Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.472
Filter
Add more filters

Publication year range
1.
Annu Rev Microbiol ; 76: 503-532, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35671532

ABSTRACT

Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide.


Subject(s)
Biofilms , Vibrio cholerae , Bacterial Proteins/metabolism , Biofilms/growth & development , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Transcription Factors/metabolism , Vibrio cholerae/genetics , Vibrio cholerae/physiology
2.
J Bacteriol ; 206(4): e0000624, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38445859

ABSTRACT

Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.


Subject(s)
Biofilms , Ecosystem , Humans , DNA, Bacterial/genetics , Bacteria/genetics , Extracellular Matrix
3.
Microbiology (Reading) ; 170(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39212539

ABSTRACT

The extracellular matrix of microbial biofilms has traditionally been viewed as a structural scaffold that retains the resident bacteria in the biofilm. Moreover, a role of the matrix in the tolerance of biofilms to antimicrobials and environmental stressors was recognized early in biofilm research. However, as research progressed it became apparent that the biofilm matrix can also be involved in processes such as bacterial migration, genetic exchange, ion capture and signalling. More recently, evidence has accumulated that the biofilm matrix can also have catalytic functions. Here we review foundational research on this fascinating catalytic role of the biofilm matrix.


Subject(s)
Bacteria , Biofilms , Biofilms/growth & development , Bacteria/genetics , Bacteria/metabolism , Extracellular Matrix/metabolism , Bacterial Physiological Phenomena
4.
J Exp Bot ; 75(2): 584-593, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-37549338

ABSTRACT

Drought is a major threat to food security worldwide. Recently, the root-soil interface has emerged as a major site of hydraulic resistance during water stress. Here, we review the impact of soil drying on whole-plant hydraulics and discuss mechanisms by which plants can adapt by modifying the properties of the rhizosphere either directly or through interactions with the soil microbiome.


Subject(s)
Drought Resistance , Soil , Plant Roots , Droughts , Crops, Agricultural
5.
Microb Pathog ; : 106999, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39395744

ABSTRACT

Biofilm formation is a major challenge in the treatment of tuberculosis, leading to poor treatment outcomes and latent infections. The complex and dense extracellular polymeric substances (EPS) of the biofilm provides safe harbour for bacterium enabling persistence against anti-TB antibiotics. In this study, we demonstrated that rifampicin-encapsulated silk fibroin nanoparticles immobilized with antibiofilm enzymes can disrupt the Mycobacterium smegmatis biofilm and facilitate the anti-bacterial action of Rifampicin (RIF). The EPS of M.smegmatis biofilm predominantly comprised of lipids (48.8±1.32%) and carbohydrates (34.8±4.70%), similar to tuberculosis biofilms. Pre-formed biofilm eradication screening revealed that hydrolytic enzymes such as ß-Glucosidase, Glucose oxidase, ɑ-Amylase, Acylase, and Phytase can exhibit biofilm eradication of M.smegmatis biofilms. The enzyme-mediated biofilm disruption was associated with a decrease in hydrophobicity of biofilm surfaces. Treatment with ß-glucosidase and Phytase demonstrated a putative biofilm eradication by reducing the total carbohydrates and lipid composition without causing any significant bactericidal activity. Further, Phytase (250µg/ml) and ß-Glucosidase (112.5±17.6 µg/ml) conjugated rifampicin-loaded silk fibroin nanoparticles (R-SFNs) exhibited an enhanced anti-bacterial activity against pre-formed M.smegmatis biofilms, compared to free rifampicin (32.5±7µg/ml). Notably, treatment with ß-glucosidase, Phytase and ɑ-amylase immobilized SFNs decreased the biofilm thickness by ∼98.84% at 6h, compared to control. Thus, the study highlights that coupling anti-mycobacterial drugs with biofilm-eradicating enzymes such as amylase, phytase or ß-glucosidase can be a potential strategy to improve the TB therapeutic outcomes.

6.
Photochem Photobiol Sci ; 23(6): 1195-1208, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703274

ABSTRACT

The effect of photodynamic inactivation (PDI) sensitized by 5,10,15,20-tetra(4-N,N,N-trimethylammoniophenyl)porphyrin (TMAP4+) on different components of mono- and dual-species biofilms of Staphylococcus aureus and Escherichia coli was determined by different methods. First, the plate count technique showed that TMAP4+-PDI was more effective on S. aureus than E. coli biofilm. However, crystal violet staining revealed no significant differences between before and after PDI biofilms of both bacteria. On the other hand, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method indicated a reduction in viable cells as the light exposure time increases in both, mono- and dual-species biofilms. Furthermore, it was determined that as the irradiation time increases, the amount of extracellular polymeric substances present in the biofilms decreased. This effect was presented in both strains and in the mixed biofilm, being more evident in S. aureus mono-specie biofilm. Finally, scanning electron microscopy analysis showed a decrease in the number of cells forming the biofilm after photosensitization treatments. This information makes it possible to determine whether the photodynamic action is based on damage to metabolic activity, extracellular matrix and/or biomass, which may be useful in establishing a fully effective PDI protocol for the treatment of microorganisms growing as biofilms.


Subject(s)
Biofilms , Escherichia coli , Photosensitizing Agents , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Escherichia coli/drug effects , Escherichia coli/physiology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Porphyrins/pharmacology , Porphyrins/chemistry , Light , Microscopy, Electron, Scanning
7.
Environ Sci Technol ; 58(26): 11542-11553, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38871676

ABSTRACT

Nanoplastics (NPs) are emerging pollutants and have been reported to cause the disintegration of anaerobic granular sludge (AnGS). However, the mechanism involved in AnGS disintegration was not clear. In this study, polyvinyl chloride nanoplastics (PVC-NPs) were chosen as target NPs and their long-term impact on AnGS structure was investigated. Results showed that increasing PVC-NPs concentration resulted in the inhibition of acetoclastic methanogens, syntrophic propionate, and butyrate degradation, as well as AnGS disintegration. At the presence of 50 µg·L-1 PVC-NPs, the hydrophobic interaction was weakened with a higher energy barrier due to the relatively higher hydrophilic functional groups in extracellular polymeric substances (EPS). PVC-NPs-induced ROS inhibited quorum sensing, significantly downregulated hydrophobic amino acid synthesis, whereas it highly upregulated the genes related to the synthesis of four hydrophilic amino acids (Cys, Glu, Gly, and Lys), resulting in a higher hydrophily degree of protein secondary structure in EPS. The differential expression of genes involved in EPS biosynthesis and the resulting protein secondary structure contributed to the greater hydrophilic interaction, reducing microbial aggregation ability. The findings provided new insight into the long-term impact of PVC-NPs on AnGS when treating wastewater containing NPs and filled the knowledge gap on the mechanism involved in AnGS disintegration by PVC-NPs.


Subject(s)
Extracellular Polymeric Substance Matrix , Polyvinyl Chloride , Sewage , Sewage/microbiology , Polyvinyl Chloride/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Anaerobiosis , Microbial Interactions
8.
Environ Sci Technol ; 58(26): 11685-11694, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38905014

ABSTRACT

A regular tetrahedron model was established to pierce the fractionation of dissolved organic matter (DOM) among quaternary components by using high-resolution mass spectrometry. The model can stereoscopically visualize molecular formulas of DOM to show the preference to each component according to the position in a regular tetrahedron. A classification method was subsequently developed to divide molecular formulas into 15 categories related to fractionation ratios, the relative change of which was demonstrated to be convergent with the uncertainty of mass peak area. The practicality of the regular tetrahedron model was verified by seven kinds of sludge from waste leachate treatment and sewage wastewater treatment plants by using stratification of extracellular polymeric substances coupled with Orbitrap MS as an example, presenting the DOM chemodiversity in stratified sludge flocs. Sensitivity analysis proved that classification results were relatively stable with the perturbation of four model parameters. Multinomial logistic regression analysis could further help identify the effect of molecular properties on the fractionation of DOM based on the classification results of the regular tetrahedron model. This model offers a methodology for the assessment of specificity of sequential extraction on DOM from solid or semisolid components and simplifies the complex mathematical expression of fractionation coefficients for quaternary components.


Subject(s)
Mass Spectrometry , Sewage , Sewage/chemistry , Organic Chemicals/chemistry , Chemical Fractionation , Models, Theoretical , Wastewater/chemistry
9.
Environ Sci Technol ; 58(18): 8043-8052, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38648493

ABSTRACT

Bisphenol A (BPA), as a typical leachable additive from microplastics and one of the most productive bulk chemicals, is widely distributed in sediments, sewers, and wastewater treatment plants, where active sulfur cycling takes place. However, the effect of BPA on sulfur transformation, particularly toxic H2S production, has been previously overlooked. This work found that BPA at environmentally relevant levels (i.e., 50-200 mg/kg total suspended solids, TSS) promoted the release of soluble sulfur compounds and increased H2S gas production by 14.3-31.9%. The tryptophan-like proteins of microbe extracellular polymeric substances (EPSs) can spontaneously adsorb BPA, which is an enthalpy-driven reaction (ΔH = -513.5 kJ mol-1, ΔS = -1.60 kJ mol-1K -1, and ΔG = -19.52 kJ mol-1 at 35 °C). This binding changed the composition and structure of EPSs, which improved the direct electron transfer capacity of EPSs, thereby promoting the bioprocesses of organic sulfur hydrolysis and sulfate reduction. In addition, BPA presence enriched the functional microbes (e.g., Desulfovibrio and Desulfuromonas) responsible for organic sulfur mineralization and inorganic sulfate reduction and increased the abundance of related genes involved in ATP-binding cassette transporters and sulfur metabolism (e.g., Sat and AspB), which promoted anaerobic sulfur transformation. This work deepens our understanding of the interaction between BPA and sulfur transformation occurring in anaerobic environments.


Subject(s)
Sulfur , Sulfur/metabolism , Anaerobiosis , Hydrogen Sulfide/metabolism , Phenols/metabolism , Benzhydryl Compounds/metabolism
10.
Environ Sci Technol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012227

ABSTRACT

The occurrence of biofouling restricts the widespread application of membrane bioreactors (MBRs) in wastewater treatment. Regulation of quorum sensing (QS) is a promising approach to control biofouling in MBRs, yet the underlying mechanisms are complex and remain to be illustrated. A fundamental understanding of the relationship between QS and membrane biofouling in MBRs is lacking, which hampers the development and application of quorum quenching (QQ) techniques in MBRs (QQMBRs). While many QQ microorganisms have been isolated thus far, critical criteria for selecting desirable QQ microorganisms are still missing. Furthermore, there are inconsistent results regarding the QQ lifecycle and the effects of QQ on the physicochemical characteristics and microbial communities of the mixed liquor and biofouling assemblages in QQMBRs, which might result in unreliable and inefficient QQ applications. This review aims to comprehensively summarize timely QQ research and highlight the important yet often ignored perspectives of QQ for biofouling control in MBRs. We consider what this "information" can and cannot tell us and explore its values in addressing specific and important questions in QQMBRs. Herein, we first examine current analytical methods of QS signals and discuss the critical roles of QS in fouling-forming microorganisms in MBRs, which are the cornerstones for the development of QQ technologies. To achieve targeting QQ strategies in MBRs, we propose the substrate specificity and degradation capability of isolated QQ microorganisms and the surface area and pore structures of QQ media as the critical criteria to select desirable functional microbes and media, respectively. To validate the biofouling retardation efficiency, we further specify the QQ effects on the physicochemical properties, microbial community composition, and succession of mixed liquor and biofouling assemblages in MBRs. Finally, we provide scale-up considerations of QQMBRs in terms of the debated QQ lifecycle, practical synergistic strategies, and the potential cost savings of MBRs. This review presents the limitations of classic QS/QQ hypotheses in MBRs, advances the understanding of the role of QS/QQ in biofouling development/retardation in MBRs, and builds a bridge between the fundamental understandings and practical applications of QQ technology.

11.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38571383

ABSTRACT

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Subject(s)
Disinfectants , Disinfection , Disinfection/methods , Extracellular Polymeric Substance Matrix , Disinfectants/pharmacology , Chlorine/pharmacology , Kinetics
12.
Anal Bioanal Chem ; 416(19): 4341-4352, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856911

ABSTRACT

The study represents new bioanalytical characterization of mainly organic components of the poorly investigated extracellular polymeric substances (EPS) of the enigmatic diatom Didymosphenia geminata, an invasive, worldwide expanding species endangering diverse ecosystems. This microalga attaches its siliceous cells to rocky substrates using fibrous stalks, which are made of an EPS-based matrix stabilized by crystalline calcite. The EPS were analyzed using selected methods, including microscopic, spectroscopic, and spectrometric techniques. We identified diverse types of biomolecules. The presence of lipids, condensed aromatics, and heteroaromatic compounds in the EPS has been confirmed using high-resolution mass spectrometry (HR-MS). Additionally, both sulfur-containing functionalities and carboxylic acids were determined too using infrared (IR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. For the first time, lignin compounds have been detected as one of the components of the EPS of the D. geminata diatom, using HR-MS and fluorescence microscopy (FM) in combination with specific staining techniques. By increasing the understanding of the chemistry and structural features of the stalks, we aim to develop potential applications and methods for removing these stalks from affected regions in the future, or, alternatively, to use them as a large-scale source of sustainable biocomposite material.


Subject(s)
Diatoms , Diatoms/chemistry , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Microscopy, Fluorescence/methods
13.
Bioorg Chem ; 144: 107163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306825

ABSTRACT

The development of effective antibacterial drugs to combat bacterial infections, particularly the biofilm-related infections, remains a challenge. There are two important features of bacterial biofilms, which are well-known critical factors causing biofilms hard-to-treat in clinical, including the dense and impermeable extracellular polymeric substances (EPS) and the metabolically repressed dormant and persistent bacterial population embedded. These characteristics largely increase the difficulty for regular antibiotic treatment due to insufficient penetration into EPS. In addition, the dormant bacteria are insensitive to the growth-inhibiting mechanism of traditional antibiotics. Herein, we explore the potential of a series of new oligopyridinium-based oligomers bearing a multi-biomacromolecule targeting function as the potent bacterial biofilm eradication agent. These oligomers were rationally designed to be "charge-on-backbone" that can offer a special alternating amphiphilicity. This novel and unique feature endows high affinity to bacterial membrane lipids, DNAs as well as proteins. Such a broad multi-targeting nature of molecules not only enables its penetration into EPS, but also plays vital roles in the bactericidal mechanism of action that is highly effective against dormant and persistent bacteria. Our in vitro, ex vivo, and in vivo studies demonstrated that OPc3, one of the most effective derivatives, was able to offer excellent antibacterial potency against a variety of bacteria and effectively eliminate biofilms in zebrafish models and mouse wound biofilm infection models.


Subject(s)
Bacterial Infections , Zebrafish , Animals , Mice , Biofilms , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
14.
Environ Res ; 243: 117852, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38065385

ABSTRACT

Large quantities of sediments in urban sewer systems pose significant risk of pipe clogging and corrosion. Owing to their gel-like structure, sewer sediments have strong resistance to hydraulic shear stress. This study proposed a novel approach to weaken the erosion resistance of sewer sediments by destroying viscous gel-like biopolymers in sediments with low doses of calcium peroxide (CaO2). After treatment with 10-50 mg g-1 TS of CaO2, the critical erosion shear stress was significantly reduced by 25.7%-59.9%. The sediment aggregates gradually disintegrated into small diameter particles with increasing CaO2 dosage. Further analysis showed that the strong oxidizing and alkaline environment induced by CaO2 treatment led to cell lysis and changes in the composition and property of extracellular polymeric substances (EPS). After CaO2 treatment, aromatic proteins and humic acid-like substances associated with adhesion translocated from the inner EPS layers to outer layers while being disintegrated into small organic molecules. Concomitantly, CaO2 treatment disrupted the main functional groups (-OH, COO-, C-N, CO, and CN) in inner EPS layers, thus weakening EPS adhesion. Analysis of protein secondary structure and zeta potential reflected the reduced aggregation capacity of sediment microorganisms and loosening of sediment structure after CaO2 treatment. Thus, CaO2 treatment facilitated fragmentation and disaggregation of the gelatinous structure of sewer sediments. Such green strategy decreased the cost of sewer sediment disposal by 42.10-68.95% when compared to water flushing, and it would improve the self-cleaning capacity of sewer system and efficiency of dredging equipment.


Subject(s)
Geologic Sediments , Sewage , Peroxides , Food
15.
Environ Res ; 263(Pt 2): 120099, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374750

ABSTRACT

Tetramethylammonium hydroxide (TMAH), an extensively utilized photoresist developer, is frequently present in ammonium-rich wastewater from semiconductor manufacturing, and its substantial ecotoxicity should not be underestimated. This study systematically investigated the effects of TMAH on the anammox granular sludge (AnGS) system and elucidated its inhibitory mechanisms. The results demonstrated that the median inhibitory concentration of TMAH for anammox was 84.85 mg/L. The nitrogen removal performance of the system was significantly decreased after long-term exposure to TMAH (0-200 mg/L) for 30 days (p < 0.05), but it showed adaptability to certain concentrations (≤50 mg/L). Concurrently, the stability of the granules decreased dramatically, resulting in the breakdown of AnGS. Further investigations indicated that TMAH exposure increased the secretion of extracellular polymeric substances but weakened their defense function. The increase in reactive oxygen species resulted in damage to the cell membrane. Reduced activity of anammox bacteria, impeded electron transfer, and changes in enzyme activity suggested that TMAH affected the metabolic activity. Microbiological analysis revealed that TMAH caused a decrease in the abundance of anammox bacteria and a weakening of symbiotic interactions within the microbial community. These results provide valuable guidance for the AnGS system application in chip wastewater treatment.

16.
Environ Res ; 245: 118038, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38147916

ABSTRACT

The basis for bioelectrochemical technology is the capability of electroactive bacteria (EAB) to perform bidirectional extracellular electron transfer (EET) with electrodes, i.e. outward- and inward-EET. Extracellular polymeric substances (EPS) surrounding EAB are the necessary media for EET, but the biochemical and molecular analysis of EPS of Geobacter biofilms on electrode surface is largely lacked. This study constructed Geobacter sulfurreducens-biofilms performing bidirectional EET to explore the bidirectional EET mechanisms through EPS characterization using electrochemical, spectroscopic fingerprinting and proteomic techniques. Results showed that the inward-EET required extracellular redox proteins with lower formal potentials relative to outward-EET. Comparing to the EPS extracted from anodic biofilm (A-EPS), the EPS extracted from cathodic biofilm (C-EPS) exhibited a lower redox activity, mainly due to a decrease of protein/polysaccharide ratio and α-helix content of proteins. Furthermore, less cytochromes and more tyrosine- and tryptophan-protein like substances were detected in C-EPS than in A-EPS, indicating a diminished role of cytochromes and a possible role of other redox proteins in inward-EET. Proteomic analysis identified a variety of redox proteins including cytochrome, iron-sulfur clusters-containing protein, flavoprotein and hydrogenase in EPS, which might serve as an extracellular redox network for bidirectional EET. Those redox proteins that were significantly stimulated in A-EPS and C-EPS might be essential for outward- and inward-EET and warranted further research. This work sheds light on the mechanism of bidirectional EET of G. sulfurreducens biofilms and has implications in improving the performance of bioelectrochemical technology.


Subject(s)
Extracellular Polymeric Substance Matrix , Geobacter , Extracellular Polymeric Substance Matrix/metabolism , Electrons , Proteomics , Biofilms , Oxidation-Reduction , Cytochromes/metabolism
17.
Appl Microbiol Biotechnol ; 108(1): 286, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578301

ABSTRACT

Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.


Subject(s)
Biofilms , Disinfection , Extracellular Matrix , Bacteria , Extracellular Polymeric Substance Matrix , Pseudomonas aeruginosa
18.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443173

ABSTRACT

Microbial activity in planktonic systems creates a dynamic and heterogeneous microscale seascape that harbors a diverse community of microorganisms and ecological interactions of global significance. In recent decades great effort has been put into understanding this complex system, particularly focusing on the role of chemical patchiness, while overlooking a physical parameter that governs microbial life and is affected by biological activity: viscosity. Here we reveal spatial heterogeneity of viscosity in planktonic systems by using microrheological techniques that allow measurement of viscosity at length scales relevant to microorganisms. We show the viscous nature and the spatial extent of the phycosphere, the region surrounding phytoplankton. In ∼45% of the phytoplankton cells analyzed we detected increases in viscosity that extended up to 30 µm away from the cell with up to 40 times the viscosity of seawater. We also show how these gradients of viscosity can be amplified around a lysing phytoplankton cell as its viscous contents leak away. Finally, we report conservative estimates of viscosity inside marine aggregates, hotspots of microbial activity, more than an order of magnitude higher than in seawater. Since the diffusivities of dissolved molecules, particles, and microorganisms are inversely related to viscosity, microheterogeneity in viscosity alters the microscale distribution of microorganisms and their resources, with pervasive implications for the functioning of the planktonic ecosystem. Increasing viscosities impacts ecological interactions and processes, such as nutrient uptake, chemotaxis, and particle encounter, that occur at the microscale but influence carbon and nutrient cycles at a global scale.


Subject(s)
Phytoplankton/growth & development , Plankton/growth & development , Rheology/methods , Chemotaxis , Ecosystem , Phytoplankton/metabolism , Plankton/metabolism , Seawater/chemistry , Viscosity
19.
Biodegradation ; 35(1): 101-114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37115375

ABSTRACT

Pyritic minerals generally occur in nature together with other trace metals as impurities, that can be released during the ore oxidation. To investigate the role of such impurities, the presence of copper (Cu(II)), arsenic (As(III)) and nickel (Ni(II)) during pyrite mediated autotrophic denitrification has been explored in this study at 30 °C with a specialized microbial community of denitrifiers as inoculum. The three metal(loid)s were supplemented at an initial concentration of 2, 5, and 7.5 ppm and only Cu(II) had an inhibitory effect on the autotrophic denitrification. The presence of As(III) and Ni(II) enhanced the nitrate removal efficiency with autotrophic denitrification rates between 3.3 [7.5 ppm As(III)] and 1.6 [7.5 ppm Ni(II)] times faster than the experiment without any metal(loid) supplementation. The Cu(II) batches, instead, decreased the denitrification kinetics with 16, 40 and 28% compared to the no-metal(loid) control for the 2, 5 and 7.5 ppm incubations, respectively. The kinetic study revealed that autotrophic denitrification with pyrite as electron donor, also with Cu(II) and Ni(II) additions, fits better a zero-order model, while the As(III) incubation followed first-order kinetic. The investigation of the extracellular polymeric substances content and composition showed more abundance of proteins, fulvic and humic acids in the metal(loid) exposed biomass.


Subject(s)
Arsenic , Copper , Nickel , Denitrification , Sulfides/metabolism , Nitrates/metabolism , Autotrophic Processes , Bioreactors
20.
Ecotoxicol Environ Saf ; 282: 116760, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39029223

ABSTRACT

The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.


Subject(s)
Artemia , Polystyrenes , Titanium , Water Pollutants, Chemical , Animals , Artemia/drug effects , Titanium/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Extracellular Polymeric Substance Matrix/drug effects , Oxidative Stress/drug effects , Nanoparticles/toxicity , Adsorption , Microplastics/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL