Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(10): 2980-2988, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38311846

ABSTRACT

The emergence of antibiotic and antifungal resistant microorganisms represents nowadays a major public health issue that might push humanity into a post-antibiotic/antifungal era. One of the approaches to avoid such a catastrophe is to advance rapid antibiotic and antifungal susceptibility tests. In this study, we present a compact, optical fiber-based nanomotion sensor to achieve this goal by monitoring the dynamic nanoscale oscillation of a cantilever related to microorganism viability. High detection sensitivity was achieved that was attributed to the flexible two-photon polymerized cantilever with a spring constant of 0.3 N/m. This nanomotion device showed an excellent performance in the susceptibility tests of Escherichia coli and Candida albicans with a fast response in a time frame of minutes. As a proof-of-concept, with the simplicity of use and the potential of parallelization, our innovative sensor is anticipated to be an interesting candidate for future rapid antibiotic and antifungal susceptibility tests and other biomedical applications.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Optical Fibers , Microbial Sensitivity Tests , Candida albicans , Escherichia coli
2.
Sensors (Basel) ; 24(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38894393

ABSTRACT

As the global aging population increases, the demand for rehabilitation of elderly hand conditions has attracted increased attention in the field of wearable sensors. Owing to their distinctive anti-electromagnetic interference properties, high sensitivity, and excellent biocompatibility, optical fiber sensors exhibit substantial potential for applications in monitoring finger movements, physiological parameters, and tactile responses during rehabilitation. This review provides a brief introduction to the principles and technologies of various fiber sensors, including the Fiber Bragg Grating sensor, self-luminescent stretchable optical fiber sensor, and optic fiber Fabry-Perot sensor. In addition, specific applications are discussed within the rehabilitation field. Furthermore, challenges inherent to current optical fiber sensing technology, such as enhancing the sensitivity and flexibility of the sensors, reducing their cost, and refining system integration, are also addressed. Due to technological developments and greater efforts by researchers, it is likely that wearable optical fiber sensors will become commercially available and extensively utilized for rehabilitation.


Subject(s)
Optical Fibers , Wearable Electronic Devices , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Fiber Optic Technology/instrumentation , Rehabilitation/instrumentation , Biosensing Techniques/instrumentation , Biosensing Techniques/methods
3.
Sensors (Basel) ; 24(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475206

ABSTRACT

A greenhouse gas sensor has been developed to simultaneously detect multiple gas species within a hollow-core photonic bandgap fiber (HC-PBF) structure entirely composed of fibers. To enhance sensitivity, the gas cell consists of HC-PBF enclosed between two single-mode fibers fused with a reflective end surface to double the absorption length. The incorporation of side holes for gas diffusion allows for analysis of the relationship between gas diffusion speed, number of drilled side holes, and energy loss. As the number of drilled holes increases, the response time decreases to less than 3 min at the expense of energy loss. Gas experiments demonstrated detection limits of 0.1 ppm for methane and 2 ppm for carbon dioxide, with an average time of 50 s. In-situ testing conducted in rice fields validates the effectiveness of the developed gas detection system using HC-PBF cells, establishing all-fiber sensors with high sensitivity and rapid response.

4.
Sensors (Basel) ; 24(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38794083

ABSTRACT

In this paper, a new sensor is proposed to efficiently gather crucial information on corrosion phenomena and their progression within steel components. Fabricated with plastic optical fibers (POF), the sensor can detect corrosion-induced physical changes in the appearance of monitoring points within the steel material. Additionally, the new sensor incorporates an innovative structure that efficiently utilizes bi-directional optical transmission in the POF, simplifying the installation procedure and reducing the total cost of the POF cables by as much as 50% when monitoring multiple points. Furthermore, an extremely compact dummy sensor with the length of 5 mm and a diameter of 2.2 mm for corrosion-depth detection was introduced, and its functionality was validated through experiments. This paper outlines the concept and fundamental structure of the proposed sensor; analyzes the results of various experiments; and discusses its effectiveness, prospects, and economic advantages.

5.
Sensors (Basel) ; 24(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38894062

ABSTRACT

A solar position sensor is an essential optoelectronic device used to monitor the sun's position in solar tracking systems. In closed-loop systems, this sensor is responsible for providing feedback signals to the control system, allowing motor adjustments to optimize the angle of incidence and minimize positioning errors. The accuracy required for solar tracking systems varies depending on the specific photovoltaic concentration. In the case of the concentrator photovoltaic (CPV), it is normally essential to track the sun with a position error of less than ±0.6°. To achieve such precision, a proposed sensor configuration composed of low-cost embedded electronics and multifiber optical cable is subjected to characterization through a series of measurements covering range, sensitivity, and resolution. These measurements are performed in controlled indoor environments as well as outdoor conditions. The results obtained exhibit a resolution of 2.6×10-3 degrees when the sensor is illuminated within its designated field of view of ±0.1°, particularly in external conditions. Considering the performance demonstrated by the proposed solar position sensor, coupled with its straightforward modeling and assembly compared to position sensors documented in the literature, it emerges as a promising candidate for integration into solar tracking systems.

6.
Sensors (Basel) ; 24(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39065930

ABSTRACT

With the increase in the demand for large-capacity optical communication capacity, multi-core optical fiber (MCF) communication technology has developed, and both the types of MCFs and related devices have become increasingly mature. The application of MCFs in the field of sensing has also received more and more attention, among which MCF fiber Bragg grating (FBG) devices have received more and more attention and have been widely used in various fields. In this paper, the main writing methods of MCF FBGs and their sensing applications are reviewed. The future development of the MCF FBG is also prospected.

7.
Sensors (Basel) ; 24(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38676193

ABSTRACT

An external cavity wavelength-fiber ring laser (ECWTFL) based on a semiconductor optical amplifier and a combined wavelength scanning filter in the Littrow configuration is proposed and experimentally demonstrated. With the benefit of the combination of an external cavity wavelength filter and a Lyot filter, the laser achieves a single-mode narrow linewidth output with a linewidth of 1.75 kHz. The wavelength tuning range reaches 133 nm, covering the entire S + C band. The proposed ECWTFL is used for demodulation of a fiber EFPI sensor; the result shows that the proposed ECWTFL has the ability to demodulate the small cavity-length FPI sensor.

8.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732777

ABSTRACT

Optical fiber sensors are extensively employed for their unique merits, such as small size, being lightweight, and having strong robustness to electronic interference. The above-mentioned sensors apply to more applications, especially the detection and monitoring of vital signs in medical or clinical. However, it is inconvenient for daily long-term human vital sign monitoring with conventional monitoring methods under the uncomfortable feelings generated since the skin and devices come into direct contact. This study introduces a non-invasive surveillance system that employs an optical fiber sensor and advanced deep-learning methodologies for precise vital sign readings. This system integrates a monitor based on the MZI (Mach-Zehnder interferometer) with LSTM networks, surpassing conventional approaches and providing potential uses in medical diagnostics. This could be potentially utilized in non-invasive health surveillance, evaluation, and intelligent health care.


Subject(s)
Deep Learning , Optical Fibers , Vital Signs , Humans , Vital Signs/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Neural Networks, Computer
9.
Sensors (Basel) ; 24(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38610552

ABSTRACT

Ground settlement (GS) in an oil tank determines its structural integrity and commercial service. However, GS monitoring faces challenges, particularly due to the significant temperature differences induced by solar radiation around the tank in daytime. To address this problem, this paper digs out a prior and proposes a temperature uncertainty reduction algorithm based on that. This prior has a spatial Gaussian distribution of temperature around the tank, and numerical simulation and practical tests are conducted to demonstrate it. In addition, combining uniformly packaged sensor probes and the spatial prior of temperature, the temperature uncertainty is verified to be Gaussian-distributed too. Then, the overall temperature uncertainty can be captured by Gaussian fitting and then removed. The practical test verified a 91% reduction rate in temperature uncertainty, and this approach enables GS sensors to effectively perform daytime monitoring by mitigating temperature-related uncertainties.

10.
Sensors (Basel) ; 24(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38339602

ABSTRACT

The timely and cost-effective identification of the onset of corrosion and its progress would be critical for effectively maintaining structural integrity. Consequently, a series of fundamental experiments were conducted to capture the corrosion process on a steel plate using a new type of plastic optical fiber (POF) sensor. Electrolytic corrosion experiments were performed on a 5 mm thick steel plate immersed in an aqueous solution. The POF sensor installed on the upper side of the plate and directed downward detected the upward progression of the corrosion zone that formed on the underside of the plate. The results showed that the POF sensors could detect the onset of the upward-progressing corrosion front as it passed the 1 and 2 mm marks related to the thickness of the corroded zone. The POF sensors were designed to optically identify corrosion; therefore, the data obtained by these sensors could be processed using a newly developed graphic application software for smartphones and also identified by the naked eye. This method offered an easy and cost-effective solution for verifying the corrosion state of structural components.

11.
Sensors (Basel) ; 24(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38475198

ABSTRACT

An optical fiber pH sensor based on a long-period fiber grating (LPFG) is reported. Two oppositely charged polymers, polyethylenimine (PEI) and polyacrylic acid (PAA), were alternately deposited on the sensing structure through a layer-by-layer (LbL) electrostatic self-assembly technique. Since the polymers are pH sensitive, their refractive index (RI) varies when the pH of the solution changes due to swelling/deswelling phenomena. The fabricated multilayer coating retained a similar property, enabling its use in pH-sensing applications. The pH of the PAA dipping solution was tuned so that a coated LPFG achieved a pH sensitivity of (6.3 ± 0.2) nm/pH in the 5.92-9.23 pH range. Only two bilayers of PEI/PAA were used as an overlay, which reduces the fabrication time and increases the reproducibility of the sensor, and its reversibility and repeatability were demonstrated by tracking the resonance band position throughout multiple cycles between different pH solutions. With simulation work and experimental results from a low-finesse Fabry-Perot (FP) cavity on a fiber tip, the coating properties were estimated. When saturated at low pH, it has a thickness of 200 nm and 1.53 ± 0.01 RI, expanding up to 310 nm with a 1.35 ± 0.01 RI at higher pH values, mostly due to the structural changes in the PAA.

12.
Sensors (Basel) ; 24(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203139

ABSTRACT

A novel label-free optical fiber biosensor, based on a microcavity fiber Mach-Zehnder interferometer, was developed and practically demonstrated for DNA detection. The biosensor was fabricated using offset splicing standard communication single-mode fibers (SMFs). The light path of the sensor was influenced by the liquid sample in the offset open cavity. In the experiment, a high sensitivity of -17,905 nm/RIU was achieved in the refractive index (RI) measurement. On this basis, the probe DNA (pDNA) was immobilized onto the sensor's surface using APTES, enabling real-time monitoring of captured complementary DNA (cDNA) samples. The experimental results demonstrate that the biosensor exhibited a high sensitivity of 0.32 nm/fM and a limit of detection of 48.9 aM. Meanwhile, the sensor has highly repeatable and specific performance. This work reports an easy-to-manufacture, ultrasensitive, and label-free DNA biosensor, which has significant potential applications in medical diagnostics, bioengineering, gene identification, environmental science, and other biological fields.


Subject(s)
Biomedical Engineering , Commerce , DNA, Complementary , Optical Fibers
13.
Sensors (Basel) ; 24(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38676141

ABSTRACT

In the automotive industry, there has been considerable focus on developing various sensors for engine oil monitoring. However, when it comes to monitoring the condition of brake fluid, which is crucial for ensuring safety, there has been a lack of a secure online method for this monitoring. This study addresses this gap by developing a hybrid silica nanofiber mat, or an aerogel integrated with an optical fiber sensor, to monitor brake fluid condition. The incorporation of silica nanofibers in this hybrid enhances the sensitivity of the optical fiber glass surface by at least 3.75 times. Furthermore, creating an air gap between the glass surface of the optical fiber and the nanofibers boosts sensitivity by at least 5 times, achieving a better correlation coefficient (R2 = 0.98). In the case of silica aerogel, the sensitivity is enhanced by 10 times, but this enhancement relies on the presence of the established air gap. The air gap was adjusted to range from 0.5 mm to 1 mm, without any significant change in the measurement within this range. The response time of the developed sensor is a minimum of 15 min. The sensing material is irreversible and has a diameter of 2.5 mm, making it easily replaceable. Overall, the sensor demonstrates strong repeatability, with approximately 90% consistency, and maintains uncertainty levels below 5% across specific ranges: from 3% to 6% for silica aerogel and from 5% to 6% for silica nanofibers in the presence of an air gap. These findings hold promise for integrating such an optical fiber sensor into a car's electronic system, enabling the direct online monitoring of brake fluid quality. Additionally, the study elucidates the effect of water absorption on the refractive index of brake fluid, as well as on the silica nanomaterials.

14.
Sensors (Basel) ; 24(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38544029

ABSTRACT

In this article, we propose and demonstrate a probe-type multi-core fiber (MCF) sensor for the multi-parameter measurement of seawater. The sensor comprises an MCF and two capillary optical fibers (COFs) with distinct inner diameters, in which a 45° symmetric core reflection (SCR) structure and a step-like inner diameter capillary (SIDC) structure filled with polydimethylsiloxane (PDMS) are fabricated at the fiber end. The sensor is equipped with three channels for different measurements. The surface plasmon resonance (SPR) channel (CHSPR) based on the side-polished MCF is utilized for salinity measurement. The fiber end air cavity, forming the Fabry-Pérot interference (FPI) channel (CHFPI), is utilized for pressure and temperature measurement. Additionally, the fiber Bragg grating (FBG) channel (CHFBG), which is inscribed in the central core, serves as temperature compensation for the measurement results. By combining three sensing principles with space division multiplexing (SDM) technology, the sensor overcomes the common challenges faced by multi-parameter sensors, such as channel crosstalk and signal demodulation difficulties. The experimental results indicate that the sensor has sensitivities of 0.36 nm/‱, -10.62 nm/MPa, and -0.19 nm/°C for salinity, pressure, and temperature, respectively. As a highly integrated and easily demodulated probe-type optical fiber sensor, it can serve as a valuable reference for the development of multi-parameter fiber optic sensors.

15.
Exp Dermatol ; 32(12): 2112-2120, 2023 12.
Article in English | MEDLINE | ID: mdl-37859506

ABSTRACT

Skin expands and regenerates in response to mechanical stretch. This important homeostasis process is critical for skin biology and can be exploited to generate extra skin for reconstructive surgery. Atmospheric oxygen uptake is important in skin homeostasis. However, whether and how cutaneous atmospheric oxygen uptake changes during mechanical stretch remains unclear, and relevant research tools to quantify oxygen flux are limited. Herein, we used the scanning micro-optrode technique (SMOT), a non-invasive self-referencing optical fiber microsensor, to achieve real-time measurement of cutaneous oxygen uptake from the atmosphere. An in vivo mechanical stretch-induced skin expansion model was established, and an in vitro Flexcell Tension system was used to stretch epidermal cells. We found that oxygen influx of skin increased dramatically after stretching for 1 to 3 days and decreased to the non-stretched level after 7 days. The enhanced oxygen influx of stretched skin was associated with increased epidermal basal cell proliferation and impaired epidermal barrier. In conclusion, mechanical stretch increases cutaneous oxygen uptake with spatial-temporal characteristics, correlating with cell proliferation and barrier changes, suggesting a fundamental mechanistic role of oxygen uptake in the skin in response to mechanical stretch. Optical fiber microsensor-based oxygen uptake detection provides a non-invasive approach to understand skin homeostasis.


Subject(s)
Optical Fibers , Skin , Epidermis , Cell Proliferation , Oxygen , Stress, Mechanical
16.
Sensors (Basel) ; 24(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203045

ABSTRACT

A high-sensitivity curvature sensor with dual-parameter measurement ability based on angularly cascaded long-period fiber grating (AC-LPFG) is proposed and experimentally demonstrated, which consists of two titled LPFGs (TLPFGs) with different tilt angles and the same grating period. AC-LPFG was fabricated by using a deep ultraviolet laser and an amplitude-mask in our laboratory. The experimental results show that simultaneous measurement of curvature and temperature can be achieved by monitoring the wavelengths of two resonant peaks for different TLPFGs. The two peaks show opposite shifts with increasing curvature and has a maximum curvature sensitivity of 16.392 nm/m-1. With the advantages of low cost, high sensitivity, and dual-parameter measurements, our sensor has more potential for engineering applications.

17.
Sensors (Basel) ; 23(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37571597

ABSTRACT

A fiber speckle sensor (FSS) based on a tapered multimode fiber (TMMF) has been developed to measure liquid analyte refractive index (RI) in this work. By the lateral and axial offset of input light into TMMF, several high-order modes are excited in TMMF, and the speckle pattern is spatially modulated, which affects an asymmetrical speckle pattern with a random intensity distribution at the output of TMMF. When the TMMF is immersed in the liquid analyte with RI variation, it influences the guided modes, as well as the mode interference, in TMMF. A digital image correlations method with zero-mean normalized cross-correlation coefficient is explored to digitize the speckle image differences, analyzing the RI variation. It is found that the lateral- and axial-offsets-induced speckle sensor can enhance the RI sensitivity from 6.41 to 19.52 RIU-1 compared to the one without offset. The developed TMMF speckle sensor shows an RI resolution of 5.84 × 10-5 over a linear response range of 1.3164 to 1.3588 at 1550 nm. The experimental results indicate the FSS provides a simple, efficient, and economic approach to RI sensing, which exhibits an enormous potential in the image-based ocean-sensing application.

18.
Sensors (Basel) ; 23(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37430755

ABSTRACT

Infrared evanescent wave sensing based on chalcogenide fiber is an emerging technology for qualitative and quantitative analysis of most organic compounds. Here, a tapered fiber sensor made from Ge10As30Se40Te20 glass fiber was reported. The fundamental modes and intensity of evanescent waves in fibers with different diameters were simulated with COMSOL. The 30 mm length tapered fiber sensors with different waist diameters, 110, 63, and 31 µm, were fabricated for ethanol detection. The sensor with a waist diameter of 31 µm has the highest sensitivity of 0.73 a.u./% and a limit of detection (LoD) of 0.195 vol.% for ethanol. Finally, this sensor has been used to analyze alcohols, including Chinese baijiu (Chinese distilled spirits), red wine, Shaoxing wine (Chinese rice wine), Rio cocktail, and Tsingtao beer. It is shown that the ethanol concentration is consistent with the nominal alcoholicity. Moreover, other components such as CO2 and maltose can be detected in Tsingtao beer, demonstrating the feasibility of its application in detecting food additives.

19.
Sensors (Basel) ; 23(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631556

ABSTRACT

A label-free-based fiber optic biosensor based on etched tilted Bragg fiber grating (TFBG) is proposed and practically demonstrated. Conventional phase mask technic has been utilized to inscribe tilted fiber Bragg grating with a tilt angle of 10°, while the etching has been accomplished with hydrofluoric acid. A composite of polyethylenimine (PEI)/poly(acrylic acid) (PAA) has been thermally deposited on the etched TFBG, followed by immobilization of probe DNA (pDNA) on this deposited layer. The hybridization of pDNA with the complementary DNA (cDNA) has been monitored using wavelength-dependent interrogation. The reproducibility of the probes has been demonstrated by fabricating three identical probes and their response has been investigated for cDNA concentration ranging from 0 µM to 3 µM. The maximum sensitivity has been found to be 320 pm/µM, with the detection limit being 0.65 µM. Furthermore, the response of the probes towards non-cDNA has also been investigated in order to establish its specificity.


Subject(s)
DNA , Fiber Optic Technology , Reproducibility of Results , DNA, Complementary
20.
Sensors (Basel) ; 23(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37631816

ABSTRACT

We demonstrated a new optical fiber modal interferometer (MI) for airflow sensing; the novelty of the proposed structure is that an MI is fabricated based on a piece of HAF, which makes the sensitive MI itself also a hotwire. The interferometer is made by applying arc-discharge tapering and then flame tapering on a 10 mm length high attenuation fiber (HAF, 2 dB/cm) with both ends spliced to a normal single mode fiber. When the diameter of the fiber in the processing region is reduced to about 2 µm, the near-infrared dispersion turning point (DTP) can be observed in the interferometer's transmission spectrum. Due to the absorption of the HAF, the interferometer will have a large temperature increase under the action of a pump laser. At the same time, the spectrum of the interferometer with a DTP is very sensitive to the change in ambient temperature. Since airflow will significantly affect the temperature around the fiber, this thermosensitive interferometer with an integrated heat source is suitable for airflow sensing. Such an airflow sensor sample with a 31.2 mm length was made and pumped by a 980 nm laser with power up to 200 mW. In the comparative experiment with an electrical anemometer, this sensor exhibits a very high air-flow sensitivity of -2.69 nm/(m/s) at a flowrate of about 1.0 m/s. The sensitivity can be further improved by enlarging the waist length, increasing the pump power, etc. The optical anemometer with an extremely high sensitivity and a compact size has the potential to measure a low flowrate in constrained microfluidic channels.

SELECTION OF CITATIONS
SEARCH DETAIL