Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Physiol Endocrinol Metab ; 320(2): E346-E358, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33225720

ABSTRACT

Age-related sarcopenia is associated with a variety of changes in skeletal muscle. These changes are interrelated with each other and associated with systemic metabolism, the details of which, however, are largely unknown. Eicosapentaenoic acid (EPA) is a promising nutrient against sarcopenia and has multifaceted effects on systemic metabolism. In this study, we hypothesized that the aging process in skeletal muscle can be intervened by the administration of EPA. Seventy-five-week-old male mice were assigned to groups fed an EPA-deprived diet (EPA-) or an EPA-enriched diet with 1 wt% EPA (EPA+) for 12 wk. Twenty-four-week-old male mice fed with normal chow were also analyzed. At baseline, the grip strength of the aging mice was lower than that of the young mice. After 12 wk, EPA+ showed similar muscle mass but increased grip strength compared with EPA-. EPA+ displayed higher insulin sensitivity than EPA-. Immunohistochemistry and gene expression analysis of myosin heavy chains (MyHCs) revealed fast-to-slow fiber type transition in aging muscle, which was partially inhibited by EPA. RNA sequencing (RNA-Seq) analysis suggested that EPA supplementation exerts pathway-specific effects in skeletal muscle including the signatures of slow-to-fast fiber type transition. In conclusion, we revealed that aging skeletal muscle in male mice shows lower grip strength and fiber type changes, both of which can be inhibited by EPA supplementation irrespective of muscle mass alteration.NEW & NOTEWORTHY This study demonstrated that the early phenotype of skeletal muscle in aging male mice is characterized by muscle weakness with fast-to-slow fiber type transition, which could be ameliorated by feeding with EPA-enriched diet. EPA induced metabolic changes such as an increase in systemic insulin sensitivity and altered muscle transcriptome in the aging mice. These changes may be related to the fiber type transition and influence muscle quality.


Subject(s)
Aging , Eicosapentaenoic Acid/pharmacology , Gene Expression Regulation/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle Proteins/metabolism , Transcriptome/drug effects , Animals , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Slow-Twitch/drug effects , Muscle Proteins/genetics
2.
Free Radic Biol Med ; 213: 409-425, 2024 03.
Article in English | MEDLINE | ID: mdl-38295887

ABSTRACT

Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.


Subject(s)
Mitochondria , Muscle Fibers, Skeletal , Reactive Oxygen Species/metabolism , Muscle Fibers, Skeletal/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Epigenesis, Genetic
3.
J Physiol Biochem ; 79(3): 635-652, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37147493

ABSTRACT

Hypobaric hypoxia (HH) leads to various adverse effects on skeletal muscles, including atrophy and reduced oxidative work capacity. However, the effects of HH on muscle fatigue resistance and myofiber remodeling are largely unexplored. Therefore, the present study aimed to explore the impact of HH on slow-oxidative fibers and to evaluate the ameliorative potential of exercise preconditioning and nanocurcumin formulation on muscle anti-fatigue ability. C2C12 cells (murine myoblasts) were used to assess the effect of hypoxia (0.5%, 24 h) with and without the nanocurcumin formulation (NCF) on myofiber phenotypic conversion. To further validate this hypothesis, male Sprague Dawley rats were exposed to a simulated HH (7620 m) for 7 days, along with NCF administration and/or exercise training. Both in vitro and in vivo studies revealed a significant reduction in slow-oxidative fibers (p < 0.01, 61% vs. normoxia control) under hypoxia. There was also a marked decrease in exhaustion time (p < 0.01, 65% vs. normoxia) in hypoxia control rats, indicating a reduced work capacity. Exercise preconditioning along with NCF supplementation significantly increased the slow-oxidative fiber proportion and exhaustion time while maintaining mitochondrial homeostasis. These findings suggest that HH leads to an increased transition of slow-oxidative fibers to fast glycolytic fibers and increased muscular fatigue. Administration of NCF in combination with exercise preconditioning restored this myofiber remodeling and improved muscle anti-fatigue ability.


Subject(s)
Hypoxia , Muscle, Skeletal , Rats , Male , Mice , Animals , Rats, Sprague-Dawley , Muscle, Skeletal/metabolism , Hypoxia/metabolism , Oxidation-Reduction , Muscle Fatigue
4.
J Nutr Biochem ; 99: 108859, 2022 01.
Article in English | MEDLINE | ID: mdl-34517095

ABSTRACT

The aim of this study was to investigate the effect of dietary L-theanine supplementation on skeletal muscle fiber type transition in mice. Our data indicated that dietary 0.15% L-theanine supplementation significantly increased the mRNA expression levels of muscle fiber type related genes (MyHC I, MyHC IIa, PGC-1α, Sirt1, Tnnt1, Tnnc1, Tnni1, MEF2C) and the protein expression levels of MyHC IIa, myoglobin, PGC-1α, Sirt1 and Troponin I-SS, but significantly decreased the mRNA and protein expression levels of MyHC IIb. Dietary 0.15% L-theanine supplementation significantly increased the activities of SDH and MDH and decreased the activity of LDH. Furthermore, immunofluorescence demonstrated that dietary 0.15% L-theanine supplementation significantly increased the percentage of type I fibers, and significantly decreased the percentage of type II fibers. In addition, we found that dietary 0.15% L-theanine supplementation increased the fatigue-resistant, antioxidant capacity, mitochondrial biogenesis, and function in skeletal muscle of mice. Furthermore, dietary 0.15% L-theanine supplementation significantly increased the mRNA levels of prox1, CaN and NFATc1, the protein levels of prox1, CNA and NFATc1 and the activity of CaN in GAS muscle when compared with the control group. These results indicated that dietary L-theanine supplementation promoted skeletal muscle fiber transition from type II-type I, which might be via activation of CaN and/or NFATc1 signaling pathway.


Subject(s)
Glutamates/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Animals , Dietary Supplements/analysis , Gene Expression , Male , Mice , Muscle Proteins/genetics , Muscle Proteins/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
5.
Front Nutr ; 8: 825495, 2021.
Article in English | MEDLINE | ID: mdl-35145985

ABSTRACT

The aim of this study was to investigate effects of dietary malic acid supplementation on skeletal muscle fiber-type transition during nursery period and the subsequent meat quality of finishing pigs. Results showed that malic acid supplementation for 28 days increased oxidative fiber percentage of weaned piglets, accompanied by the increased aerobic oxidation in serum and longissimus thoracis (LT) muscle. Additionally, activities of total antioxidant capacity and glutathione peroxidase in serum were increased. Moreover, dietary malic acid supplementation during nursery period tended to increase pH24h and significantly decreased drip loss in LT muscle of finishing pigs. The content of total saturated fatty acid (SFA) and total monounsaturated fatty acid in LT muscle was significantly decreased, whereas the ratio of polyunsaturated fatty acid to SFA tended to increase. Together, dietary malic acid supplementation during nursery period can effectively increase antioxidant capacity and oxidative fibers percentage of weaned piglets, and further improve water holding capacity and nutritional values of pork in finishing pigs.

6.
Article in English | MEDLINE | ID: mdl-29482114

ABSTRACT

Previous hibernation studies demonstrated that such a natural model of skeletal muscle disuse causes limited muscle atrophy and a significant fast-to-slow fiber type shift. However, the underlying mechanism as defined in a large-scale analysis remains unclarified. Isobaric tags for relative and absolute quantification (iTRAQ) based quantitative analysis were used to examine proteomic changes in the fast extensor digitorum longus muscles (EDL) of Daurian ground squirrels (Spermophilus dauricus). Although the wet weights and fiber cross-sectional area of the EDL muscle showed no significant decrease, the percentage of slow type fiber was 61% greater (P < 0.01) in the hibernation group. Proteomics analysis identified 264 proteins that were significantly changed (ratio < 0.83 or >1.2-fold and P < 0.05) in the hibernation group, of which 23 proteins were categorized into energy production and conversion and translation and 22 proteins were categorized into ribosomal structure and biogenesis. Along with the validation by western blot, MAPKAP kinase 2, ATP5D, ACADSB, calcineurin, CSTB and EIF2S were up-regulated in the hibernation group, whereas PDK4, COX II and EIF3C were down-regulated in the hibernation group. MAPKAP kinase 2 and PDK4 were associated with glycolysis, COX II and ATP5D were associated with oxidative phosphorylation, ACADSB was associated with fatty acid metabolism, calcineurin and CSTB were associated with catabolism, and EIF2S and EIF3C were associated with anabolism. Moreover, the total proteolysis rate of EDL in the hibernation group was significantly inhibited compared with that in the pre-hibernation group. These distinct energy and protein metabolism characteristics may be involved in myofiber type conversion and resistance to atrophy in the EDL of hibernating Daurian ground squirrels.


Subject(s)
Energy Metabolism , Hibernation , Muscle Fibers, Skeletal/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Proteomics/methods , Sciuridae/metabolism , Animals , Body Weight , Glycolysis , Metabolic Networks and Pathways , Muscle Fibers, Skeletal/pathology , Muscle Proteins/genetics , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/pathology , Organ Size , Oxidative Phosphorylation , Proteolysis , Reproducibility of Results , Sciuridae/physiology
7.
Cells ; 6(2)2017 Apr 24.
Article in English | MEDLINE | ID: mdl-28441765

ABSTRACT

Specific mutations in LMNA, which encodes nuclear intermediate filament proteins lamins A/C, affect skeletal muscle tissues. Early-onset LMNA myopathies reveal different alterations of muscle fibers, including fiber type disproportion or prominent dystrophic and/or inflammatory changes. Recently, we identified the p.R388P LMNA mutation as responsible for congenital muscular dystrophy (L-CMD) and lipodystrophy. Here, we asked whether viral-mediated expression of mutant lamin A in murine skeletal muscles would be a pertinent model to reveal specific muscle alterations. We found that the total amount and size of muscle fibers as well as the extent of either inflammation or muscle regeneration were similar to wildtype or mutant lamin A. In contrast, the amount of fast oxidative muscle fibers containing myosin heavy chain IIA was lower upon expression of mutant lamin A, in correlation with lower expression of genes encoding transcription factors MEF2C and MyoD. These data validate this in vivo model for highlighting distinct muscle phenotypes associated with different lamin contexts. Additionally, the data suggest that alteration of muscle fiber type identity may contribute to the mechanisms underlying physiopathology of L-CMD related to R388P mutant lamin A.

8.
Gene ; 584(2): 180-4, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26915490

ABSTRACT

Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1.


Subject(s)
Forkhead Transcription Factors/genetics , Muscle, Skeletal/physiology , Nerve Tissue Proteins/genetics , Physical Conditioning, Animal , RNA, Messenger/genetics , Animals , Malondialdehyde/blood , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley
9.
J. physiol. biochem ; 79(3): 635-652, ago. 2023.
Article in English | IBECS (Spain) | ID: ibc-223754

ABSTRACT

Hypobaric hypoxia (HH) leads to various adverse effects on skeletal muscles, including atrophy and reduced oxidative work capacity. However, the effects of HH on muscle fatigue resistance and myofiber remodeling are largely unexplored. Therefore, the present study aimed to explore the impact of HH on slow-oxidative fibers and to evaluate the ameliorative potential of exercise preconditioning and nanocurcumin formulation on muscle anti-fatigue ability. C2C12 cells (murine myoblasts) were used to assess the effect of hypoxia (0.5%, 24 h) with and without the nanocurcumin formulation (NCF) on myofiber phenotypic conversion. To further validate this hypothesis, male Sprague Dawley rats were exposed to a simulated HH (7620 m) for 7 days, along with NCF administration and/or exercise training. Both in vitro and in vivo studies revealed a significant reduction in slow-oxidative fibers (p < 0.01, 61% vs. normoxia control) under hypoxia. There was also a marked decrease in exhaustion time (p < 0.01, 65% vs. normoxia) in hypoxia control rats, indicating a reduced work capacity. Exercise preconditioning along with NCF supplementation significantly increased the slow-oxidative fiber proportion and exhaustion time while maintaining mitochondrial homeostasis. These findings suggest that HH leads to an increased transition of slow-oxidative fibers to fast glycolytic fibers and increased muscular fatigue. Administration of NCF in combination with exercise preconditioning restored this myofiber remodeling and improved muscle anti-fatigue ability. (AU)


Subject(s)
Animals , Mice , Rats , Muscle, Skeletal/metabolism , Hypoxia/metabolism , Muscle Fatigue , Oxidation-Reduction , Rats, Sprague-Dawley
10.
J Histochem Cytochem ; 61(12): 889-900, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23979839

ABSTRACT

Myostatin is an important negative regulator of skeletal muscle growth. The hypermuscular Compact (Cmpt) mice carry a 12-bp natural mutation in the myostatin propeptide, with additional modifier genes being responsible for the phenotype. Muscle cellularity of the fast-type tibialis anterior (TA) and extensor digitorum longus (EDL) as well as the mixed-type soleus (SOL) muscles of Cmpt and wild-type mice was examined by immunohistochemical staining of the myosin heavy chain (MHC) proteins. In addition, transcript levels of MHC isoforms were quantified by qPCR. Based on our results, all investigated muscles of Cmpt mice were significantly larger compared with that of wild-type mice, as characterized by fiber hyperplasia of different grades. Fiber hypertrophy was not present in TA; however, EDL muscles showed specific IIB fiber hypertrophy while the (I and IIA) fibers of SOL muscles were generally hypertrophied. Both the fast TA and EDL muscles of Cmpt mice contained significantly more glycolytic IIB fibers accompanied by a decreased number of IIX and IIA fibers; however, this was not the case for SOL muscles. In summary, despite the variances found in muscle cellularity between the different myostatin mutant mice, similar glycolytic shifts were observed in Cmpt fast muscles as in muscles from myostatin knockout mice.


Subject(s)
Glycolysis/genetics , Muscle Fibers, Fast-Twitch/metabolism , Mutation , Myostatin/genetics , Myostatin/metabolism , Animals , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Myostatin/deficiency , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL