Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters

Publication year range
1.
Appl Environ Microbiol ; 90(3): e0143923, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38349149

ABSTRACT

Aquaculture provides a rich resource of high-quality protein; however, the production is challenged by emerging pathogens such as Vibrio crassostreae. While probiotic bacteria have been proposed as a sustainable solution to reduce pathogen load in aquaculture, their application requires a comprehensive assessment across the aquaculture food chain. The purpose of this study was to determine the antagonistic effect of the potential probiotic bacterium Phaeobacter piscinae against the emerging fish pathogen V. crassostreae in aquaculture feed algae that can be an entry point for pathogens in fish and shellfish aquaculture. P. piscinae strain S26 produces the antibacterial compound tropodithietic acid (TDA). In a plate-based assay, P. piscinae S26 was equally to more effective than the well-studied Phaeobacter inhibens DSM17395 in its inhibition of the fish pathogens Vibrio anguillarum 90-11-286 and V. crassostreae DMC-1. When co-cultured with the microalgae Tetraselmis suecica and Isochrysis galbana, P. piscinae S26 reduced the maximum cell density of V. crassostreae DMC-1 by 2 log and 3-4 log fold, respectively. A TDA-deficient mutant of P. piscinae S26 inhibited V. crassostreae DMC-1 to a lesser extent than the wild type, suggesting that the antagonistic effect involves TDA and other factors. TDA is the prime antagonistic agent of the inhibition of V. anguillarum 90-11-286. Comparative genomics of V. anguillarum 90-11-286 and V. crassostreae DMC-1 revealed that V. crassostreae DMC-1 carries a greater arsenal of antibiotic resistance genes potentially contributing to the reduced effect of TDA. In conclusion, P. piscinae S26 is a promising new candidate for inhibition of emerging pathogens such as V. crassostreae DMC-1 in algal feed systems and could contribute to a more sustainable aquaculture industry.IMPORTANCEThe globally important production of fish and shellfish in aquaculture is challenged by disease outbreaks caused by pathogens such as Vibrio crassostreae. These outbreaks not only lead to substantial economic loss and environmental damage, but treatment with antibiotics can also lead to antibiotic resistance affecting human health. Here, we evaluated the potential of probiotic bacteria, specifically the newly identified strain Phaeobacter piscinae S26, to counteract these threats in a sustainable manner. Through a systematic assessment of the antagonistic effect of P. piscinae S26 against V. crassostreae DMC-1, particularly within the context of algal feed systems, the study demonstrates the effectiveness of P. piscinae S26 as probiotic and thereby provides a strategic pathway for addressing disease outbreaks in aquaculture. This finding has the potential of significantly contributing to the long-term stability of the industry, highlighting the potential of probiotics as an efficient and environmentally conscious approach to safeguarding aquaculture productivity against the adverse impact of pathogens.


Subject(s)
Fish Diseases , Probiotics , Rhodobacteraceae , Vibrio , Animals , Humans , Vibrio/physiology , Fishes , Aquaculture , Probiotics/pharmacology , Fish Diseases/prevention & control , Fish Diseases/microbiology
2.
Microb Pathog ; 189: 106602, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408546

ABSTRACT

The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 µg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices.


Subject(s)
Cadmium Compounds , Metal Nanoparticles , Nanoparticles , Animals , Oxides/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Fishes , Metal Nanoparticles/chemistry
3.
Genome ; 67(10): 368-377, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351909

ABSTRACT

Flavobacterium is a genus of microorganisms living in a variety of hosts and habitats across the globe. Some species are found in fish organs, and only a few, such as Flavobacterium psychrophilum and Flavobacterium columnare, cause severe disease and losses in fish farms. The evolution of flavobacteria that are pathogenic to fish is unknown, and the protein changes accountable for the selection of their colonization to fish have yet to be determined. A phylogenetic tree was constructed with the complete genomic sequences of 208 species of the Flavobacterium genus using 861 softcore genes. This phylogenetic analysis revealed clade CII comprising nine species, including five pathogenic species, and containing the most species that colonize fish. Thirteen specific amino acid changes were found to be conserved across 11 proteins within the CII clade compared with other clades, and these proteins were enriched in functions related to replication, recombination, and repair. Several of these proteins are known to be involved in pathogenicity and fitness adaptation in other bacteria. Some of the observed amino acid changes can be explained by preferential selection for certain codons and tRNA frequency. These results could help explain how species belonging to the CII clade adapt to fish environments.


Subject(s)
Fishes , Flavobacterium , Phylogeny , Flavobacterium/genetics , Fishes/microbiology , Animals , Bacterial Proteins/genetics , Fish Diseases/microbiology , Genome, Bacterial , Amino Acid Substitution , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/veterinary
4.
Fish Shellfish Immunol ; 154: 109978, 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-39442738

ABSTRACT

Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.

5.
Mol Biol Rep ; 51(1): 364, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407655

ABSTRACT

In the field of aquaculture, bacterial pathogens pose significant challenges to fish health and production. Advancements in genomic technologies have revolutionized our understanding of bacterial fish pathogens and their interactions with their host species. This review explores the application of genomic approaches in the identification, classification, and characterization of bacterial fish pathogens. Through an extensive analysis of the literature, we have compiled valuable data on 79 bacterial fish pathogens spanning 13 different phyla, encompassing their whole genome sequences. By leveraging high-throughput sequencing techniques, researchers have gained valuable insights into the genomic makeup of these pathogens, enabling a deeper understanding of their virulence factors and mechanisms of host interaction. Furthermore, genomic approaches have facilitated the discovery of potential vaccine and drug targets, opening up new avenues for the development of effective interventions against fish pathogens. Additionally, the utilization of genomics in fish disease resistance and control in aquaculture has shown promising results, enabling the identification of genetic markers associated with disease resistance traits. This review highlights the significant contributions of genomics to the field of fish pathogen research and underscores its potential for improving disease management strategies and enhancing the sustainability of aquaculture practices.


Subject(s)
Disease Resistance , Genomics , Animals , Disease Resistance/genetics , Aquaculture , Disease Management , Drug Delivery Systems , Fishes/genetics
6.
Environ Res ; 263(Pt 3): 120184, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39426450

ABSTRACT

Climate change has brought significant alterations to the aquatic environment, leading to the rapid spread of infectious fish diseases with increasing water temperatures. It is crucial to understand how aquatic pathogens will impact fish in the context of climate change. This study aimed to assess the effects of climate change on fish diseases globally. Data from 104 papers published between 2003 and 2022 were analyzed to identify recent trends in the field. The majority of the studies (54%) focused on parasites, particularly proliferative kidney disease, while 22% examined bacteria. The United States accounted for 19% of the studies, followed by Canada at 14%, covering a wide range of fish species. More research was published on farmed fish (54%) than wild fish (30%), with a higher emphasis on freshwater species (62%) compared to marine species (34%). Most published studies (64%) focused on the local environment rather than the farm level (7%). The findings highlight temperature as a significant threat to global aquaculture and fisheries, impacting the progression of fish diseases. These impacts could be exacerbated by factors such as pH, salinity, and ocean acidification, posing challenges to fish health. Therefore, there is a pressing need for enhanced research and management strategies to address these issues effectively in the future.

7.
Environ Res ; 251(Pt 2): 118729, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492832

ABSTRACT

The study was carried out to evaluate the effectiveness of the Aristolochia bracteolata water flower extract-mediated AgNPs synthesis and assess their antimicrobial potential. According to the experimental and analytical results, A. bracteolata flower extract can produce valuable AgNPs. The characteristic features of these AgNPs were assessed with UV-visible spectrophotometer, Fourier transform-infrared spectroscopy, Transmission Electron Microscope, Scanning Electron Microscopy, as well as. Under UV-vis. spectrum results, showed major peak at 430 nm and recorded essential functional groups responsible for reducing, capping, and stabilizing AgNPs by FT-IR analysis. In addition, the size and shape of the synthesized AgNPs were found as 21.11-25.17 nm and spherical/octahedral shape. The A. bracteolata fabricated NPs showed remarkable antimicrobial activity against fish bacterial pathogens (V. parahaemolytics, Serratia sp., B. subtilis, and E. coli) as well as common fungal pathogens (A. niger, C. albicans, A. flavus, and A. terreus) at the quantity of 100 µg mL-1 than positive controls. Nevertheless, it was not effective against human bacterial pathogens. It concludes that AgNPs synthesized from A. bracteolata aqueous flower extract have excellent antimicrobial activity and may have a variety of biomedical applications.


Subject(s)
Anti-Infective Agents , Antioxidants , Aristolochia , Flowers , Metal Nanoparticles , Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Flowers/chemistry , Metal Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Aristolochia/chemistry , Silver/chemistry , Silver/pharmacology , Bacteria/drug effects
8.
J Fish Dis ; 47(5): e13921, 2024 May.
Article in English | MEDLINE | ID: mdl-38270561

ABSTRACT

The present study investigates molecular-based PCR techniques to estimate the prevalence of fish pathogens in southwest Mexico where recurrent mortality in the tilapia cultures has been observed. Sample of internal organs and lesions of Nile tilapia were taken and analysed in 2018, 2019, 2020 and 2022 to detect bacterial pathogens using PCR. No samples were taken in 2021 due to the COVID-19 pandemic. The real-time PCR conditions were optimized to allow a qualitative reliable detection of the bacteria from fixed fish tissue. A total of 599 pond- and cage-cultured tilapia from the southwestern Mexican Pacific (Guerrero, Oaxaca and Chiapas states) were analysed. In this tropical region, during 2018 and 2019 water temperatures of the tilapia cultures were generally with the optimal range to grow Nile tilapia, although extreme values were recorded on some farms. Most of the tilapia sampled were apparently healthy. No Francisella sp. was detected in any sample, and Staphylococcus sp. was the most prevalent (from 0% to 64%) bacteria from the three states over time. Low prevalence of Aeromonas sp. was found, from 0% to 4.3%, although the fish pathogen Aeromonas dhakensis was not detected. Sterptococcus iniae was only detected in Chiapas in 2019 at a low prevalence (1.4%), while the major tilapia pathogen S. agalactiae was detected at a high prevalence (from 0% to 59%) in the three Mexican states. This is the first detection of these pathogenic bacteria in rural farms using real-time PCR and constitutes a great risk for tilapia aquaculture in Mexico, as well as a potential dispersion of these pathogens to other aquaculture areas.


Subject(s)
Cichlids , Fish Diseases , Tilapia , Animals , Cichlids/microbiology , Real-Time Polymerase Chain Reaction/veterinary , Mexico/epidemiology , Prevalence , Pandemics , Fish Diseases/microbiology , Aquaculture
9.
J Fish Dis ; : e14019, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39282714

ABSTRACT

This study provides a comprehensive summary of the findings regarding the application and diagnostic efficacy of droplet digital PCR (ddPCR) in detecting viral and bacterial pathogens in aquaculture. Utilizing a systematic search of four databases up to 6 November 2023, we identified studies where ddPCR was deployed for pathogen detection in aquaculture settings, adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis of Diagnostic Test Accuracy guidelines. From the collected data, 16 studies retrieved, seven were included in a meta-analysis, encompassing 1121 biological samples from various fish species. The detection limits reported ranged markedly from 0.07 to 34 copies/µL. A direct comparison of the diagnostic performance between ddPCR with quantitative PCR (qPCR) proved challenging due to limited data, thus only a pooled sensitivity analysis was feasible. The results showed a pooled sensitivity of 0.750 (95% confidence interval [CI]: 0.487-0.944) for ddPCR, compared to 0.461 (95% CI: 0.294-0.632) for qPCR, with no statistically significant difference in sensitivity between the two methods (p = .5884). Notably, significant heterogeneity was observed among the studies (I2 = 93%-97%, p < .01), with the year of publication significantly influencing this heterogeneity (p < .001), but not the country of origin (p = .49). No publication bias was detected, and the studies generally exhibited a low risk of bias according to QUADAS-C criteria. While ddPCR and qPCR showed comparable sensitivities in pathogen detection, ddPCR's capability to precisely quantify pathogens without the need for standard curves highlights its potential utility. This characteristic could significantly enhance the accuracy and reliability of pathogen detection in aquaculture.

10.
Anim Biotechnol ; 35(1): 2299733, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38166494

ABSTRACT

The intensive labour and time required for conventional methods to identify bacterial fish pathogens have revealed the need to develop alternative methods. Raman spectroscopy has been used in the rapid optical identification of bacterial pathogens in recent years as an alternative method in microbiology. Strains of bacterial fish pathogens (Vibrio anguillarum, Lactococcus garvieae and Yersinia ruckeri) that often cause infectious diseases in fish were here identified and analyzed in terms of their biochemical structures in different media and at different incubation times, and the data were specified by using Raman spectroscopy. The results demonstrated that Raman spectroscopy presents species-specific Raman spectra of each disease-causing bacteria and that it would be more appropriate to choose general microbiological media over selective media for routine studies. Additionally, it was found that species-specific band regions did not differ in 24- and 48-hour cultures, but there could be a difference in peak intensity which may lead to difficult characterization of spectrum. The current study, conducted for the first time with bacterial fish pathogens under different incubation conditions, is believed to provide a basis for the routine use of Raman spectroscopy for quick pathogen identification and the precise determination of the methodology for further research.


Subject(s)
Bacteria , Fish Diseases , Animals , Fish Diseases/microbiology , Spectrum Analysis, Raman
11.
Appl Environ Microbiol ; 89(4): e0216222, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36975784

ABSTRACT

Bacteria of the genus Flavobacterium are recovered from a large variety of environments. Among the described species, Flavobacterium psychrophilum and Flavobacterium columnare cause considerable losses in fish farms. Alongside these well-known fish-pathogenic species, isolates belonging to the same genus recovered from diseased or apparently healthy wild, feral, and farmed fish have been suspected to be pathogenic. Here, we report the identification and genomic characterization of a Flavobacterium collinsii isolate (TRV642) retrieved from rainbow trout spleen. A phylogenetic tree of the genus built by aligning the core genome of 195 Flavobacterium species revealed that F. collinsii stands within a cluster of species associated with diseased fish, the closest one being F. tructae, which was recently confirmed as pathogenic. We evaluated the pathogenicity of F. collinsii TRV642 as well as of Flavobacterium bernardetii F-372T, another recently described species reported as a possible emerging pathogen. Following intramuscular injection challenges in rainbow trout, no clinical signs or mortalities were observed with F. bernardetii. F. collinsii showed very low virulence but was isolated from the internal organs of survivors, indicating that the bacterium is able to survive inside the host and may provoke disease in fish under compromised conditions such as stress and/or wounds. Our results suggest that members of a phylogenetic cluster of fish-associated Flavobacterium species may be opportunistic fish pathogens causing disease under specific circumstances. IMPORTANCE Aquaculture has expanded significantly worldwide in the last decades and accounts for half of human fish consumption. However, infectious fish diseases are a major bottleneck for its sustainable development, and an increasing number of bacterial species from diseased fish raise a great concern. The current study revealed phylogenetic associations with ecological niches among the Flavobacterium species. We also focused on Flavobacterium collinsii, which belongs to a group of putative pathogenic species. The genome contents revealed a versatile metabolic repertoire suggesting the use of diverse nutrient sources, a characteristic of saprophytic or commensal bacteria. In a rainbow trout experimental challenge, the bacterium survived inside the host, likely escaping clearance by the immune system but without provoking massive mortality, suggesting opportunistic pathogenic behavior. This study highlights the importance of experimentally evaluating the pathogenicity of the numerous bacterial species retrieved from diseased fish.


Subject(s)
Fish Diseases , Flavobacteriaceae Infections , Oncorhynchus mykiss , Animals , Humans , Flavobacterium , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Phylogeny , Fish Diseases/microbiology , Oncorhynchus mykiss/microbiology
12.
BMC Microbiol ; 23(1): 231, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612642

ABSTRACT

BACKGROUND: In recent years, the demand for innovative antimicrobial agents has grown, considering the growing problem of antibiotic resistance in aquaculture. Adult Apis mellifera honeybees' gut represents an outstanding habitat to isolate novel lactic acid bacteria (LAB) able to produce prominent antimicrobial agents. METHODS: In the current study, twelve LAB were isolated and purified from the gut of adult Apis mellifera. The isolates were screened for exopolysaccharide (EPS) production. The most promising isolate BE11 was identified biochemically and molecularly using 16 S rRNA gene sequence analysis as Enterococcus sp. BE11 was used for the mass production of EPS. The partially purified BE11-EPS features were disclosed by its physicochemical characterization. Moreover, the antimicrobial activity of BE11 cell free supernatant (CFS) and its EPS was investigated against some fish pathogens namely, Pseudomonas fluorescens, Streptococcus agalactiae, Aeromonas hydrophila, Vibrio sp. and Staphylococcus epidermidis using well-cut diffusion method. RESULTS: The physicochemical characterization of BE11-EPS revealed that the total carbohydrate content was estimated to be ~ 87%. FTIR and NMR analysis ascertained the presence of galactose and glucose residues in the EPS backbone. Moreover, the GC-MS analysis verified the heterogeneous nature of the produced BE11-EPS made up of different monosaccharide moieties: galactose, rhamnose, glucose, arabinose sugar derivatives, and glucuronic acid. BE11 CFS and its EPS showed promising antimicrobial activity against tested pathogens as the inhibition zone diameters (cm) ranged from 1.3 to 1.7 and 1.2-1.8, respectively. CONCLUSION: The bee gut-resident Enterococcus sp. BE11, CFS, and EPS were found to be promising antimicrobial agents against fish pathogens and biofilm producers affecting aquaculture. To the best of our knowledge, this is the first study to purify and make a chemical profile of an EPS produced by a member of the bee gut microbiota as a potential inhibitor for fish pathogens.


Subject(s)
Galactose , Lactobacillales , Bees , Animals , Anti-Bacterial Agents/pharmacology , Aeromonas hydrophila , Enterococcus , Fishes , Glucose
13.
Microb Pathog ; 180: 106163, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37209775

ABSTRACT

Probiotics sourced from fish intestinal microbiota have a merit over other bacterial sources due to colonization ability and effective time. This study aimed to evaluate the bacilli isolated from the Rhynchocypris lagowskii intestines and their validity as a probiotic. Three isolates were selected (LSG 2-5, LSG 3-7, and LSG 3-8) and defined by morphological and 16S rRNA analysis as Bacillus velezensis, Bacillus aryabhattai, and Bacillus mojavensis, respectively. Results showed the strain tolerant abilities to gastrointestinal fluid, bile salt, pH, and temperature expotures. Additionally, all bacterial strains showed anti-pathogenic activity against at least four strains out of six tested pathogen strains (Staphylococcus aureus, Aeromonas hydrophila, Escherichia coli, Aeromonas veronii, Edwardsiella, and Aeromonas sobria). The bacterial strains also showed a high percentage of co-aggregation activity, more than 70%, with Aer. hydrophile, Staph. epidermidis, and Klebsiella aerogenes. At the same time, the results of competition, rejection, and substitution activity with Aer. hydrophila and Aer. veronii indicated the ability of the isolated strains to reduce the adhesion of pathogens to mucin. All strains showed safety properties, non-hemolytic, and sensitivity characteristics for most of tested antibiotics. In vivo test after injecting these strains into fish at various concentrations showed no side effects in the internal or external organs of fish compared to controls, proving that this is safe for these fish. Furthermore, the three strains produced lipase, amylase, and protease enzymes. The strains also showed bile salt hydrolase activity and biofilm formation, allowing them to tolerate stressful conditions. Conclusion: Based on these strains characteristics and features, they could be considered a promising candidate probiotic and can be used as an anti-pathogenic, especially in aquaculture.


Subject(s)
Bacillus , Probiotics , Animals , RNA, Ribosomal, 16S/genetics , Intestines , Fishes/genetics
14.
Microb Pathog ; 185: 106429, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37940062

ABSTRACT

Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.


Subject(s)
Fish Diseases , Probiotics , Tilapia , Animals , Bacillus subtilis/genetics , Zebrafish , Probiotics/pharmacology , Anti-Bacterial Agents/pharmacology , Fish Diseases/prevention & control , Fish Diseases/microbiology
15.
J Fish Dis ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37965781

ABSTRACT

Outbreaks of bacterial infections in aquaculture have emerged as significant threats to the sustainable production of rainbow trout (Oncorhynchus mykiss) worldwide. Understanding the dynamics of these outbreaks and the bacteria involved is crucial for implementing effective management strategies. This comprehensive review presents an update on outbreaks of bacteria isolated from rainbow trout reported between 2010 and 2022. A systematic literature survey was conducted to identify relevant studies reporting bacterial outbreaks in rainbow trout during the specified time frame. More than 150 published studies in PubMed, Web of Science, Scopus, Google Scholar and relevant databases met the inclusion criteria, encompassing diverse geographical regions and aquaculture systems. The main bacterial pathogens implicated in the outbreaks belong to both gram-negative, namely Chryseobacterium, Citrobacter, Deefgea Flavobacterium, Janthinobacterium, Plesiomonas, Pseudomonas, Shewanella, and gram-positive genera, including Lactococcus and Weissella, and comprise 36 new emerging species that are presented by means of pathogenicity and disturbance worldwide. We highlight the main characteristics of species to shed light on potential challenges in treatment strategies. Moreover, we investigate the role of various risk factors in the outbreaks, such as environmental conditions, fish density, water quality, and stressors that potentially cause outbreaks of these species. Insights into the temporal and spatial patterns of bacterial outbreaks in rainbow trout aquaculture are provided. Furthermore, the implications of these findings for developing sustainable and targeted disease prevention and control measures are discussed. The presented study serves as a comprehensive update on the state of bacterial outbreaks in rainbow trout aquaculture, emphasizing the importance of continued surveillance and research to sustain the health and productivity of this economically valuable species.

16.
World J Microbiol Biotechnol ; 39(11): 317, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37743401

ABSTRACT

The fisheries sub-sector of aquaculture-i.e., the pisciculture industry, contributes significantly to a country's economy, employing a sizable proportion of the population. It also makes important contributions to household food security because the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish production in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alternatives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous potential solution to these challenges.


Subject(s)
Antimicrobial Peptides , Bacterial Infections , Animals , Aquaculture , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , Bacterial Infections/prevention & control , Disease Management , Fisheries , Fishes
17.
Molecules ; 27(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35566248

ABSTRACT

A high enzyme-yield strain Yersinia sp. 298 was screened from marine bacteria harvested from the coastal water. The screening conditions were extensive, utilizing hyaluronic acid (HA)/chondroitin sulfate (CS) as the carbon source. A coding gene yshyl8A of the family 8 polysaccharide lyase (PL8) was cloned from the genome of Yersinia sp. 298 and subjected to recombinant expression. The specific activity of the recombinase YsHyl8A was 11.19 U/mg, with an optimal reaction temperature of 40 °C and 50% of its specific activity remaining after thermal incubation at 30 °C for 1 h. In addition, its optimal reaction pH was 7.5, and while it was most stable at pH 6.0 in Na2HPO4-citric acid buffer, it remained highly stable at pH 6.0-11.0. Further, its enzymatic activity was increased five-fold with 0.1 M NaCl. YsHyl8A, as an endo-lyase, can degrade both HA and CS, producing disaccharide end-products. These properties suggested that YsHyl8A possessed both significant alkalophilic and cold-adapted features while being dependent on NaCl, likely resulting from its marine source. Yersinia is a typical fish pathogen, with glycosaminoglycan lyase (GAG lyase) as a potential pathogenic factor, exhibiting strong hyaluronidase and chondroitinase activity. Further research on the pathogenic mechanism of GAG lyase may benefit the prevention and treatment of related diseases.


Subject(s)
Glycosaminoglycans , Lyases , Animals , Chondroitin Sulfates , Hyaluronic Acid/chemistry , Hydrogen-Ion Concentration , Polysaccharide-Lyases/chemistry , Sodium Chloride , Yersinia/genetics , Yersinia/metabolism
18.
Microb Pathog ; 161(Pt A): 105273, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34740811

ABSTRACT

The Streptomyces virginiae strain W18 was screened from soil, which exhibited broad-spectrum antibacterial activity against fish pathogens. Safety assays showed that strain W18 had no toxicity to fish. Additionally, strain W18 promoted the growth performance of Carassius auratus after feeding in feed mixed with bacteria for one month. Moreover, the activities of AKP, ACP, and SOD in the serum of C. auratus were significantly increased, while the activity of LZM did not greatly change. To detect the expression levels of the genes related to immune factors in the livers, kidneys, and spleens of C. auratus, qRT-PCR was performed. The expression levels of KEAP1, IL-8, TNF-α, IL-ß, and C3 were upregulated in all three organs compared to the control, but LZM expression was downregulated in the kidney. The challenge experiment illustrated that the probability of infection with Aeromonas veronii was reduced by 60% and 40% when C. auratus was fed with two different doses of strain W18 in advance. The whole genome of strain W18 was sequenced, and the gene clusters of secondary metabolites in strain W18 were analyzed by AntiSMASH. The results showed that strain W18 contained a total of 26 gene clusters, and functional annotation analysis was conducted by using the non-coding databases COG and KEGG. All of the above results indicated that the use of strain W18 as a feed additive could enhance the resistance of C. auratus toward pathogenic bacteria and disease. In conclusion, an antagonistic strain (W18) against fish pathogenic bacteria was obtained in this study, which is of great significance for finding new treatment methods for bacterial diseases in the aquaculture industry.


Subject(s)
Aeromonas veronii/pathogenicity , Disease Resistance , Fish Diseases , Gram-Negative Bacterial Infections , Streptomyces , Animal Feed , Animals , Antibiosis , Fish Diseases/microbiology , Fish Diseases/prevention & control , Goldfish , Gram-Negative Bacterial Infections/veterinary , Streptomyces/genetics
19.
Crit Rev Food Sci Nutr ; 61(11): 1852-1876, 2021.
Article in English | MEDLINE | ID: mdl-32539431

ABSTRACT

The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.


Subject(s)
Biosensing Techniques , Animals , Aquaculture , Fishes , Immunoassay , Polymerase Chain Reaction
20.
J Appl Microbiol ; 131(4): 1722-1741, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33728808

ABSTRACT

AIMS: The aim of the study was to investigate the skin microbiota of Prussian carp infested by ectoparasites from the genera Argulus and Lernaea. METHODS AND RESULTS: Associated microbiota of skin of Prussian carp and ectoparasites were investigated by sequencing of the V3, V4 hypervariable regions of 16S rRNA using Illumina MiSeq sequencing platform. CONCLUSIONS: According to the Spearman rank correlation test, the increasing load of ulcerations of the skin of Prussian carp was weakly negatively correlated with reduction in the abundance of the following taxa: Acrobacter, bacteria C39 (Rhodocyclaceae), Rheinheimera, Comamonadaceae, Helicobacteraceae and Vogesella. In this study, the microbiota of ectoparasites from the genera Lernaea and Argulus were characterized for the first time. The microbiota associated with L. cyprinacea was significantly different from microbial communities of intact skin mucosa of both infested and uninfested fish and skin ulcers (ADONIS, P ≤ 0·05). The microbiota associated with parasitic crustaceans L. cyprinacea were dominated by unclassified bacteria from Comamonadaceae, Aeromonadaceae families and Vogesella. The dominant microbiota of A. foliaceus were represented by Flavobacterium, Corynebacterium and unclassified Comamonadaceae. SIGNIFICANCE AND IMPACT OF THE STUDY: Results from these studies indicate that ectoparasites have the potential to alter skin microbiota, which can play a possible role in the transmission of secondary bacterial infections in fish, caused by pathogenic bacteria.


Subject(s)
Carps , Microbiota , Parasites , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL