Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.346
Filter
Add more filters

Publication year range
1.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38861993

ABSTRACT

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Subject(s)
Cell Differentiation , Fibroblast Growth Factors , Receptors, Fibroblast Growth Factor , Signal Transduction , Animals , Humans , Receptors, Fibroblast Growth Factor/metabolism , Fibroblast Growth Factors/metabolism , Mice , Ligands , Calcium/metabolism , MAP Kinase Signaling System
2.
Cell ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39368477

ABSTRACT

Cellular senescence plays critical roles in aging, regeneration, and disease; yet, the ability to discern its contributions across various cell types to these biological processes remains limited. In this study, we generated an in vivo genetic toolbox consisting of three p16Ink4a-related intersectional genetic systems, enabling pulse-chase tracing (Sn-pTracer), Cre-based tracing and ablation (Sn-cTracer), and gene manipulation combined with tracing (Sn-gTracer) of defined p16Ink4a+ cell types. Using liver injury and repair as an example, we found that macrophages and endothelial cells (ECs) represent distinct senescent cell populations with different fates and functions during liver fibrosis and repair. Notably, clearance of p16Ink4a+ macrophages significantly mitigates hepatocellular damage, whereas eliminating p16Ink4a+ ECs aggravates liver injury. Additionally, targeted reprogramming of p16Ink4a+ ECs through Kdr overexpression markedly reduces liver fibrosis. This study illuminates the functional diversity of p16Ink4a+ cells and offers insights for developing cell-type-specific senolytic therapies in the future.

3.
Cell ; 186(11): 2345-2360.e16, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37167971

ABSTRACT

A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Animals , Mice , Endothelial Cells/physiology , Neovascularization, Physiologic/physiology , Skin , Cell Membrane
4.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34534465

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Proteogenomics , Adenocarcinoma/diagnosis , Adult , Aged , Aged, 80 and over , Algorithms , Carcinoma, Pancreatic Ductal/diagnosis , Cohort Studies , Endothelial Cells/metabolism , Epigenesis, Genetic , Female , Gene Dosage , Genome, Human , Glycolysis , Glycoproteins/biosynthesis , Humans , Male , Middle Aged , Molecular Targeted Therapy , Pancreatic Neoplasms/diagnosis , Phenotype , Phosphoproteins/metabolism , Phosphorylation , Prognosis , Protein Kinases/metabolism , Proteome/metabolism , Substrate Specificity , Transcriptome/genetics
5.
Cell ; 180(4): 764-779.e20, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32059779

ABSTRACT

The heterogeneity of endothelial cells (ECs) across tissues remains incompletely inventoried. We constructed an atlas of >32,000 single-EC transcriptomes from 11 mouse tissues and identified 78 EC subclusters, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues. ECs from brain/testis, liver/spleen, small intestine/colon, and skeletal muscle/heart pairwise expressed partially overlapping marker genes. Arterial, venous, and lymphatic ECs shared more markers in more tissues than did heterogeneous capillary ECs. ECs from different vascular beds (arteries, capillaries, veins, lymphatics) exhibited transcriptome similarity across tissues, but the tissue (rather than the vessel) type contributed to the EC heterogeneity. Metabolic transcriptome analysis revealed a similar tissue-grouping phenomenon of ECs and heterogeneous metabolic gene signatures in ECs between tissues and between vascular beds within a single tissue in a tissue-type-dependent pattern. The EC atlas taxonomy enabled identification of EC subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Subject(s)
Endothelial Cells/metabolism , Single-Cell Analysis , Transcriptome , Animals , Brain/cytology , Cardiovascular System/cytology , Endothelial Cells/classification , Endothelial Cells/cytology , Gastrointestinal Tract/cytology , Male , Mice , Mice, Inbred C57BL , Muscles/cytology , Organ Specificity , RNA-Seq , Testis/cytology
6.
Cell ; 181(2): 424-441.e21, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32234521

ABSTRACT

KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.


Subject(s)
Aging/physiology , Carcinoma, Pancreatic Ductal/pathology , Vascular Remodeling/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/microbiology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genes, ras/genetics , Humans , Immunotherapy/methods , MAP Kinase Signaling System/physiology , Mice , Pancreatic Neoplasms/pathology , Retinoblastoma Protein/immunology , Signal Transduction/genetics , Tumor Microenvironment , Vascular Remodeling/genetics
7.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37643615

ABSTRACT

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Subject(s)
Transendothelial and Transepithelial Migration , Vascular Endothelial Growth Factor Receptor-2 , Animals , Mice , Cell Adhesion , Cell Movement , Endothelium, Vascular , Mechanotransduction, Cellular , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
8.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35508166

ABSTRACT

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Subject(s)
Macrophage Colony-Stimulating Factor , Mesenchymal Stem Cells , Animals , Bone Marrow , Bone Marrow Cells , Endothelial Cells , Macrophage Colony-Stimulating Factor/pharmacology , Mice , Monocytes
9.
Immunity ; 54(11): 2632-2649.e6, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34715018

ABSTRACT

The incidence and severity of sepsis is higher among individuals of African versus European ancestry. We found that genetic risk variants (RVs) in the trypanolytic factor apolipoprotein L1 (APOL1), present only in individuals of African ancestry, were associated with increased sepsis incidence and severity. Serum APOL1 levels correlated with sepsis and COVID-19 severity, and single-cell sequencing in human kidneys revealed high expression of APOL1 in endothelial cells. Analysis of mice with endothelial-specific expression of RV APOL1 and in vitro studies demonstrated that RV APOL1 interfered with mitophagy, leading to cytosolic release of mitochondrial DNA and activation of the inflammasome (NLRP3) and the cytosolic nucleotide sensing pathways (STING). Genetic deletion or pharmacological inhibition of NLRP3 and STING protected mice from RV APOL1-induced permeability defects and proinflammatory endothelial changes in sepsis. Our studies identify the inflammasome and STING pathways as potential targets to reduce APOL1-associated health disparities in sepsis and COVID-19.


Subject(s)
Apolipoprotein L1/genetics , Black People/genetics , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Sepsis/genetics , Animals , Apolipoprotein L1/blood , Black People/statistics & numerical data , COVID-19/pathology , DNA, Mitochondrial/metabolism , Endothelial Cells/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Risk Factors , Sepsis/pathology , Severity of Illness Index , White People/genetics , White People/statistics & numerical data
10.
Annu Rev Cell Dev Biol ; 32: 677-691, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27298093

ABSTRACT

The two vascular systems of our body are the blood and the lymphatic vasculature. Our understanding of the genes and molecular mechanisms controlling the development of the lymphatic vasculature network has significantly improved. The availability of novel animal models and better imaging tools led to the identification of lymphatics in tissues and organs previously thought to be devoid of them. Similarly, the classical textbook list of established functional roles of the lymphatic system has been expanded by the addition of novel findings. In this review we provide a historical perspective of some of the important landmarks that opened the doors to researchers working in this field. We also summarize some of the current views about embryonic lymphangiogenesis, particularly about the source(s), commitment, and differentiation of lymphatic endothelial cells.


Subject(s)
Cell Lineage , Lymphangiogenesis , Animals , Blood Vessels/physiology , Cell Differentiation , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans
11.
Immunity ; 51(4): 638-654.e9, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31561945

ABSTRACT

Macrophages are strongly adapted to their tissue of residence. Yet, little is known about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced tumor necrosis factor (TNF)- and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space and acquired the liver-associated transcription factors inhibitor of DNA 3 (ID3) and liver X receptor-α (LXR-α). Coordinated interactions with hepatocytes induced ID3 expression, whereas endothelial cells and stellate cells induced LXR-α via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes, and endothelial cells that together imprint the liver-specific macrophage identity.


Subject(s)
Endothelial Cells/physiology , Hepatic Stellate Cells/physiology , Hepatocytes/physiology , Kupffer Cells/physiology , Liver/cytology , Macrophages/physiology , Monocytes/physiology , Animals , Cell Communication , Cell Differentiation , Cells, Cultured , Cellular Microenvironment , Female , Gene Expression Regulation , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Liver X Receptors/genetics , Liver X Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Notch/metabolism
12.
EMBO J ; 42(5): e109032, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36715213

ABSTRACT

Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Humans , Mice , Animals , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Gene Expression Regulation , Endothelium, Vascular , Transcription Factors/metabolism , Lymphangiogenesis/genetics , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism
13.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722096

ABSTRACT

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Subject(s)
Endothelial Cells , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins , Lymphatic Vessels , Tumor Suppressor Proteins , Zebrafish Proteins , Zebrafish , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zebrafish/genetics , Zebrafish/embryology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Enhancer Elements, Genetic/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Endothelial Cells/metabolism , Lymphangiogenesis/genetics , CRISPR-Cas Systems/genetics , Promoter Regions, Genetic/genetics , Mice
14.
Semin Immunol ; 67: 101764, 2023 05.
Article in English | MEDLINE | ID: mdl-37084655

ABSTRACT

The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.


Subject(s)
Antigen Presentation , Cross-Priming , Humans , CD8-Positive T-Lymphocytes , Dendritic Cells , Antigens
15.
Proc Natl Acad Sci U S A ; 121(5): e2318718121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252820

ABSTRACT

Several compounds have been used for atherosclerosis treatment, including clinical trials; however, no anti-atherosclerotic drugs based on hemodynamic force-mediated atherogenesis have been discovered. Our previous studies demonstrated that "small mothers against decapentaplegic homolog 1/5" (Smad1/5) is a convergent signaling molecule for chemical [e.g., bone morphogenetic proteins (BMPs)] and mechanical (e.g., disturbed flow) stimulations and hence may serve as a promising hemodynamic-based target for anti-atherosclerosis drug development. The goal of this study was to develop a high-throughput screening (HTS) platform to identify potential compounds that can inhibit disturbed flow- and BMP-induced Smad1/5 activation and atherosclerosis. Through HTS using a Smad1/5 downstream target inhibitor of DNA binding 1 (Id-1) as a luciferase reporter, we demonstrated that KU-55933 and Apicidin suppressed Id-1 expression in AD-293 cells. KU-55933 (10 µM), Apicidin (10 µM), and the combination of half doses of each [1/2(K + A)] inhibited disturbed flow- and BMP4-induced Smad1/5 activation in human vascular endothelial cells (ECs). KU-55933, Apicidin, and 1/2(K + A) treatments caused 50.6%, 47.4%, and 73.3% inhibitions of EC proliferation induced by disturbed flow, respectively, whereas EC inflammation was only suppressed by KU-55933 and 1/2(K + A), but not Apicidin alone. Administrations of KU-55933 and 1/2(K + A) to apolipoprotein E-deficient mice inhibited Smad1/5 activation in ECs in athero-susceptible regions, thereby suppressing endothelial proliferation and inflammation, with the attenuation of atherosclerotic lesions in these mice. A unique drug screening platform has been developed to demonstrate that KU-55933 and its combination with Apicidin are promising therapeutic compounds for atherosclerosis based on hemodynamic considerations.


Subject(s)
Atherosclerosis , Endothelial Cells , Morpholines , Pyrones , Humans , Animals , Mice , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Atherosclerosis/drug therapy , Hemodynamics , Inflammation
16.
Proc Natl Acad Sci U S A ; 121(5): e2318904121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38261622

ABSTRACT

Flow patterns exert significant effects on vascular endothelial cells (ECs) to lead to the focal nature of atherosclerosis. Using a step flow chamber to investigate the effects of disturbed shear (DS) and pulsatile shear (PS) on ECs in the same flow channel, we conducted single-cell RNA sequencing analyses to explore the distinct transcriptomic profiles regulated by DS vs. PS. Integrated analysis identified eight cell clusters and demonstrated that DS induces EC transition from atheroprotective to proatherogenic phenotypes. Using an automated cell type annotation algorithm (SingleR), we showed that DS promoted endothelial-to-mesenchymal transition (EndMT) by inducing the transcriptional phenotypes for inflammation, hypoxia responses, transforming growth factor-beta (TGF-ß) signaling, glycolysis, and fatty acid synthesis. Enolase 1 (ENO1), a key gene in glycolysis, was one of the top-ranked genes in the DS-induced EndMT cluster. Pseudotime trajectory analysis revealed that the kinetic expression of ENO1 was significantly associated with EndMT and that ENO1 silencing repressed the DS- and TGF-ß-induced EC inflammation and EndMT. Consistent with these findings, ENO1 was highly expressed in ECs at the inner curvature of the mouse aortic arch (which is exposed to DS) and atherosclerotic lesions, suggesting its proatherogenic role in vivo. In summary, we present a comprehensive single-cell atlas of ECs in response to different flow patterns within the same flow channel. Among the DS-regulated genes, ENO1 plays an important role in DS-induced EC inflammation and EndMT. These results provide insights into how hemodynamic forces regulate vascular endothelium in health and disease.


Subject(s)
Atherosclerosis , Endothelial Cells , Animals , Mice , Gene Expression Profiling , Inflammation , Sequence Analysis, RNA , Transforming Growth Factor beta
17.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748577

ABSTRACT

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Blood-Brain Barrier/metabolism , Humans , Endothelial Cells/metabolism , Animals , Wnt Signaling Pathway , Claudin-5/metabolism , Claudin-5/genetics , Cyclic AMP/metabolism , Mice , Stem Cells/metabolism , Stem Cells/cytology , Tight Junctions/metabolism , beta Catenin/metabolism
18.
Proc Natl Acad Sci U S A ; 121(2): e2315898120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165930

ABSTRACT

Protection against endothelial damage is recognized as a frontline approach to preventing the progression of cytokine release syndrome (CRS). Accumulating evidence has demonstrated that interleukin-6 (IL-6) promotes vascular endothelial damage during CRS, although the molecular mechanisms remain to be fully elucidated. Targeting IL-6 receptor signaling delays CRS progression; however, current options are limited by persistent inhibition of the immune system. Here, we show that endothelial IL-6 trans-signaling promoted vascular damage and inflammatory responses via hypoxia-inducible factor-1α (HIF1α)-induced glycolysis. Using pharmacological inhibitors targeting HIF1α activity or mice with the genetic ablation of gp130 in the endothelium, we found that inhibition of IL-6R (IL-6 receptor)-HIF1α signaling in endothelial cells protected against vascular injury caused by septic damage and provided survival benefit in a mouse model of sepsis. In addition, we developed a short half-life anti-IL-6R antibody (silent anti-IL-6R antibody) and found that it was highly effective at augmenting survival for sepsis and severe burn by strengthening the endothelial glycocalyx and reducing cytokine storm, and vascular leakage. Together, our data advance the role of endothelial IL-6 trans-signaling in the progression of CRS and indicate a potential therapeutic approach for burns and sepsis.


Subject(s)
Cytokine Receptor gp130 , Hypoxia-Inducible Factor 1, alpha Subunit , Interleukin-6 , Receptors, Interleukin-6 , Sepsis , Animals , Mice , Cytokine Receptor gp130/genetics , Cytokine Release Syndrome , Endothelial Cells , Receptors, Interleukin-6/genetics , Sepsis/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
19.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568964

ABSTRACT

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Subject(s)
Chlorides , Protein Serine-Threonine Kinases , Mice , Animals , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Chlorides/metabolism , Endothelial Cells/metabolism , TRPV Cation Channels/metabolism , Signal Transduction/physiology
20.
Proc Natl Acad Sci U S A ; 121(22): e2314533121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38776373

ABSTRACT

Nanoparticles tethered with vasculature-binding epitopes have been used to deliver the drug into injured or diseased tissues via the bloodstream. However, the extent that blood flow dynamics affects nanoparticle retention at the target site after adhesion needs to be better understood. This knowledge gap potentially underlies significantly different therapeutic efficacies between animal models and humans. An experimentally validated mathematical model that accurately simulates the effects of blood flow on nanoparticle adhesion and retention, thus circumventing the limitations of conventional trial-and-error-based drug design in animal models, is lacking. This paper addresses this technical bottleneck and presents an integrated mathematical method that derives heavily from a unique combination of a mechanics-based dispersion model for nanoparticle transport and diffusion in the boundary layers, an asperity model to account for surface roughness of endothelium, and an experimentally calibrated stochastic nanoparticle-cell adhesion model to describe nanoparticle adhesion and subsequent retention at the target site under external flow. PLGA-b-HA nanoparticles tethered with VHSPNKK peptides that specifically bind to vascular cell adhesion molecules on the inflamed vascular wall were investigated. The computational model revealed that larger particles perform better in adhesion and retention at the endothelium for the particle sizes suitable for drug delivery applications and within physiologically relevant shear rates. The computational model corresponded closely to the in vitro experiments which demonstrates the impact that model-based simulations can have on optimizing nanocarriers in vascular microenvironments, thereby substantially reducing in vivo experimentation as well as the development costs.


Subject(s)
Nanoparticles , Nanoparticles/chemistry , Humans , Ligands , Drug Delivery Systems/methods , Cell Adhesion , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL