Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(8): 2661-2670, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38345313

ABSTRACT

Nanomaterial-assisted chemodynamic therapy (CDT) has received considerable attention in recent years. It outperforms other modalities by its distinctive reactive oxygen species (ROS) generation through a nonexogenous stimulant. However, CDT is limited by the insufficient content of endogenous hydrogen peroxide (H2O2). Herein, a biodegradable MnS@HA-DOX nanocluster (MnS@HA-DOX NC) was constructed by in situ biomineralization from hyaluronic acid, to enlarge the ROS cascade and boost Mn2+-based CDT. The acid-responsive NCs could quickly degrade after internalization into endo/lysosomes, releasing Mn2+, H2S gas, and anticancer drug doxorubicin (DOX). The Fenton-like reaction catalyzed by Mn2+ was amplified by both H2S and DOX, producing a mass of cytotoxic ·OH radicals. Through the combined action of gas therapy (GT), CDT, and chemotherapy, oxidative stress would be synergistically enhanced, inducing irreversible DNA damage and cell cycle arrest, eventually resulting in cancer cell apoptosis.


Subject(s)
Hydrogen Peroxide , Neoplasms , Humans , Reactive Oxygen Species , Hydrogen Peroxide/pharmacology , Doxorubicin/pharmacology , Apoptosis , Biomineralization , Gases , Cell Line, Tumor , Tumor Microenvironment
2.
Nano Lett ; 24(33): 10024-10031, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39115188

ABSTRACT

Carbon monoxide (CO) has emerged as a promising therapeutic agent, yet ensuring safe and precise CO delivery remains challenging. Here, we report a removable hydrogel-forming microneedle (MN) reactor for CO delivery via photocatalysis, with an emphasis on chemosensitization. Upon application, body fluids absorbed by the MNs dissolve the effervescent agents, leading to the generation of carbon dioxide (CO2) and triggering the release of the chemotherapeutics cisplatin. Meanwhile, the photocatalysts (PCs) trapped within MNs convert CO2 to CO under 660 nm light irradiation. These PCs can be removed by hydrogel-forming MNs, thereby mitigating potential biological risks associated with residual PCs. Both in vitro and in vivo experiments showed that MN-mediated CO delivery significantly improved tumor sensitivity to cisplatin by suppressing DNA repair, using an A375/CDDP melanoma model. This removable photocatalysis MN reactor offers safe and precise local delivery of CO, potentially creating new opportunities for CO or its combination therapies.


Subject(s)
Carbon Monoxide , Carbon Monoxide/chemistry , Animals , Humans , Mice , Catalysis , Cisplatin/administration & dosage , Cisplatin/chemistry , Cisplatin/pharmacology , Cell Line, Tumor , Drug Delivery Systems/instrumentation , Needles , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carbon Dioxide/chemistry , Hydrogels/chemistry
3.
Small ; 20(10): e2306508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37919860

ABSTRACT

The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.


Subject(s)
Metal-Organic Frameworks , Polymers , Benzophenones , Polyethylene Glycols , Ketones
4.
Small ; : e2310957, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698608

ABSTRACT

The efficacy of traditional radiotherapy (RT) has been severely limited by its significant side effects, as well as tumor hypoxia. Here, the nanoscale cerium (Ce)-based metaloxo clusters (Ce(IV)6)-porphyrin (meso-tetra (4-carboxyphenyl) porphyrin, TCPP) framework loaded with L-arginine (LA) (denoted as LA@Ce(IV)6-TCPP) is developed to serve as a multifarious radio enhancer to heighten X-ray absorption and energy transfer accompanied by O2/NO generation for hypoxia-improved RT-radiodynamic therapy (RDT) and gas therapy. Within tumor cells, LA@Ce(IV)6-TCPP will first react with endogenous H2O2 and inducible NO synthase (iNOS) to produce O2 and NO to respectively increase the oxygen supply and reduce oxygen consumption, thus alleviating tumor hypoxia. Then upon X-ray irradiation, LA@Ce(IV)6-TCPP can significantly enhance hydroxyl radical (•OH) generation from Ce(IV)6 metaloxo clusters for RT and synchronously facilitate singlet oxygen (1O2) generation from adjacently-coordinated TCPP for RDT. Moreover, both the •OH and 1O2 can further react with NO to generate more toxic peroxynitrite anions (ONOO-) to inhibit tumor growth for gas therapy. Benefitting from the alleviation of tumor hypoxia and intensified RT-RDT synergized with gas therapy, LA@Ce(IV)6-TCPP elicited superior anticancer outcomes. This work provides an effective RT strategy by using low doses of X-rays to intensify tumor suppression yet reduce systemic toxicity.

5.
Small ; : e2402673, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844996

ABSTRACT

Atherosclerosis (AS) is a common cause of coronary heart disease and stroke. The delivery of exogenous H2S and in situ production of O2 within atherosclerotic plaques can help suppress inflammatory cell infiltration and alleviate disease progression. However, the uncontrolled release of gas donors hinders achieving effective drug concentrations and causes toxic effects. Herein, diallyl trisulfide (DATS)-loaded metal-organic cage (MOC)-68-doped MnO2 nanoparticles are developed as a microenvironment-responsive nanodrug with the capacity for the in situ co-delivery of H2S and O2 to inflammatory cells within plaques. This nanomedicine exhibited excellent monodispersity and stability and protected DATS from degradation in the circulation. In vitro studies showed that the nanomedicine reduced macrophage polarization toward an inflammatory phenotype and inhibited the formation of foam cells, while suppressing the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin-1ß. In a mouse model of ApoE-/- genotype, the nanomedicine reduces the plaque burden, inflammatory infiltration, and hypoxic conditions within the plaques. Furthermore, the treatment process and therapeutic effects can be monitored by magnetic resonance image (MRI), in real time upon Mn2+ release from the acidic- and H2O2- microenvironment-responsive MnO2 nanoparticles. The DATS-loaded MOC-68-doped MnO2-based nanodrug holds great promise as a novel theranostic platform for AS.

6.
Small ; : e2403869, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101346

ABSTRACT

Cancer metastasis poses significant challenges in current clinical therapy. Osthole (OST) has demonstrated efficacy in treating cervical cancer and inhibiting metastasis. Despite these positive results, its limited solubility, poor oral absorption, low bioavailability, and photosensitivity hinder its clinical application. To address this limitation, a glutathione (GSH)-responded nano-herb delivery system (HA/MOS@OST&L-Arg nanoparticles, HMOA NPs) is devised for the targeted delivery of OST with cascade-activatable nitric oxide (NO) release. The HMOA NPs system is engineered utilizing enhanced permeability and retention (EPR) effects and active targeting mediated by hyaluronic acid (HA) binding to glycoprotein CD44. The cargoes, including OST and L-Arginine (L-Arg), are released rapidly due to the degradation of GSH-responsive mesoporous organic silica (MOS). Then abundant reactive oxygen species (ROS) are produced from OST in the presence of high concentrations of NAD(P)H quinone oxidoreductase 1 (NQO1), resulting in the generation of NO and subsequently highly toxic peroxynitrite (ONOO-) by catalyzing guanidine groups of L-Arg. These ROS, NO, and ONOO- molecules have a direct impact on mitochondrial function by reducing mitochondrial membrane potential and inhibiting adenosine triphosphate (ATP) production, thereby promoting increased apoptosis and inhibiting metastasis. Overall, the results indicated that HMOA NPs has great potential as a promising alternative for the clinical treatment of cervical cancer.

7.
J Nanobiotechnology ; 22(1): 199, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654266

ABSTRACT

Considering the high recrudescence and the long-lasting unhealed large-sized wound that affect the aesthetics and cause dysfunction after resection of maxillofacial malignant skin tumors, a groundbreaking strategy is urgently needed. Photothermal therapy (PTT), which has become a complementary treatment of tumors, however, is powerless in tissue defect regeneration. Therefore, a novel multifunctional sodium nitroprusside and Fe2+ ions loaded microneedles (SNP-Fe@MNs) platform was fabricated by accomplishing desirable NIR-responsive photothermal effect while burst releasing nitric oxide (NO) after the ultraviolet radiation for the ablation of melanoma. Moreover, the steady releasing of NO in the long term by the platform can exert its angiogenic effects via upregulating multiple related pathways to promote tissue regeneration. Thus, the therapeutic dilemma caused by postoperative maxillofacial skin malignancies could be conquered through promoting tumor cell apoptosis via synergistic PTT-gas therapy and subsequent regeneration process in one step. The bio-application of SNP-Fe@MNs could be further popularized based on its ideal bioactivity and appealing features as a strategy for synergistic therapy of other tumors occurred in skin.


Subject(s)
Melanoma , Nitric Oxide , Photothermal Therapy , Skin Neoplasms , Animals , Photothermal Therapy/methods , Mice , Skin Neoplasms/therapy , Melanoma/therapy , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Cell Line, Tumor , Needles , Humans , Nitroprusside/pharmacology , Apoptosis/drug effects , Skin , Iron/chemistry , Ultraviolet Rays
8.
J Nanobiotechnology ; 22(1): 213, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689259

ABSTRACT

BACKGROUND: The main issues faced during the treatment of apical periodontitis are the management of bacterial infection and the facilitation of the repair of alveolar bone defects to shorten disease duration. Conventional root canal irrigants are limited in their efficacy and are associated with several side effects. This study introduces a synergistic therapy based on nitric oxide (NO) and antimicrobial photodynamic therapy (aPDT) for the treatment of apical periodontitis. RESULTS: This research developed a multifunctional nanoparticle, CGP, utilizing guanidinylated poly (ethylene glycol)-poly (ε-Caprolactone) polymer as a carrier, internally loaded with the photosensitizer chlorin e6. During root canal irrigation, the guanidino groups on the surface of CGP enabled effective biofilm penetration. These groups undergo oxidation by hydrogen peroxide in the aPDT process, triggering the release of NO without hindering the production of singlet oxygen. The generated NO significantly enhanced the antimicrobial capability and biofilm eradication efficacy of aPDT. Furthermore, CGP not only outperforms conventional aPDT in eradicating biofilms but also effectively promotes the repair of alveolar bone defects post-eradication. Importantly, our findings reveal that CGP exhibits significantly higher biosafety compared to sodium hypochlorite, alongside superior therapeutic efficacy in a rat model of apical periodontitis. CONCLUSIONS: This study demonstrates that CGP, an effective root irrigation system based on aPDT and NO, has a promising application in root canal therapy.


Subject(s)
Biofilms , Nanoparticles , Nitric Oxide , Photochemotherapy , Animals , Photochemotherapy/methods , Nitric Oxide/pharmacology , Nitric Oxide/metabolism , Biofilms/drug effects , Rats , Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Periapical Periodontitis/therapy , Periapical Periodontitis/drug therapy , Male , Root Canal Irrigants/pharmacology , Root Canal Irrigants/chemistry , Rats, Sprague-Dawley , Bacterial Infections/drug therapy , Chlorophyllides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
9.
J Nanobiotechnology ; 22(1): 451, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080708

ABSTRACT

The lack of a simple design strategy to obtain ideal conjugated polymers (CPs) with high absorbance and fluorescence (FL) in the near-infrared-II (NIR-II; 1000-1700 nm) region still hampers the success of NIR-II light-triggered phototheranostics. Herein, novel phototheranostic nanoparticles (PPN-NO NPs) were successfully prepared by coloading a cationic NIR-II CPs (PBC-co-PBF-NMe3) and a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) onto a 1:1 mixture of DSPE-PEG5000 and dimyristoylphosphatidylcholine (DMPC) for NIR-II FL and NIR-II photoacoustic (PA) imaging-guided low-temperature NIR-II photothermal therapy (PTT) and gas combination therapy for cancer treatment. A precise NIR-II FL dually enhanced design tactic was proposed herein by integrating flexible nonconjugated segments (C6) into the CPs backbone and incorporating quaternary ammonium salt cationic units into the CPs side chain, which considerably increased the radiative decay pathway, resulting in desirable NIR-II FL intensity and balanced NIR-II absorption and NIR PTT properties. The phototheranostic PPN-NO NPs exhibited distinguished NIR-II FL and PA imaging performance in tumor-bearing mice models. Furthermore, the low-temperature photothermal effect of PPN-NO NPs could initiate NO release upon 980 nm laser irradiation, efficiently suppressing tumor growth owing to the combination of low-temperature NIR-II PTT and NO gas therapy in vitro and in vivo.


Subject(s)
Cations , Nanoparticles , Photothermal Therapy , Polymers , Animals , Mice , Polymers/chemistry , Photothermal Therapy/methods , Humans , Nanoparticles/chemistry , Cations/chemistry , Infrared Rays , Mice, Inbred BALB C , Cell Line, Tumor , Fluorescence , Photoacoustic Techniques/methods , Mice, Nude , Female , Theranostic Nanomedicine/methods
10.
Nano Lett ; 23(21): 9769-9777, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37616496

ABSTRACT

Staphylococcus aureus (S. aureus) infection is a major infectious skin disease that is highly resistant to conventional antibiotic treatment and host immune defense, leading to recurrence and exacerbation of bacterial infection. Herein, we developed a photoresponsive carbon monoxide (CO)-releasing nanocomposite by integrating anion-π+ type-I photosensitizer (OMeTBP) and organometallic complex (FeCO) for the treatment of planktonic S. aureus and biofilm-associated infections. After optimizing the molar ratio of FeCO and OMeTBP, the prepared nanoparticles, OMeTBP@FeCONPs, not only ensured sufficient loading of CO donors and efficient CO generation but also showed negligible free ROS leakage under light irradiation, which helped to avoid tissue damage caused by excessive ROS. Both in vitro and in vivo results demonstrated that OMeTBP@FeCONPs could effectively inhibit S. aureus methicillin-resistant S. aureus (MRSA), and bacterial biofilm. Our design has the potential to overcome the resistance of conventional antibiotic treatment and provide a more effective option for bacterial infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Skin Diseases, Infectious , Staphylococcal Infections , Humans , Staphylococcus aureus , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Carbon Monoxide/pharmacology , Carbon Monoxide/therapeutic use , Reactive Oxygen Species , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Microbial Sensitivity Tests
11.
Small ; : e2307404, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054772

ABSTRACT

Mitochondria are core regulators of tumor cell homeostasis, and their damage has become an arresting therapeutic modality against cancer. Despite the development of many mitochondrial-targeted pharmaceutical agents, the exploration of more powerful and multifunctional medications is still underway. Herein, oxygen vacancy-rich BiO2-x wrapped with CaCO3 (named BiO2-x @CaCO3 /PEG, BCP) is developed for full-fledged attack on mitochondrial function. After endocytosis of BCP by tumor cells, the CaCO3 shell can be decomposed in the acidic lysosomal compartment, leading to immediate Ca2+ release and CO2 production in the cytoplasm. Near-infrared irradiation enhances the adsorption of CO2 onto BiO2-x defects, which enables highly efficient photocatalysis of CO2 -to-CO. Meanwhile, such BiO2-x nanosheets possess catalase-, peroxidase- and oxidase-like catalytic activities under acidic pH conditions, allowing hypoxia relief and the accumulation of diverse reactive oxygen species (ROS) in the tumor microenvironment. Ca2+ overload-induced ion dyshomeostasis, CO-mediated respiratory chain poisoning, ROS-triggered oxidative stress aggravation, and cytosolic hyperoxia can cause severe mitochondrial disorders, which further lead to type I cell death in carcinoma. Not only does BCP cause irreversible apoptosis, but immunogenic cell death is simultaneously triggered to activate antitumor immunity for metastasis inhibition. Collectively, this platform promises high benefits in malignant tumor therapy and may expand the medical applications of bismuth-based nanoagents.

12.
Chembiochem ; 24(6): e202200597, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36385722

ABSTRACT

Sonodynamic therapy (SDT) for cancer treatment is gaining attention owing to its non-invasive property and ultrasound's (US) deep tissue penetration ability. In SDT, US activates the sonosensitizer at the target deep-seated tumors to generate reactive oxygen species (ROS), which ultimately damage tumors. However, drawbacks such as insufficient ROS production, aggregation of sonosensitizer, off-target side effects, etc., of the current organic/nanomaterial-based sonosensitizers limit the effectiveness of cancer SDT. Very recently, metal complexes with tunable physiochemical properties (such as sonostability, HOMO to LUMO energy gap, ROS generation ability, aqueous solubility, emission, etc.) have been devised as effective sonosensitizers, which could overcome the limitations of organic/nanomaterial-based sonosensitizers. This concept introduces all the reported metal-based sonosensitizers and delineates the prospects of metal complexes in cancer sonodynamic therapy. This new concept of metal-based sonosensitizer can deliver next-generation cancer drugs.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Ultrasonic Therapy , Humans , Reactive Oxygen Species , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor
13.
J Nanobiotechnology ; 21(1): 463, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044437

ABSTRACT

Bacterial infection in skin and soft tissue has emerged as a critical concern. Overreliance on antibiotic therapy has led to numerous challenges, including the emergence of multidrug-resistant bacteria and adverse drug reactions. It is imperative to develop non-antibiotic treatment strategies that not only exhibit potent antibacterial properties but also promote rapid wound healing and demonstrate biocompatibility. Herein, a novel multimodal synergistic antibacterial system (SNO-CS@MoS2) was developed. This system employs easily surface-modified thin-layer MoS2 as photothermal agents and loaded with S-nitrosothiol-modified chitosan (SNO-CS) via electrostatic interactions, thus realizing the combination of NO gas therapy and photothermal therapy (PTT). Furthermore, this surface modification renders SNO-CS@MoS2 highly stable and capable of binding with bacteria. Through PTT's thermal energy, SNO-CS@MoS2 rapidly generates massive NO, collaborating with PTT to achieve antibacterial effects. This synergistic therapy can swiftly disrupt the bacterial membrane, causing protein leakage and ATP synthesis function damage, ultimately eliminating bacteria. Notably, after effectively eliminating all bacteria, the residual SNO-CS@MoS2 can create trace NO to promote fibroblast migration, proliferation, and vascular regeneration, thereby accelerating wound healing. This study concluded that SNO-CS@MoS2, a novel multifunctional nanomaterial with outstanding antibacterial characteristics and potential to promote wound healing, has promising applications in infected soft tissue wound treatment.


Subject(s)
Nanostructures , Nitric Oxide , Molybdenum/pharmacology , Molybdenum/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanostructures/chemistry , Regeneration
14.
Adv Exp Med Biol ; 1199: 59-86, 2023.
Article in English | MEDLINE | ID: mdl-37460727

ABSTRACT

Chemotherapy, radiotherapy, and surgery are traditional cancer treatments, which usually produce unpredictable side effects and potential risks to normal healthy organs/tissues. Thus, safe and reliable treatment strategies are urgently required for maximized therapeutic efficiency to lesions and minimized risks to healthy regions. To this end, molecular imaging is responsible to undertake a specific targeting therapy. Besides that, the image guidance as a precision visualized approach for real-time in situ evaluations as well as an intraoperational navigation approach has earned attractive attention in the past decade. Along with the rapid development of multifunctional micro-/nanobiomaterials, versatile cutting-edge and advanced therapy strategies (e.g., thermal therapy, dynamic therapy, gas therapy, etc.) have been achieved and greatly contributed to the image-guided precision treatments in every aspect. Therefore, this chapter aims to discuss about both traditional and advanced cancer treatments and especially to elucidate the important roles that visualized medicine has been playing in the image-guided precision treatments.


Subject(s)
Molecular Imaging , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/radiotherapy , Neoplasms/surgery
15.
Pediatr Surg Int ; 40(1): 21, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108911

ABSTRACT

PURPOSE: Neonatal sepsis is a systemic inflammatory infection common in premature infants and a leading cause of mortality. Argon is an emerging interest in the field of noble gas therapy. Neonates with severe sepsis are frequently mechanically ventilated creating an opportunity for inhalation therapy. We aimed to investigate argon inhalation as a novel experimental therapy in neonatal sepsis. METHODS: Sepsis was established in C57BL/6 neonatal mice by a lipopolysaccharide intraperitoneal injection on postnatal day 9. Septic pup mice were exposed to room air as well as non-septic controls. In the argon group, septic pup mice were exposed to argon (70% Ar, 30% O2) for 6 h in a temperature-controlled environment. RESULTS: At 6 h, survival was significantly enhanced when septic mice received argon compared to septic controls. Serum profiles of cytokine release were significantly attenuated as well as lung architecture restored. CONCLUSIONS: Our findings suggest that argon inhalation as a novel treatment for neonatal sepsis, reducing mortality and counteracting the acute systemic inflammatory response in the blood and preserving the architecture of the lung. This research can contribute to a paradigm shift in the treatment and outcome of neonates with sepsis.


Subject(s)
Neonatal Sepsis , Sepsis , Humans , Infant , Animals , Mice , Mice, Inbred C57BL , Argon/therapeutic use , Sepsis/therapy , Inflammation
16.
Small ; 18(40): e2204244, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36055775

ABSTRACT

As a promising therapeutic modality targeting cancer, gas therapy still faces critical challenges, especially in enhancing therapeutic efficacy and avoiding gas poisoning risks. Here, a pH/glutathione (GSH) dual stimuli-responsive CRISPR/Cas9 gene-editing nanoplatform combined with calcium-enhanced CO gas therapy for precise anticancer therapy, is established. In the tumor microenvironment (TME), the fast biodegradation of the CaCO3 layer via pH-induced hydrolyzation allows glucose oxidase (GOx) to catalyze glucose for H2 O2 production, which further reacts with manganese carbonyl (MnCO) and achieves the precise release of CO gas. Simultaneously, in situ Ca2+ overload from CaCO3 degradation disturbs mitochondrial Ca2+ homeostasis, resulting in Ca2+ -driven reactive oxygen species (ROS) formation and subsequent mitochondrial apoptosis signaling pathway activation. Subsequently, by GSH-induced cleavage of a disulfide bond, the released Cas9/sgRNA (RNP) can achieve nuclear factor E2-related factor 2 (Nrf2) gene ablation to sensitize gas therapy by interfering with ROS signaling. This therapeutic modality endows codelivery of CRISPR, ions, and gas with smart control features, which demonstrates great potential for future clinical applications in precise nanomedicine.


Subject(s)
Nanoparticles , Neoplasms , Calcium , Carbon Monoxide/therapeutic use , Cell Line, Tumor , Disulfides , Gene Editing/methods , Glucose , Glucose Oxidase , Glutathione , Humans , Ions , Manganese , NF-E2-Related Factor 2/therapeutic use , Nanoparticles/chemistry , Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Tumor Microenvironment
17.
Small ; 18(8): e2106168, 2022 02.
Article in English | MEDLINE | ID: mdl-35023625

ABSTRACT

H2 S-mediated tumor therapy has received great attention due to its unique physiological activity and synergistical enhancement, but suffers from limited H2 S donors with promised biosafety to regulate the H2 S delivery and subsequently the elusive pathway to augment the combined therapy. Herein, a PEGylated porous molybdenum disulfide nanoflower (MSP) with abundant defects is facilely synthesized for tumor-targeted theranostics. MSP possesses good water-dispersity and high photothermal ability, which is used for photoacoustic imaging and photothermal therapy. Interestingly, MSP is selectively degraded upon exposure to superfluous glutathione (GSH) within tumor cells, the mechanism of which is investigated, as a reduction-coordination reaction. This special degradation induces redox dyshomeostasis via GSH depletion for reactive oxygen species-accumulated chemodynamic therapy. Meanwhile, the selective biodegradation of MSP regulates a sustained H2 S release within tumor and achieves a targeted H2 S gas therapy via enhancing the glycolysis to acidify the tumor cells (glycolysis disorder). Synergistically, these performances are further enhanced via near-infrared photothermal heating, where excellent therapeutic outcomes with good biosafety are accomplished in vitro and in vivo. These characteristics, together with the unique biodegradation and no obvious side-effects of the nanoparticles, suggest a potential therapeutic strategy for precise tumor treatments.


Subject(s)
Nanoparticles , Neoplasms , Cell Line, Tumor , Glycolysis , Humans , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Oxidation-Reduction , Precision Medicine , Theranostic Nanomedicine
18.
J Nanobiotechnology ; 20(1): 55, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35093073

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial infection is the primary cause of nosocomial infection and has long been an ongoing threat to public health. MRSA biofilms are often resistant to multiple antimicrobial strategies, mainly due to the existence of a compact protective barrier; thus, protecting themselves from the innate immune system and antibiotic treatment via limited drug penetration. RESULTS: A hierarchically structured hydrogen sulfide (H2S)-releasing nano-disinfectant was presented, which was composed of a zinc sulfide (ZnS) core as a H2S generator and indocyanine green (ICG) as a photosensitizer. This nano-disinfectant (ICG-ZnS NPs) sensitively responded to the biofilm microenvironment and demonstrated efficient eradication of MRSA biofilms via a synergistic effect of Zn2+, gas molecule-mediated therapy, and hyperthermia. Physically boosted by released H2S and a near-infrared spectroscopy-induced hyperthermia effect, ICG-ZnS NPs destroyed the compactness of MRSA biofilms showing remarkable deep-penetration capability. Moreover, on-site generation of H2S gas adequately ameliorated excessive inflammation, suppressed secretion of inflammatory cytokines, and expedited angiogenesis, therefore markedly accelerating the in vivo healing process of cutaneous wounds infected with MRSA biofilms. CONCLUSION: ICG-ZnS NPs combined with NIR laser irradiation exhibited significant anti-biofilm activity in MRSA biofilms, can accelerate the healing process through deep-penetration and anti-inflammatory effectuation. The proposed strategy has great potential as an alternative to antibiotic treatment when combating multidrug-resistant bacterial biofilms.


Subject(s)
Disinfectants , Methicillin-Resistant Staphylococcus aureus , Wound Infection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Biofilms , Disinfectants/pharmacology , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Wound Infection/drug therapy
19.
J Nanobiotechnology ; 20(1): 263, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35672697

ABSTRACT

BACKGROUND: A balanced endogenous level of bioavailable nitric oxide (NO) plays a key role in maintaining cardiovascular homeostasis. The bioactive NO level in the cardiomyocytes was much reduced during sepsis. However, it is clinically challenging for the NO gas therapy due to the lack of spatial and temporal release system with precise control. The purpose of this study is to design a NO-releasing biomaterial with heart-targeted capability responsive to the infectious microenvironment, thus ameliorating lipopolysaccharide (LPS)-induced cardiac dysfunction. RESULTS: The heart-targeted NO delivery and in situ releasing system, PCM-MSN@LA, was synthesized using hollow mesoporous silica nanoparticles (MSN) as the carrier, and L-arginine (LA) as the NO donor. The myocardial delivery was successfully directed to heart by specific peptide (PCM) combined with low-intensity focused ultrasound (LIFU) guidance. The myocardial system synthesized NO from the LA released from PCM-MSN@LA in the presence of increased endogenous nitric oxide synthase (NOS) activity induced by LPS. This targeted NO release in situ achieved extraordinary protective effects against LPS-challenged myocardial injury by reducing the recruitment of inflammatory cells, inhibiting oxidative stress and maintaining the mitochondria integrity. In particular, this protection was not compromised by simultaneous circulation collapse as an adverse event in the context. CONCLUSIONS: PCM-MSN@LA + LIFU exhibited extraordinary cardioprotective effects against severe sepsis in the hearts of LPS-treated animals without the side effect of NO diffusion. This technology has great potential to be served as a novel therapeutic strategy for sepsis-induced myocardial injury.


Subject(s)
Nitric Oxide , Sepsis , Animals , Lipopolysaccharides , Myocardium , Myocytes, Cardiac , Sepsis/drug therapy
20.
J Nanobiotechnology ; 20(1): 313, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35794596

ABSTRACT

Metastasis is one of the main causes of failure in the treatment of triple-negative breast cancer (TNBC). Abnormally estrogen level and activated platelets are the key driving forces for TNBC metastasis. Herein, an "ion/gas" bioactive nanogenerator (termed as IGBN), comprising a copper-based MOF and loaded cisplatin-arginine (Pt-Arg) prodrug is developed for metastasis-promoting tumor microenvironment reprogramming and TNBC therapy. The copper-based MOF not only serves as a drug carrier, but also specifically produces Cu2+ in tumors, which catalytic oxidizing estrogen to reduce estrogen levels in situ. Meanwhile, the rationally designed Pt-Arg prodrug reduced into cisplatin to significantly promote the generation of H2O2 in the tumor, then permitting self-augmented cascade NO gas generation by oxidizing Arg through a H2O2 self-supplied way, thus blocking platelet activation in tumor. We clarified that IGBN inhibited TNBC metastasis through local estrogen deprivation and platelets blockade, affording 88.4% inhibition of pulmonary metastasis in a 4T1 mammary adenocarcinoma model. Notably, the locally copper ion interference, NO gas therapy and cisplatin chemotherapy together resulted in an enhanced therapeutic efficacy in primary tumor ablation without significant toxicity. This "ion/gas" bioactive nanogenerator offers a robust and safe strategy for TNBC therapy.


Subject(s)
Metal-Organic Frameworks , Prodrugs , Triple Negative Breast Neoplasms , Cisplatin/pharmacology , Copper , Estrogens , Humans , Hydrogen Peroxide , Metal-Organic Frameworks/pharmacology , Prodrugs/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL