ABSTRACT
Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.
Subject(s)
Agricultural Inoculants , Phylogeny , Plant Roots/microbiology , Bacteria/genetics , Enterobacteriaceae , Endophytes/physiologyABSTRACT
BACKGROUND: Compared with aerial plant tissues (such as leaf, stem, and flower), root-associated microbiomes play an indisputable role in promoting plant health and productivity. We thus explored the similarities and differences between rhizosphere and root endosphere bacterial community in the grafted apple system. RESULTS: Using pot experiments, three microhabitats (bulk soil, rhizosphere and root endosphere) samples were obtained from two-year-old apple trees grafted on the four different rootstocks. We then investigated the bacterial community composition, diversity, and co-occurrence network in three microhabitats using the Illumina sequencing methods. Only 63 amplicon sequence variants (ASVs) out of a total of 24,485 were shared in the rhizosphere and root endosphere of apple grafted on the four different rootstocks (M9T337, Malus hupehensis Rehd., Malus robusta Rehd., and Malus baccata Borkh.). The core microbiome contained 8 phyla and 25 families. From the bulk soil to the rhizosphere to the root endosphere, the members of the phylum and class levels demonstrated a significant enrichment and depletion pattern. Co-occurrence network analysis showed the network complexity of the rhizosphere was higher than the root endosphere. Most of the keystone nodes in both networks were classified as Proteobacteria, Actinobacteriota and Bacteroidetes and were low abundance species. CONCLUSION: The hierarchical filtration pattern existed not only in the assembly of root endosphere bacteria, but also in the core microbiome. Moreover, most of the core ASVs were high-abundance species, while the keystone ASVs of the network were low-abundance species.
Subject(s)
Malus , Rhizosphere , Humans , Child, Preschool , Soil Microbiology , Plant Roots/microbiology , Bacteria/genetics , Soil/chemistryABSTRACT
Interactions between plants and microorganisms are pivotal for plant growth and productivity. Several plant molecular mechanisms that shape these microbial communities have been identified. However, the importance of nitric oxide (NO) produced by plants for the associated microbiota remains elusive. Using Arabidopsis thaliana isogenic mutants overproducing NO (nox1, NO overexpression) or down-producing NO (i.e. nia1nia2 impaired in the expression of both nitrate reductases NR1/NIA1 and NR2/NIA2; the 35s::GSNOR1 line overexpressing nitrosoglutathione reductase (GSNOR) and 35s::AHB1 line overexpressing haemoglobin 1 (AHB1)), we investigated how altered NO homeostasis affects microbial communities in the rhizosphere and in the roots, soil microbial activity and soil metabolites. We show that the rhizosphere microbiome was affected by the mutant genotypes, with the nox1 and nia1nia2 mutants causing opposite shifts in bacterial and fungal communities compared with the wild-type (WT) Col-0 in the rhizosphere and roots, respectively. These mutants also exhibited distinctive soil metabolite profiles than those from the other genotypes while soil microbial activity did not differ between the mutants and the WT Col-0. Our findings support our hypothesis that changes in NO production by plants can influence the plant microbiome composition with differential effects between fungal and bacterial communities.
ABSTRACT
A Gram-negative, strictly aerobic bacterial strain was isolated from asymptomatic leaf tissue of a wild yam plant. Optimal growth was observed at 28â°C and pH 7, and catalase and oxidase activities were detected. Polyphasic taxonomic and comparative genomics revealed that strain LMG 33091T represents a novel species of Pseudomonas. The nearest phylogenetic neighbours of strain LMG 33091T were Pseudomonas putida NBRC 14164T (with 99.79â% 16S rRNA sequence identity), Pseudomonas alkylphenolica KL28T (99.28â%) and Pseudomonas asplenii (99.07â%) ATCC 23835T. MALDI-TOF MS analysis yielded distinct profiles for strain LMG 33091T and the nearest phylogenetic neighbours. Average nucleotide identity analyses between the whole genome sequence of strain LMG 33091T and of the type strains of its nearest-neighbour taxa yielded values below the species delineation threshold and thus confirmed that the strain represented a novel Pseudomonas species, for which we propose the name Pseudomonas fortuita sp. nov., with strain LMG 33091T (=GMI12077T= CFBP 9143T) as the type strain.
Subject(s)
Bacterial Typing Techniques , DNA, Bacterial , Dioscorea , Phylogeny , Plant Leaves , Pseudomonas , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Whole Genome Sequencing , Pseudomonas/isolation & purification , Pseudomonas/genetics , Pseudomonas/classification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Plant Leaves/microbiology , Dioscorea/microbiology , Base Composition , Fatty Acids/analysis , Genome, BacterialABSTRACT
AIMS: Climate change is endangering olive groves. Farmers are adapting by exploring new varieties of olive trees and examining the role of microbiomes in plant health.The main objectives of this work were to determine the primary factors that influence the microbiome of olive trees and to analyze the connection between the rhizosphere and endosphere compartments. METHODS AND RESULTS: The rhizosphere and xylem sap microbiomes of two olive tree varieties were characterized by next-generation 16S rRNA amplicon sequencing, and soil descriptors were analyzed. Bacterial communities in the rhizosphere of olive trees were more diverse than those found in the xylem sap. Pseudomonadota, Actinobacteriota, Acidobacteriota, and Bacillota were the dominant phyla in both compartments. At the genus level, only very few taxa were shared between soil and sap bacterial communities. CONCLUSIONS: The composition of the bacteriome was more affected by the plant compartment than by the olive cultivar or soil properties, and a direct route from the rhizosphere to the endosphere could not be confirmed. The large number of plant growth-promoting bacteria found in both compartments provides promising prospects for improving agricultural outcomes through microbiome engineering.
Subject(s)
Bacteria , Microbiota , Olea , RNA, Ribosomal, 16S , Rhizosphere , Soil Microbiology , Xylem , Olea/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Xylem/microbiology , Plant Roots/microbiology , Soil/chemistryABSTRACT
Modulating the soil microbiome by applying microbial inoculants has gained increasing attention as eco-friendly option to improve soil disease suppressiveness. Currently, studies unraveling the interplay of inoculants, root-associated microbiome, and plant response are lacking for apple trees. Here, we provide insights into the ability of Bacillus velezensis FZB42 or Pseudomonas sp. RU47 to colonize apple root-associated microhabitats and to modulate their microbiome. We applied the two strains to apple plants grown in soils from the same site either affected by apple replant disease (ARD) or not (grass), screened their establishment by selective plating, and measured phytoalexins in roots 3, 16, and 28 days post inoculation (dpi). Sequencing of 16S rRNA gene and ITS fragments amplified from DNA extracted 28 dpi from different microhabitat samples revealed significant inoculation effects on fungal ß-diversity in root-affected soil and rhizoplane. Interestingly, only in ARD soil, most abundant bacterial amplicon sequence variants (ASVs) changed significantly in relative abundance. Relative abundances of ASVs affiliated with Enterobacteriaceae were higher in rhizoplane of apple grown in ARD soil and reduced by both inoculants. Bacterial communities in the root endosphere were not affected by the inoculants but their presence was indicated. Interestingly and previously unobserved, apple plants responded to the inoculants with increased phytoalexin content in roots, more pronounced in grass than ARD soil. Altogether, our results indicate that FZB42 and RU47 were rhizosphere competent, modulated the root-associated microbiome, and were perceived by the apple plants, which could make them interesting candidates for an eco-friendly mitigation strategy of ARD. KEY POINTS: ⢠Rhizosphere competent inoculants modulated the microbiome (mainly fungi) ⢠Inoculants reduced relative abundance of Enterobacteriaceae in the ARD rhizoplane ⢠Inoculants increased phytoalexin content in roots, stronger in grass than ARD soil.
Subject(s)
Bacillus , Malus , Microbiota , Phytoalexins , Plant Roots , Pseudomonas , RNA, Ribosomal, 16S , Rhizosphere , Sesquiterpenes , Soil Microbiology , Malus/microbiology , Plant Roots/microbiology , Bacillus/genetics , Bacillus/metabolism , RNA, Ribosomal, 16S/genetics , Sesquiterpenes/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas/physiology , Agricultural Inoculants/physiology , Agricultural Inoculants/genetics , Fungi/genetics , Fungi/classification , Fungi/metabolism , Fungi/physiology , Plant Diseases/microbiology , Plant Diseases/prevention & controlABSTRACT
The root microbiome is composed of distinct epiphytic (rhizosphere) and endophytic (endosphere) habitats. Differences in abiotic and biotic factors drive differences in microbial community diversity and composition between these habitats, though how they shape the interactions among community members is unknown. Here, we coupled a large-scale characterization of the rhizosphere and endosphere bacterial communities of 30 plant species across two watering treatments with co-occurrence network analysis to understand how root habitats and soil moisture shape root bacterial network properties. We used a novel bootstrapping procedure and null network modeling to overcome some of the limitations associated with microbial co-occurrence network construction and analysis. Endosphere networks had elevated node betweenness centrality versus the rhizosphere, indicating greater overall connectivity among core bacterial members of the root endosphere. Taxonomic assortativity was higher in the endosphere, whereby positive co-occurrence was more likely between bacteria within the same phylum while negative co-occurrence was more likely between bacterial taxa from different phyla. This taxonomic assortativity could be driven by positive and negative interactions among members of the same or different phylum, respectively, or by similar niche preferences associated with phylum rank among root inhabiting bacteria across plant host species. In contrast to the large differences between root habitats, drought had limited effects on network properties but did result in a higher proportion of shared co-occurrences between rhizosphere and endosphere networks. Our study points to fundamentally different ecological processes shaping bacterial co-occurrence across root habitats. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Subject(s)
Microbiota , Soil Microbiology , Plant Roots/microbiology , Bacteria/genetics , RhizosphereABSTRACT
The root-associated microbiomes play important roles in plant growth. However, it is largely unknown how wheat variety evolutionary relatedness shapes each subcommunity in the root microbiome and, in turn, how these microbes affect wheat yield and quality. Here we studied the prokaryotic communities associated with the rhizosphere and root endosphere in 95 wheat varieties at regreening and heading stages. The results indicated that the less diverse but abundant core prokaryotic taxa occurred among all varieties. Among these core taxa, we identified 49 and 108 heritable amplicon sequence variants, whose variations in relative abundances across the root endosphere and rhizosphere samples were significantly affected by wheat variety. The significant correlations between phylogenetic distance of wheat varieties and prokaryotic community dissimilarity were only observed in non-core and abundant subcommunities in the endosphere samples. Again, wheat yield was only significantly associated with root endosphere microbiota at the heading stage. Additionally, wheat yield could be predicted using the total abundance of 94 prokaryotic taxa as an indicator. Our results demonstrated that the prokaryotic communities in the root endosphere had higher correlations with wheat yield and quality than those in the rhizosphere; thus, managing root endosphere microbiota, especially core taxa, through agronomic practices and crop breeding, is important for promoting wheat yield and quality.
Subject(s)
Soil Microbiology , Triticum , Triticum/genetics , Phylogeny , Plant Roots/genetics , Plant Breeding , RhizosphereABSTRACT
Epichloë endophytes can not only affect the growth and resistance of the host plant but also change the biotic and abiotic properties of the soil where the host is situated. Here, we used endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis as plant materials, to study the microbial diversity and composition in the host root endosphere and rhizosphere soil under both pot and field conditions. The results showed that endophyte infection did not affect the diversity of either bacteria or fungi in the root zone. There were significant differences in both bacterial and fungal communities between the root endosphere and the rhizosphere, and between the field and the pot, while endophytes only affected root endosphere microbial communities. The bacterial families affected by endophyte infection changed from 29.07% under field conditions to 40% under pot conditions. In contrast, the fungal families affected by endophyte infection were maintained at nearly 50% under both field and pot conditions. That is to say, bacterial communities in the root endosphere were more strongly affected by environmental conditions, and in comparison, the fungal communities were more strongly affected by species specificity. Endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants, only the effect was more obvious in potted plants. Endophyte infection increased the abundance of three fungal families (Thelebolaceae, Herpotrichiellaceae and Trimorphomycetaceae) under both field and potted conditions. In potted plants, endophytes also altered the dominant fungi from pathogenic Pleosporales to saprophytic Chaetomiaceae. Endophyte infection increased the relative abundance of arbuscular mycorrhizal fungi and saprophytic fungi, especially under potted conditions.Overall, endophytes significantly affected the fungal community composition of the host root endosphere in both potted and field plants. Endophytes had a greater impact on root endosphere microorganisms than the rhizosphere, a greater impact on fungal communities than bacteria, and a greater impact on root endosphere microorganisms under potted conditions than at field sites.
Subject(s)
Epichloe , Microbiota , Humans , Endophytes , Poaceae/microbiology , Bacteria , Rhizosphere , Plants/microbiology , Soil , Plant Roots/microbiology , Soil MicrobiologyABSTRACT
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.
Subject(s)
Glycine max , Microbiota , Glycine max/microbiology , Bioprospecting , Bacteria/genetics , Bacteria/metabolism , Agriculture , Soil , Crops, Agricultural , Soil MicrobiologyABSTRACT
AIMS: We aim at understanding the effect of domestication on the endophytic microbiome and metabolome of Salicornia europaea and collecting evidence on the potential role of microbial populations and metabolites in the adaptation of plants to different ecological contexts (wild vs crops). METHODS AND RESULTS: Samples were collected from a natural salt marsh (wild) and an intensive crop field (crop). High-throughput sequencing of the 16S rRNA gene, gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) were used to analyze the endophytic bacterial communities and the metabolite profiles of S. europaea roots, respectively. The elemental analysis of the plant shoots was performed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).Overall, significant differences were found between the microbiome of wild and cultivated plants. The later showed a higher relative abundance of the genera Erythrobacter, Rhodomicrobium, and Ilumatobacter than wild plants. The microbiome of wild plants was enriched in Marinobacter, Marixanthomonas, and Thalassospira. The metabolite profile of crop plants revealed higher amounts of saturated and non-saturated fatty acids and acylglycerols. In contrast, wild plants contained comparatively more carbohydrates and most macroelements (i.e. Na, K, Mg, and Ca). CONCLUSIONS: There is a strong correlation between plant metabolites and the endosphere microbiome of S. europaea. In wild populations, plants were enriched in carbohydrates and the associated bacterial community was enriched in genes related to primary metabolic pathways such as nitrogen metabolism and carbon fixation. The endosphere microbiome of crop plants was predicted to have higher gene counts related to pathogenesis. Crop plants also exhibited higher amounts of azelaic acid, an indicator of exposure to phytopathogens.
Subject(s)
Chenopodiaceae , Domestication , Chromatography, Liquid , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , MetabolomeABSTRACT
AIMS: Roots are key parts of plant material circulation and energy flow, creating two distinct niches for the plant microbiome, such as the rhizosphere and root endosphere, which interact to maintain plant growth and health. In this study, two niches of plant rhizosphere and root endosphere were selected to study the composition and differences of fungi communities in order to better understand how differences in the structure and function of plant fungi communities affect plant health. METHODS AND RESULTS: The community structure, diversity, and ecological function of fungi in the rhizosphere and root endosphere of Cinnamomum migao were studied using high-throughput sequencing techniques, traditional culture methods, and the FUNGuild database. The results of the analysis of alpha diversity showed that the diversity of rhizosphere fungal communities in C. migao was much higher than that of root endosphere communities. Some similarities and differences were noted between the two niche fungal communities, and some fungi had niche preferences. Functional prediction results demonstrated that fungi in the rhizosphere and root endosphere adopt multiple trophic modes, mostly saprophytic fungi. CONCLUSIONS: This study provided a basis for an in-depth understanding of the structural variation, niche differentiation, and function of plant root-related fungal microbiota. We believe that it could provide guidance on the subsequent development of beneficial fungi.
Subject(s)
Cinnamomum , Mycobiome , Rhizosphere , Plant Roots/microbiology , Soil Microbiology , Fungi/genetics , ChinaABSTRACT
Pathogens, especially invasive species, have caused significant global ecological, economic, and social losses in forests. Plant disease research has traditionally focused on direct interactions between plants and pathogens in an appropriate environment. However, recent research indicates that the microbiome can interact with the plant host and pathogens to modulate plant resistance or pathogen pathogenicity, thereby altering the outcome of plant-pathogen interactions. Thus, this presents new opportunities for studying the microbial management of forest diseases. Compared to parallel studies on human and crop microbiomes, research into the forest tree microbiome and its critical role in forest disease progression has lagged. The rapid development of microbiome sequencing and analysis technologies has resulted in the rapid accumulation of a large body of evidence regarding the association between forest microbiomes and diseases. These data will aid the development of innovative, effective, and environmentally sustainable methods for the microbial management of forest diseases. Herein, we summarize the most recent findings on the dynamic structure and composition of forest tree microbiomes in belowground and aboveground plant tissues (i.e., rhizosphere, endosphere, and phyllosphere), as well as their pleiotropic impact on plant immunity and pathogen pathogenicity, highlighting representative examples of biological control agents used to modulate relevant tree microbiomes. Lastly, we discuss the potential application of forest tree microbiomes in disease control as well as their future prospects and challenges.
Subject(s)
Microbiota , Humans , Plants , Rhizosphere , Plant Diseases/prevention & control , Introduced Species , Soil Microbiology , Plant RootsABSTRACT
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Subject(s)
Microbiota , Plant Growth Regulators/physiology , Plants/microbiology , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Microbiota/physiology , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Roots/microbiology , Plant Roots/physiology , Rhizosphere , Salicylic Acid/metabolism , Signal TransductionABSTRACT
Metaproteomics is a powerful tool for the characterization of metabolism, physiology, and functional interactions in microbial communities, including plant-associated microbiota. However, the metaproteomic methods that have been used to study plant-associated microbiota are very laborious and require large amounts of plant tissue, hindering wider application of these methods. We optimized and evaluated different protein extraction methods for metaproteomics of plant-associated microbiota in two different plant species (Arabidopsis and maize). Our main goal was to identify a method that would work with low amounts of input material (40 to 70 mg) and that would maximize the number of identified microbial proteins. We tested eight protocols, each comprising a different combination of physical lysis method, extraction buffer, and cell-enrichment method on roots from plants grown with synthetic microbial communities. We assessed the performance of the extraction protocols by liquid chromatography-tandem mass spectrometry-based metaproteomics and found that the optimal extraction method differed between the two species. For Arabidopsis roots, protein extraction by beating whole roots with small beads provided the greatest number of identified microbial proteins and improved the identification of proteins from gram-positive bacteria. For maize, vortexing root pieces in the presence of large glass beads yielded the greatest number of microbial proteins identified. Based on these data, we recommend the use of these two methods for metaproteomics with Arabidopsis and maize. Furthermore, detailed descriptions of the eight tested protocols will enable future optimization of protein extraction for metaproteomics in other dicot and monocot plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Subject(s)
Arabidopsis , Microbiota , Chromatography, Liquid , Proteome , Mass Spectrometry , PlantsABSTRACT
Diverse host factors drive microbial variation in plant-associated environments, whereas their genetic mechanisms remain largely unexplored. To address this, we coupled the analyses of plant genetics and microbiomes in this study. Using 100 tea plant (Camellia sinensis) cultivars, the microbiomes of rhizosphere, root endosphere and phyllosphere showed clear compartment-specific assembly, whereas the subpopulation differentiation of tea cultivars exhibited small effects on microbial variation in each compartment. Through microbiome genome-wide association studies, we examined the interactions between tea genetic loci and microbial variation. Notably, genes related to the cell wall and carbon catabolism were heavily linked to root endosphere microbial composition, whereas genes related to the metabolism of metal ions and small organic molecules were overrepresented in association with rhizosphere microbial composition. Moreover, a set of tea genetic variants, including the cytoskeleton-related formin homology interacting protein 1 gene, were strongly associated with the ß-diversity of phyllosphere microbiomes, implying their interactions with the overall structure of microbial communities. Our results create a catalogue of tea genetic determinants interacting with microbiomes and reveal the compartment-specific microbiome assembly driven by host genetics.
Subject(s)
Camellia sinensis , Microbiota , Soil Microbiology , Camellia sinensis/genetics , Genome-Wide Association Study , Bacteria , Plant Roots , Microbiota/genetics , TeaABSTRACT
Root endosphere bacterial communities play an essential role in regulating plant growth and resisting nutrient stress. However, there is still a lack of knowledge on the response of root endosphere bacterial communities of rice (Oryza sativa L.) to reduced nitrogen (N). We investigated endosphere bacterial communities and quantified the abundance of functional genes involved in N conversion and ethylene synthesis in the roots of hybrid rice and japonica rice at the jointing stage under the traditional high-yielding N fertilization (THYN) and reduced N fertilization (RN). Results showed different selection preferences of root endosphere bacterial communities of two rice cultivars under THYN treatment. Specifically, δ-proteobacteria and Firmicutes were enriched in the root endosphere of hybrid rice, while γ-proteobacteria and α-proteobacteria were enriched in the root endosphere of japonica rice. Root endosphere bacterial communities of two rice cultivars showed different tolerance to RN, but showed commonalities in the selection of bacteria taxon, such as the massive enrichment of Burkholderia-Caballeronia-Paraburkholderia in the root endosphere. Additionally, the relative abundances of nifH, amoA-archaea, nirS, nirK, and acdS genes in japonica rice roots were higher than those in roots of hybrid rice under THYN treatment. RN significantly increased the relative abundance of acdS gene in roots of hybrid rice, alleviating the decline in above-ground dry matter weight. Our study revealed potential microbiological strategies for rice to cope with insufficient N supply.
Subject(s)
Fertilizers , Oryza , Oryza/genetics , Oryza/microbiology , Nitrogen , Plant Roots/genetics , Plant Roots/microbiology , Bacteria/geneticsABSTRACT
Colobanthus quitensis (Kunth) Bartl. and Deschampsia antarctica Desv. are the only Magnoliophyta to naturally colonize the Antarctic region. The reason for their sole presence in Antarctica is still debated as there is no definitive consensus on how only two unrelated flowering plants managed to establish breeding populations in this part of the world. In this study, we have explored and compared the rhizosphere and root-endosphere dwelling microbial community of C. quitensis and D. antarctica specimens sampled in maritime Antarctica from sites displaying contrasting edaphic characteristics. Bacterial phylogenetic diversity (high-throughput 16S rRNA gene fragment targeted sequencing) and microbial metabolic activity (Biolog EcoPlates) with a geochemical soil background were assessed. Gathered data showed that the microbiome of C. quitensis root system was mostly site-dependent, displaying different characteristics in each of the examined locations. This plant tolerated an active bacterial community only in severe conditions (salt stress and nutrient deprivation), while in other more favorable circumstances, it restricted microbial activity, with a possibility of microbivory-based nutrient acquisition. The microbial communities of D. antarctica showed a high degree of similarity between samples within a particular rhizocompartment. The grass' endosphere was significantly enriched in plant beneficial taxa of the family Rhizobiaceae, which displayed obligatory endophyte characteristics, suggesting that at least part of this community is transmitted vertically. Ultimately, the ecological success of C. quitensis and D. antarctica in Antarctica might be largely attributed to their associations and management of root-associated microbiota.
Subject(s)
Caryophyllaceae , Antarctic Regions , RNA, Ribosomal, 16S/genetics , Phylogeny , Caryophyllaceae/genetics , Caryophyllaceae/microbiology , Plants , Bacteria/geneticsABSTRACT
AIMS: Microbial communities that inhabit plants are crucial for plant survival and well-being including growth in stressful environments. The medicinal plant, Dendrobium officinale grows in the barren soils of the Danxia Habitat. However, the microbiome composition and functional potential for growth of this plant in this environment are still unexplored. METHODS AND RESULTS: In this study, we analysed the taxonomic and functional diversity of the D. officinale Microbiome by metagenomic sequencing of both rhizosphere and endosphere samples. A total of 155 phyla, 122 classes, 271 orders, 620 families and 2194 genera were identified from all samples. The rhizospheric microbes (DXRh) were mainly composed of Proteobacteria and Acidobacteria, while Basidiomycota and Ascomycota were the most dominant phyla in root endosphere (DXRo) and stem endosphere (DXS), respectively. Most of the dominant microbial communities had been reported to have diverse functional potentials that can help plant growth and development in stressful and nutrient-deprived ecological environmental. These include plant growth promoting rhizobacteria (PGPR) such as Massilia, Pseudomonas, Bradyrhizobium, Klebsiella, Streptomyces, Leclercia, Paenibacillus, Frankia and Enterobacter in the DXRh, Tulasnella and Serendipita in the DXRo, Colletotrichum and Burkholderia in the DXS and Paraburkholderia, Rhizophagus and Acetobacter in endosphere. Analysis using the KEGG, eggNOG and CAZy databases showed that metabolic pathways such as carbohydrate metabolism, amino acid metabolism, energy metabolism, genetic information processing and environmental information processing are significantly abundant, which may be related to the survival, growth and development of D. officinale in a stressful environment. CONCLUSIONS: We speculated that the microbial community with diverse taxonomic structures and metabolic functions inhabiting in different niches of plants supports the survival and growth of D. officinale in the stressful environment of Danxia Habitat. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided an important data resource for microbes associated with D. officinale and theoretical foundation for further studies.
Subject(s)
Basidiomycota , Dendrobium , Microbiota , Basidiomycota/genetics , Dendrobium/genetics , Dendrobium/microbiology , Humans , Metagenomics , Microbiota/genetics , Plant Roots/microbiology , Plants , Rhizosphere , Soil MicrobiologyABSTRACT
A host-plant and its associated microbiota depend on one another. However, the assembly process and the functioning of host-associated microbiota are poorly understood. Herein, rice was used as model plant to investigate the assemblage of bacterial microbiota, including those in the seed, root endosphere and rhizosphere. We also assessed the degree to which endosphere and rhizosphere communities were influenced by vertical transmission through seed and identified the core microbes that potentially associated with plant phenotypic properties. Plant microhabitat, rather than subspecies type, was the major driver shaping plant-associated bacterial microbiota. Deterministic processes were primarily responsible for community assembly in all microhabitats. The influence of vertical transmission from seed to root-associated bacterial communities appeared to be quite weak (endosphere) or even absent (rhizosphere). A core microbial community composed of 15 generalist species persisted across different microhabitats and represented key connectors in networks. Host-plant functional traits were linked to the relative abundance of these generalist core microbes and could be predicted from them using machine learning algorithms. Overall, bacterial microbiota is assembled by host-plant interactions in a deterministic-based manner. This study enhances our understanding of the driving mechanisms and associations of microbiota in various plant microhabitats and provides new perspectives to improve plant performance.