Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Mol Cell ; 82(24): 4681-4699.e8, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36435176

ABSTRACT

Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.


Subject(s)
Alternative Splicing , RNA Splicing , Humans , Base Sequence , Introns/genetics , Exons/genetics
2.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35182478

ABSTRACT

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Subject(s)
Alternative Splicing , RNA Splicing , Base Composition , Exons/genetics , Introns/genetics
3.
Mol Cell ; 77(5): 985-998.e8, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31839405

ABSTRACT

Understanding how splicing events are coordinated across numerous introns in metazoan RNA transcripts requires quantitative analyses of transient RNA processing events in living cells. We developed nanopore analysis of co-transcriptional processing (nano-COP), in which nascent RNAs are directly sequenced through nanopores, exposing the dynamics and patterns of RNA splicing without biases introduced by amplification. Long nano-COP reads reveal that, in human and Drosophila cells, splicing occurs after RNA polymerase II transcribes several kilobases of pre-mRNA, suggesting that metazoan splicing transpires distally from the transcription machinery. Inhibition of the branch-site recognition complex SF3B rapidly diminished global co-transcriptional splicing. We found that splicing order does not strictly follow the order of transcription and is associated with cis-acting elements, alternative splicing, and RNA-binding factors. Further, neighboring introns in human cells tend to be spliced concurrently, implying that splicing of these introns occurs cooperatively. Thus, nano-COP unveils the organizational complexity of RNA processing.


Subject(s)
Nanopore Sequencing , Nanopores , RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Transcriptome , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Humans , Introns , K562 Cells , Kinetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , Transcription, Genetic
4.
Mol Cell ; 76(2): 329-345, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626751

ABSTRACT

High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.


Subject(s)
Alternative Splicing/physiology , Evolution, Molecular , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Humans
5.
Trends Genet ; 39(9): 672-685, 2023 09.
Article in English | MEDLINE | ID: mdl-37236814

ABSTRACT

Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.


Subject(s)
RNA Precursors , Transcription, Genetic , RNA Precursors/genetics , RNA Splicing/genetics , Spliceosomes/genetics , Spliceosomes/metabolism , Introns
6.
EMBO J ; 41(1): e107640, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34779515

ABSTRACT

SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.


Subject(s)
Exons/genetics , Nucleic Acid Conformation , Ribonucleoprotein, U1 Small Nuclear/metabolism , Serine-Arginine Splicing Factors/metabolism , HeLa Cells , Humans , Models, Biological , Protein Binding , RNA Precursors/metabolism , RNA Splice Sites/genetics , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/metabolism
7.
Mol Cell ; 72(2): 369-379.e4, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340024

ABSTRACT

The highly intronic nature of protein coding genes in mammals necessitates a co-transcriptional splicing mechanism as revealed by mNET-seq analysis. Immunoprecipitation of MNase-digested chromatin with antibodies against RNA polymerase II (Pol II) shows that active spliceosomes (both snRNA and proteins) are complexed to Pol II S5P CTD during elongation and co-transcriptional splicing. Notably, elongating Pol II-spliceosome complexes form strong interactions with nascent transcripts, resulting in footprints of approximately 60 nucleotides. Also, splicing intermediates formed by cleavage at the 5' splice site are associated with nearly all spliced exons. These spliceosome-bound intermediates are frequently ligated to upstream exons, implying a sequential, constitutive, and U12-dependent splicing process. Finally, lack of detectable spliced products connected to the Pol II active site in human HeLa or murine lymphoid cells suggests that splicing does not occur immediately following 3' splice site synthesis. Our results imply that most mammalian splicing requires exon definition for completion.


Subject(s)
Phosphorylation/genetics , RNA Polymerase II/genetics , RNA Splicing/genetics , Serine/genetics , Spliceosomes/genetics , Transcription, Genetic/genetics , Animals , Cell Line, Tumor , Exons/genetics , HeLa Cells , Humans , Introns/genetics , Mice , RNA, Small Nuclear/genetics
8.
Mol Cell ; 72(3): 510-524.e12, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388412

ABSTRACT

Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.


Subject(s)
Alternative Splicing/physiology , Genetic Engineering/methods , RNA Splice Sites/physiology , Animals , Autistic Disorder/genetics , CRISPR-Cas Systems/genetics , Cell Line , Exons/physiology , Humans , Mice , Nerve Tissue Proteins , Neurogenesis , Neurons , RNA Precursors/physiology , RNA Splicing/physiology , RNA-Binding Proteins , Ribonucleoproteins , Serine-Arginine Splicing Factors , Spliceosomes
9.
Mol Cell ; 68(5): 940-954.e3, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29174924

ABSTRACT

Many eukaryotic genes generate linear mRNAs and circular RNAs, but it is largely unknown how the ratio of linear to circular RNA is controlled or modulated. Using RNAi screening in Drosophila cells, we identify many core spliceosome and transcription termination factors that control the RNA outputs of reporter and endogenous genes. When spliceosome components were depleted or inhibited pharmacologically, the steady-state levels of circular RNAs increased while expression of their associated linear mRNAs concomitantly decreased. Upon inhibiting RNA polymerase II termination via depletion of the cleavage/polyadenylation machinery, circular RNA levels were similarly increased. This is because readthrough transcripts now extend into downstream genes and are subjected to backsplicing. In total, these results demonstrate that inhibition or slowing of canonical pre-mRNA processing events shifts the steady-state output of protein-coding genes toward circular RNAs. This is in part because nascent RNAs become directed into alternative pathways that lead to circular RNA production.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , RNA Precursors/biosynthesis , RNA Splicing , RNA, Messenger/biosynthesis , RNA/biosynthesis , Spliceosomes/genetics , Transcription, Genetic , Animals , Cell Line , Drosophila Proteins/biosynthesis , Drosophila melanogaster/metabolism , Laccase/biosynthesis , Laccase/genetics , RNA/genetics , RNA Interference , RNA Polymerase II/metabolism , RNA Precursors/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA Stability , RNA, Circular , RNA, Messenger/genetics , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Spliceosomes/metabolism , Transcription Termination, Genetic , Transfection
10.
RNA Biol ; 19(1): 829-840, 2022 01.
Article in English | MEDLINE | ID: mdl-35723015

ABSTRACT

Alternative splicing enables higher eukaryotes to expand mRNA diversity from a finite number of genes through highly combinatorial splice site selection mechanisms that are influenced by the sequence of competing splice sites, cis-regulatory elements binding trans-acting factors, the length of exons and introns harbouring alternative splice sites and RNA secondary structures at putative splice junctions. To test the hypothesis that the intron definition or exon definition modes of splice site recognition direct the selection of alternative splice patterns, we created a database of alternative splice site usage (ALTssDB). When alternative splice sites are embedded within short introns (intron definition), the 5' and 3' splice sites closest to each other across the intron preferentially pair, consistent with previous observations. However, when alternative splice sites are embedded within large flanking introns (exon definition), the 5' and 3' splice sites closest to each other across the exon are preferentially selected. Thus, alternative splicing decisions are influenced by the intron and exon definition modes of splice site recognition. The results demonstrate that the spliceosome pairs splice sites that are closest in proximity within the unit of initial splice site selection.


Subject(s)
RNA Splice Sites , RNA Splicing , Alternative Splicing , Exons , Introns
SELECTION OF CITATIONS
SEARCH DETAIL