, strong scientific evidence is needed to illustrate its pain antihypersensitive effects, effective ingredients and mechanism of action. The oral P. notoginseng powder dose-dependently alleviated formalin-induced tonic hyperalgesia, and its total ginsenosides remarkably inhibited neuropathic pain hypersensitivity. Ginsenoside Rb1, the most abundant ginsenoside of P. notoginseng, dose-dependently produced neuropathic pain antihypersensitivity. Conversely, ginsenosides Rg1, Re and notoginseng R1, the other major saponins from P. notoginseng, failed to inhibit formalin-induced tonic pain or mechanical allodynia in neuropathic pain. Ginsenoside Rb1 metabolites ginsenosides Rg3, Compound-K and protopanaxadiol also had similar antineuropathic pain efficacy to ginsenoside Rb1. Additionally, intrathecal ginsenoside Rb1 specifically stimulated dynorphin A expression which was colocalized with microglia but not neurons or astrocytes in the spinal dorsal horn and primary cultured cells. Pretreatment with microglial metabolic inhibitor minocycline, dynorphin A antiserum and specific κ-opioid receptor antagonist GNTI completely blocked Rb1-induced mechanical antiallodynia in neuropathic pain. Furthermore, the specific glucocorticoid receptor (GR) antagonist Dex-21-mesylate (but not GPR30 estrogen receptor antagonist G15) also entirely attenuated ginsenoside Rb1-related antineuropathic pain effects. All these results, for the first time, show that P. notoginseng alleviates neuropathic pain and ginsenoside Rb1 is its principal effective ingredient. Furthermore, ginsenoside Rb1 inhibits neuropathic pain by stimulation of spinal microglial dynorphin A expression following GR activation.


Subject(s)
Ginsenosides , Neuralgia , Panax notoginseng , Ginsenosides/metabolism , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Dynorphins/metabolism , Dynorphins/pharmacology , Dynorphins/therapeutic use , Panax notoginseng/metabolism , Microglia/metabolism , Powders/metabolism , Powders/pharmacology , Powders/therapeutic use , Hyperalgesia/metabolism , Neuralgia/drug therapy
20.
Peptides ; 166: 171026, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37230188

ABSTRACT

Lactational anestrus, characterized by the suppression of pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release, would be a strategic adaptation to ensure survival by avoiding pregnancy during lactation in mammals. In the present article, we first provide a current understanding of the central regulation of reproduction in mammals, i.e., a fundamental role of arcuate kisspeptin neurons in mammalian reproduction by driving GnRH/LH pulses. Second, we discuss the central mechanism inhibiting arcuate Kiss1 (encoding kisspeptin) expression and GnRH/LH pulses during lactation with a focus on suckling stimulus, negative energy balance due to milk production, and the role of circulating estrogen in rats. We also discuss upper regulators that control arcuate kisspeptin neurons in rats during the early and late lactation periods based on the findings obtained by a lactating rat model. Finally, we discuss potential reproductive technology for the improvement of reproductive performance in milking cows.


Subject(s)
Kisspeptins , Lactation , Animals , Cattle , Female , Pregnancy , Rats , Anestrus , Arcuate Nucleus of Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/genetics , Kisspeptins/genetics , Kisspeptins/metabolism , Lactation/genetics , Lactation/physiology , Luteinizing Hormone/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL